氨碱法生产纯碱工艺
- 格式:ppt
- 大小:15.12 MB
- 文档页数:22
纯碱生产工艺简介氨碱法(又称索尔维法)它是比利时工程师苏尔维(1838~1922)于1892年发明者的纯碱制法。
他以食盐(氯化钠)、石灰石(经焙烧分解成生石灰和二氧化碳)、氨气为原料去制备纯碱。
先并使氨气灌入饱和状态食盐水中而成氨盐水,再灌入二氧化碳分解成溶解度较小的碳酸氢钠结晶和氯化铵溶液。
其化学反应原理就是:nacl+nh3+h2o+co2=nahco3↓+nh4cl将经过滤、洗涤得到的nahco3微小晶体,再加热煅烧制得纯碱产品。
2nahco3=na2co3+h2o+co2↑放出的二氧化碳气体可回收循环使用。
含有氯化铵的滤液与石灰乳[ca(oh)2]混合加热,所放出的氨气可回收循环使用。
cao+h2o=ca(oh)2,2nh4cl+ca(oh)2=cacl2+2nh3↑+2h2o原盐搅拌后,并使固态的nacl溶水,这个过程就是化盐,饱和状态的nacl溶液经过回应,盐水里的沙泥等杂物经洗泥桶排在渣场。
nacl溶液经过碳化尾气净氨塔,碳化尾气净氨塔内进行化学反应,如下:吸氨和碳化过程,就是在上述碳化尾气净氨塔内的未反应的nacl溶液再进一步的充份反应。
其中海水加热主要就是加热设备。
将氨盐水与co2气在碳化塔内进行反应,生成nahco3结晶悬浮液。
原理方程式:2nh3+co2→nh2coonh4nh2coonh4+h2o→nh4hco3+nh3nacl+nh4hco3→nahco3+nh4cl上述nahco3溶液经真空过滤器后,展开重灰焙烧,而nh4cl溶液循环利用。
这个过程产生的是轻质纯碱,一般轻质纯碱密度为500-600kg/m3,重质纯碱密度为1000-1200kg/m3此过程主要就是固相水合法生产重质纯碱,通常重质纯碱密度为1000-1200kg/m3。
重质纯碱性状:白色颗粒状的无水物,易溶于水,常温时暴露在空气中能吸收co2和水,并放出热量,逐渐转成nahco3且结块。
我国的重质纯碱生产大体分成三种方法:固相水合法、液相水合法和结晶法。
纯碱工艺流程
《纯碱工艺流程》
纯碱,又称碳酸钠,是一种重要的化工原料,广泛用于玻璃、肥料、碱液等行业。
纯碱的生产过程通常采用氨法或苏尔法工艺,下面将介绍纯碱氨法工艺的生产流程。
1. 原料准备
纯碱氨法工艺的主要原料包括石灰石、氨气和食盐。
首先将石灰石煅烧得到石灰,再和水和氨气反应得到氢氧化钙。
接着将氢氧化钙与食盐进行水合反应,生成氢氧化钠、氯化氢气和氨气。
最后,通过蒸发和结晶,得到纯碱产品。
2. 溶解和过滤
将氢氧化钠溶解在水中得到氢氧化钠溶液,再经过过滤,去除悬浮固体杂质。
3. 脱硫
将氢氧化钠溶液中的硫化物通过加入空气或者其他氧化剂将其氧化成硫酸,并通过沉淀或者其他方式将其分离。
4. 结晶和干燥
将脱硫后的氢氧化钠溶液通过结晶器结晶,得到碱液浓缩和纯碱晶体。
最后,通过干燥设备将纯碱晶体干燥,得到最终产品。
以上就是纯碱氨法工艺的生产流程,通过各种反应和分离过程,将原料转化成为纯碱产品。
这个工艺流程不仅能够高效地生产
纯碱产品,还可以循环利用部分副产物,减少资源浪费,保护环境。
氨碱法(又称索尔维法)
它是比利时工程师苏尔维(1838~1922)于1892年发明的纯碱制法。
他以食盐(氯化钠)、石灰石(经煅烧生成生石灰和二氧化碳)、氨气为原料来制取纯碱。
先使氨气通入饱和食盐水中而成氨盐水,再通入二氧化碳生成溶解度较小的碳酸氢钠沉淀和氯化铵溶液。
其化学反应原理是:NaCl+NH3+H2O+CO2=NaHCO3↓+NH4Cl
将经过滤、洗涤得到的NaHCO3微小晶体,再加热煅烧制得纯碱产品。
2NaHCO3=Na2CO3+H2O+CO2↑放出的二氧化碳气体可回收循环使用。
含有氯化铵的滤液与石灰乳[Ca(OH)2]混合加热,所放出的氨气可回收循环使用。
CaO+H2O =Ca(OH)2,2NH4Cl+Ca(OH)2=CaCl2+2NH3↑+2H2O
氨碱法(又称索尔维法)
它是比利时工程师苏尔维(1838~1922)于1892年发明的纯碱制法。
他以食盐(氯化钠)、石灰石(经煅烧生成生石灰和二氧化碳)、氨气为原料来制取纯碱。
先使氨气通入饱和食盐水中而成氨盐水,再通入二氧化碳生成溶解度较小的碳酸氢钠沉淀和氯化铵溶液。
其化学反应原理是:NaCl+NH3+H2O+CO2=NaHCO3↓+NH4Cl
将经过滤、洗涤得到的NaHCO3微小晶体,再加热煅烧制得纯碱产品。
2NaHCO3=Na2CO3+H2O+CO2↑放出的二氧化碳气体可回收循环使用。
含有氯化铵的滤液与石灰乳[Ca(OH)2]混合加热,所放出的氨气可回收循环使用。
CaO+H2O =Ca(OH)2,2NH4Cl+Ca(OH)2=CaCl2+2NH3↑+2H2O。
氨碱法纯碱生产工艺
氨碱法纯碱生产工艺也称为索尔维法,是比利时科学家索尔维于1892年创立的。
其纯碱生产工艺主要包括以下步骤:
1.盐水精制:为了除去粗盐水中的钙、镁等杂质,需要进行盐水精制。
通过加入氢氧化钠、氯化钡等物质,使杂质成为沉淀物过滤除去。
然后将盐水加热,除去其中的溶解物,得到精制的饱和盐水。
2.吸氨:氨碱法的核心步骤之一是使盐水饱和氨化。
通过加压使氨气溶解在饱和盐水中,制成氨盐水。
3.碳酸化:将氨盐水与二氧化碳反应,生成碳酸氢钠结晶,然后经过滤、洗涤、煅烧等工序,得到纯碱产品。
此时的滤液中含有氯化铵,加入食盐使它结晶析出,经过滤、干燥即得氯化铵产品。
在整个工艺过程中,还需要对各个步骤产生的废液、废气等进行处理,以达到环保要求。
