中考找规律
- 格式:doc
- 大小:394.40 KB
- 文档页数:8
中考数学试复习专题——找规律1、如图所示,观察小圆圈的摆放规律,第一个图中有5个小圆圈,第二个图中有8个小圆圈,第100个图中有个小圆圈.(1) (2) (3)2、 找规律.下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,则第4幅图中有 个菱形,第n 幅图中有 个菱形.3、用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).4、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为.5、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个22⨯的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个33⨯的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个44⨯的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个1010⨯的正方形图案, 则其中完整的圆共有 个.1 2 3n … … 第1个图 第2个图 第3个图 …6、如下图,用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n个图案需要用白色棋子枚(用含有n的代数式表示,并写成最简形式).○○○○○○○○○○○○○●●○○●●●○○●○○●●○○●●●○○○○○○○○○●●●○○○○○○7、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第334个图形需根火柴棒。
8、将正整数按如图5所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是.9、如图2,用n表示等边三角形边上的小圆圈,f(n)表示这个三角形中小圆圈的总数,那么f(n)和n的关系是10、观察图4的三角形数阵,则第50行的最后一个数是()1-2 3-4 5 -67 -8 9 -10。
11、下列图案由边长相等的黑、白两色正方形按一定规律拼接而成,依此规律,第n个图案中白色正方形的个数为.12、观察下列各式:3211=332123+=33221236++=33332123410+++=……猜想:333312310++++=.第一个第二个第三个……第n个第一排第二排第三排第四排6┅┅10 9 8 73 2154答案解析:1解析:1时,5.n再每增加一个数时,m就增加3个数.解答:根据所给的具体数据,发现:8=5+3,11=5+3×2,14=5+3×3,….以此类推,第n个圈中,5+3(1)=32.2解析:分析可得:第1幅图中有1×2-1=1个,第2幅图中有2×2-1=3个,第3幅图中有3×2-1=5个,…,故第n幅图中共有21个3解析:在4的基础上,依次多3个,得到第n个图中共有的棋子数.观察图形,发现:在4的基础上,依次多3个.即第n个图中有4+3(1)=31.当6时,即原式=19.故第6个图形需棋子19枚4解析:此题只要找出截取表一的那部分,并找出其规律即可解.解答:解:表二截取的是其中的一列:上下两个数字的差相等,所以15+3=18.表三截取的是两行两列的相邻的四个数字:右边一列数字的差应比左边一列数字的差大1,所24+25-20+1=30.表四中截取的是两行三列中的6个数字:18是3的6倍,则c应是4的7倍,即28.故选D.认真观察表格,熟知各个数字之间的关系:第一列是1,2,3,…;第二列是对应第一列的2倍;等三列是对应第一列的3倍5解析:据给出的四个图形的规律可以知道,组成大正方形的每个小正方形上有一个完整的圆,因此圆的数目是大正方形边长的平方,每四个小正方形组成一个完整的圆,从而可得这样的圆是大正方形边长减1的平方,从而可得若这样铺成一个10×10的正方形图案,则其中完整的圆共有102+(10-1)2=181个.解答:解:分析可得完整的圆是大正方形的边长减1的平方,从而可知铺成一个10×10的正方形图案中,完整的圆共有102+(10-1)2=181个.点评:本题难度中等,考查探究图形的规律.本题也只可以直接根据给出的四个图形中计数出的圆的个数,找出数字之间的规律得出答案.6解析:解:第1个正方形图案有棋子共32=9枚,其中黑色棋子有12=1枚,白色棋子有(32-12)枚;第2个正方形图案有棋子共42=16枚,其中黑色棋子有22=4枚,白色棋子有(42-22)枚;…由此可推出想第n个图案的白色棋子数为(2)22=4(1).故第n个图案的白色棋子数为(2)22=4(1).点评:根据图形提供的信息探索规律,是近几年较流行的一种探索规律型问题.解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论7解析:根据题意分析可得:搭第1个图形需12根火柴;搭第2个图形需12+6×1=18根;搭第3个图形需12+6×2=24根;…搭第n个图形需12+6(1)=66根.解答:解:搭第334个图形需6×334+6=2010根火柴棒8解析:寻找规律,然后解答.每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.解答:解:观察图表可知:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.实数15=1+2+3+4+5,则17在第6排,第5个位置,即其坐标为(6,5).故答案填:(6,5).对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.9解析:根据题意分析可得:第n行有n个小圆圈.故f(n)和n的关系是ƒ(n)= (n2).10解析:根据题意可得:第n行有n个数;且第n行第一个数的绝对值为+1,最后一个数的绝对值为;奇数为正,偶数为负;故第50行的最后一个数是1275.解答:解:第n行第一个数的绝对值为+1,最后一个数的绝对值为,奇数为正,偶数为负,第50行的最后一个数是1275第一个图中白色正方形的个数为3×3-1;第二个图中白色正方形的个数为3×5-2第三个图中白色正方形的个数为3×7-3;…当其为第n个时,白色正方形的个数为3(21)5312解析:根据所给的等式,可以发现右边的底数是前边的底数的和,指数是平方,则最后的底数是1+2+310=5×11=55,则原式=552.解答:解:根据分析最后的底数是1+2+310=5×11=55,则原式=552.故答案552。
2022年中考数学专题复习:找规律1.以下图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,l3,14,l5,20,21,22).假设圈出的9个数中,最大数与最小数的积为192,那么这9个数的和为【】.A.32 B.126 C.135 D.144【答案】D。
【考点】分类归纳〔数字的变化类〕,一元二次方程的应用。
【分析】由日历表可知,圈出的9个数中,最大数与最小数的差总为16,又最大数与最小数的积为192,所以设最大数为x,那么最小数为x-16。
∴x〔x-16〕=192,解得x