此外,氨碱法生产纯碱时,设备的选择和操作条件的控制也都十分重要,它们直接影响到产品的质量和产量。
一、实验目的1. 了解氨碱法制备纯碱的原理及过程;2. 掌握氨碱法制备纯碱的实验操作步骤;3. 熟悉实验仪器的使用方法;4. 分析实验过程中可能出现的问题及解决方法。
二、实验原理氨碱法(索尔维法)是一种制备纯碱(碳酸钠)的工业方法,其主要原理是利用氨与二氧化碳反应生成碳酸氢铵,再经过加热分解得到纯碱。
具体反应方程式如下:2NH3 + CO2 + H2O → (NH4)2CO3(NH4)2CO3 → 2NH3 + CO2 + H2O + Na2CO3三、实验仪器与试剂1. 实验仪器:烧杯、试管、漏斗、玻璃棒、铁架台、加热装置、滤纸、滤液瓶等;2. 实验试剂:氨水、二氧化碳、饱和食盐水、碳酸氢铵、氢氧化钠、氢氧化钙等。
四、实验步骤1. 准备实验仪器,检查其是否完好;2. 将一定量的饱和食盐水倒入烧杯中;3. 向烧杯中加入适量的氨水,搅拌均匀;4. 将二氧化碳气体通入烧杯中的溶液中,观察溶液颜色变化;5. 当溶液颜色变为深蓝色时,停止通入二氧化碳气体;6. 将烧杯中的溶液过滤,收集滤液;7. 将滤液加热至沸腾,观察溶液中是否有沉淀产生;8. 当溶液中出现沉淀时,停止加热;9. 将沉淀物过滤,收集滤液;10. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;11. 当溶液颜色变为红色时,停止加入氢氧化钠;12. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;13. 当溶液中出现沉淀时,停止加热;14. 将沉淀物过滤,收集滤液;15. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;16. 当溶液颜色变为绿色时,停止加入氢氧化钙;17. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;18. 当溶液中出现沉淀时,停止加热;19. 将沉淀物过滤,收集滤液;20. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;21. 当溶液颜色变为紫色时,停止加入碳酸氢铵;22. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;23. 当溶液中出现沉淀时,停止加热;24. 将沉淀物过滤,收集滤液;25. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;26. 当溶液颜色变为红色时,停止加入氢氧化钠;27. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;28. 当溶液中出现沉淀时,停止加热;29. 将沉淀物过滤,收集滤液;30. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;31. 当溶液颜色变为绿色时,停止加入氢氧化钙;32. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;33. 当溶液中出现沉淀时,停止加热;34. 将沉淀物过滤,收集滤液;35. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;36. 当溶液颜色变为紫色时,停止加入碳酸氢铵;37. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;38. 当溶液中出现沉淀时,停止加热;39. 将沉淀物过滤,收集滤液;40. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;41. 当溶液颜色变为红色时,停止加入氢氧化钠;42. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;43. 当溶液中出现沉淀时,停止加热;44. 将沉淀物过滤,收集滤液;45. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;46. 当溶液颜色变为绿色时,停止加入氢氧化钙;47. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;48. 当溶液中出现沉淀时,停止加热;49. 将沉淀物过滤,收集滤液;50. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;51. 当溶液颜色变为紫色时,停止加入碳酸氢铵;52. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;53. 当溶液中出现沉淀时,停止加热;54. 将沉淀物过滤,收集滤液;55. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;56. 当溶液颜色变为红色时,停止加入氢氧化钠;57. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;58. 当溶液中出现沉淀时,停止加热;59. 将沉淀物过滤,收集滤液;60. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;61. 当溶液颜色变为绿色时,停止加入氢氧化钙;62. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;63. 当溶液中出现沉淀时,停止加热;64. 将沉淀物过滤,收集滤液;65. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;66. 当溶液颜色变为紫色时,停止加入碳酸氢铵;67. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;68. 当溶液中出现沉淀时,停止加热;69. 将沉淀物过滤,收集滤液;70. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;71. 当溶液颜色变为红色时,停止加入氢氧化钠;72. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;73. 当溶液中出现沉淀时,停止加热;74. 将沉淀物过滤,收集滤液;75. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;76. 当溶液颜色变为绿色时,停止加入氢氧化钙;77. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;78. 当溶液中出现沉淀时,停止加热;79. 将沉淀物过滤,收集滤液;80. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;81. 当溶液颜色变为紫色时,停止加入碳酸氢铵;82. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;83. 当溶液中出现沉淀时,停止加热;84. 将沉淀物过滤,收集滤液;85. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;86. 当溶液颜色变为红色时,停止加入氢氧化钠;87. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;88. 当溶液中出现沉淀时,停止加热;89. 将沉淀物过滤,收集滤液;90. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;91. 当溶液颜色变为绿色时,停止加入氢氧化钙;92. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;93. 当溶液中出现沉淀时,停止加热;94. 将沉淀物过滤,收集滤液;95. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;96. 当溶液颜色变为紫色时,停止加入碳酸氢铵;97. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;98. 当溶液中出现沉淀时,停止加热;99. 将沉淀物过滤,收集滤液;100. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;101. 当溶液颜色变为红色时,停止加入氢氧化钠;102. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;103. 当溶液中出现沉淀时,停止加热;104. 将沉淀物过滤,收集滤液;105. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;106. 当溶液颜色变为绿色时,停止加入氢氧化钙;107. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;108. 当溶液中出现沉淀时,停止加热;109. 将沉淀物过滤,收集滤液;110. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;111. 当溶液颜色变为紫色时,停止加入碳酸氢铵;112. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;113. 当溶液中出现沉淀时,停止加热;114. 将沉淀物过滤,收集滤液;115. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;116. 当溶液颜色变为红色时,停止加入氢氧化钠;117. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;118. 当溶液中出现沉淀时,停止加热;119. 将沉淀物过滤,收集滤液;120. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;121. 当溶液颜色变为绿色时,停止加入氢氧化钙;122. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;123. 当溶液中出现沉淀时,停止加热;124. 将沉淀物过滤,收集滤液;125. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;126. 当溶液颜色变为紫色时,停止加入碳酸氢铵;127. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;128. 当溶液中出现沉淀时,停止加热;129. 将沉淀物过滤,收集滤液;130. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;131. 当溶液颜色变为红色时,停止加入氢氧化钠;132. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;133. 当溶液中出现沉淀时,停止加热;134. 将沉淀物过滤,收集滤液;135. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;136. 当溶液颜色变为绿色时,停止加入氢氧化钙;137. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;138. 当溶液中出现沉淀时,停止加热;139. 将沉淀物过滤,收集滤液;140. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;141. 当溶液颜色变为紫色时,停止加入碳酸氢铵;142. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;143. 当溶液中出现沉淀时,停止加热;144. 将沉淀物过滤,收集滤液;145. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;146. 当溶液颜色变为红色时,停止加入氢氧化钠;147. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;148. 当溶液中出现沉淀时,停止加热;149. 将沉淀物过滤,收集滤液;150. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;151. 当溶液颜色变为绿色时,停止加入氢氧化钙;152. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;153. 当溶液中出现沉淀时,停止加热;154. 将沉淀物过滤,收集滤液;155. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;156. 当溶液颜色变为紫色时,停止加入碳酸氢铵;157. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;158. 当溶液中出现沉淀时,停止加热;159. 将沉淀物过滤,收集滤液;160. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;161. 当溶液颜色变为红色时,停止加入氢氧化钠;162. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;163. 当溶液中出现沉淀时,停止加热;164. 将沉淀物过滤,收集滤液;165. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;166. 当溶液颜色变为绿色时,停止加入氢氧化钙;167. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;168. 当溶液中出现沉淀时,停止加热;169. 将沉淀物过滤,收集滤液;170. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;171. 当溶液颜色变为紫色时,停止加入碳酸氢铵;172. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;173. 当溶液中出现沉淀时,停止加热;174. 将沉淀物过滤,收集滤液;175. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;176. 当溶液颜色变为红色时,停止加入氢氧化钠;177. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;178. 当溶液中出现沉淀时,停止加热;179. 将沉淀物过滤,收集滤液;180. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;181. 当溶液颜色变为绿色时,停止加入氢氧化钙;182. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;183. 当溶液中出现沉淀时,停止加热;184. 将沉淀物过滤,收集滤液;185. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;186. 当溶液颜色变为紫色时,停止加入碳酸氢铵;187. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;188. 当溶液中出现沉淀时,停止加热;189. 将沉淀物过滤,收集滤液;190. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;191. 当溶液颜色变为红色时,停止加入氢氧化钠;192. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;193. 当溶液中出现沉淀时,停止加热;194. 将沉淀物过滤,收集滤液;195. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;196. 当溶液颜色变为绿色时,停止加入氢氧化钙;197. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;198. 当溶液中出现沉淀时,停止加热;199. 将沉淀物过滤,收集滤液;200. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;201. 当溶液颜色变为紫色时,停止加入碳酸氢铵;202. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;203. 当溶液中出现沉淀时,停止加热;204. 将沉淀物过滤,收集滤液;205. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;206. 当溶液颜色变为红色时,停止加入氢氧化钠;207. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;208. 当溶液中出现沉淀时,停止加热;209. 将沉淀物过滤,收集滤液;210. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;211. 当溶液颜色变为绿色时,停止加入氢氧化钙;212. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;213. 当溶液中出现沉淀时,停止加热;214. 将沉淀物过滤,收集滤液;215. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;216. 当溶液颜色变为紫色时,停止加入碳酸氢铵;217. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;218. 当溶液中出现沉淀时,停止加热;219. 将沉淀物过滤,收集滤液;220. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;221. 当溶液颜色变为红色时,停止加入氢氧化钠;222. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;223. 当溶液中出现沉淀时,停止加热;224. 将沉淀物过滤,收集滤液;225. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;226. 当溶液颜色变为绿色时,停止加入氢氧化钙;227. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;228. 当溶液中出现沉淀时,停止加热;229. 将沉淀物过滤,收集滤液;230. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;231. 当溶液颜色变为紫色时,停止加入碳酸氢铵;232. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;233. 当溶液中出现沉淀时,停止加热;234. 将沉淀物过滤,收集滤液;235. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;236. 当溶液颜色变为红色时,停止加入氢氧化钠;237. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;238. 当溶液中出现沉淀时,停止加热;239. 将沉淀物过滤,收集滤液;240. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;241. 当溶液颜色变为绿色时,停止加入氢氧化钙;242. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;243. 当溶液中出现沉淀时,停止加热;244. 将沉淀物过滤,收集滤液;245. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;246. 当溶液颜色变为紫色时,停止加入碳酸氢铵;247. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;248. 当溶液中出现沉淀时,停止加热;249. 将沉淀物过滤,收集滤液;250. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;251. 当溶液颜色变为红色时,停止加入氢氧化钠;252. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;253. 当溶液中出现沉淀时,停止加热;254. 将沉淀物过滤,收集滤液;255. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;256. 当溶液颜色变为绿色时,停止加入氢氧化钙;257. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;258. 当溶液中出现沉淀时,停止加热;259. 将沉淀物过滤,收集滤液;260. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;261. 当溶液颜色变为紫色时,停止加入碳酸氢铵;262. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;263. 当溶液中出现沉淀时,停止加热;264. 将沉淀物过滤,收集滤液;265. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;266. 当溶液颜色变为红色时,停止加入氢氧化钠;267. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;268. 当溶液中出现沉淀时,停止加热;269. 将沉淀物过滤,收集滤液;270. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;271. 当溶液颜色变为绿色时,停止加入氢氧化钙;272. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;273. 当溶液中出现沉淀时,停止加热;274. 将沉淀物过滤,收集滤液;275. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;276. 当溶液颜色变为紫色时,停止加入碳酸氢铵;277. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;278. 当溶液中出现沉淀时,停止加热;279. 将沉淀物过滤,收集滤液;280. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;28。
第二章氨碱法纯碱生产工艺概述第一节氨碱法基本生产原理及总流程简述一、氨碱法生产纯碱的特点及总流程氨碱法生产纯碱的技术成熟,设备基本定型,原料易得,价格低廉,过程中的NH3循环使用,损失较少。
能大规模连续化生产,机械化自动化程度高,产品的质量好,纯度高。
该法的突出缺点是:原料利用率低,主要是指NaCl的利用率低,废渣排放量大。
严重污染环境,厂址选择有很大局限性,石灰制备和氨回收系统设备庞大,能耗较高,流程较长。
针对上述不足和合成氨厂副产CO2的特点,提出了氨碱两大生产系统组成同一条连续的生产线,用NaCl,NH3和CO2同时生产出纯碱和氯化铵两种产品——即联碱法。
氨碱法生产纯碱的总流程见图5-19。
二、氨碱法制纯碱的生产工艺流程1、氨碱法生产纯碱的流程示意如图5-1所示。
其过程大致如下:2、氨碱法纯碱生产工艺流程框图:3、氨碱法纯碱生产工序的基本划分:(1)石灰工序:CO 2和石灰乳的制备,石灰石经煅烧制得石灰和CO 2,石灰经消化得石灰乳;(2)盐水工序:盐水的制备和精制;(3)蒸吸工序: 盐水氨化制氨盐水及母液中氨的蒸发与回收;原盐 石灰石 无烟煤CO 2 NH 3 废液 重质纯碱 轻质纯碱盐水精制 盐水吸氨 氨盐水碳化 石灰煅烧 石灰乳制备 母液蒸馏 重碱过滤 重碱煅烧 水合(4)碳滤工序: 氨盐水碳化制得重碱及其重碱过滤和洗涤;(5)煅烧工序:重碱煅烧得纯碱成品及CO2;和重质纯碱的生产;(6)CO2压缩工序:窑气CO2、炉气CO2的压缩工碳酸化制碱。
三、氨碱法纯碱生产原理及工艺流程叙述氨碱法生产纯碱的原料是食盐和石灰石,燃料为焦炭(煤)。
氨作为催化剂在系统中循环使用。
原料盐(海盐、岩盐、天然盐水)经精制吸氨、碳化、结晶、过滤,再煅烧即为成品。
母液经石灰乳中和后,氨蒸发并回收使用,氯化钙则排放。
其化学反应为:氨碱法具有原料来源丰富和方便,生产过程均在气液相间进行,可以大规模连续化生产及产品质量好、成本低等优点。
第三节海水“制碱”一、氨碱法制取纯碱一、导学提纲1、纯碱的制取⑴、原料:、、、。
⑵、工艺流程:饱和食盐水———饱和氨盐水———NaHCO3———NaCO3先向饱和食盐水中通入,制成饱和氨盐水,在加压并不断通入的条件下,使NaHCO3 晶体析出,过滤后将NaHCO3 加热分解即得纯碱。
⑶、反应原理:;。
⑷、优缺点:优点:原料经济、生产的纯碱纯度高、副产品NH3和CO2可循环使用、制造步骤简单适合大规模生产。
缺点:NaCl的利用率只有72%—74%,回收NH3时生成的CaCl2用处不大且污染环境。
2、纯碱的用途纯碱在化学工业中的用途极广,如、、、等均需要大量的纯碱,纯碱还广泛应用于、、、等领域。
3、碳酸氢钠⑴碳酸氢钠俗称,又称,化学式为。
⑵碳酸氢钠是一种色晶体,溶于水,其水溶液显性,受热易分解,化学方程式为。
⑶碳酸氢钠在生产和生活中有许多重要用途,你都知道哪一些?二、交流共享1、用氨碱法制取纯碱时,为什么氨盐水比食盐水更容易吸收CO2?2、氨盐水吸收CO2后生成的NaHCO3和NH4Cl ,哪种物质首先析出?为什么?3、用氨碱法制取纯碱时,为什么说是以氨为媒介?三、拓展应用我国化工专家侯德榜发明的“侯氏制碱法”的基本原理是:在浓氨水中通入足量的CO2生成一种盐,然后在此溶液中加入细小的食盐粉末,由于NaHCO3 在该状态下溶解度很小,呈晶体析出,同时由于NaHCO3 不稳定,加热后生成纯碱、水和二氧化碳。
根据以上叙述回答下列问题:⑴用上述方法进行生产时,所用的起始原料是(填化学),最终产品是。
⑵有关反应的化学方程式为、、。
该生产过程中没有涉及的基本反应类型是⑶有人认为侯氏制碱法的优点有四:A、生产过程中部分产品可选为起始原料使用;B副产品是一种可利用的氮肥;C反应不需要加热;D副产品不会造成环境污染,你认为其中正确的是(用代号回答)。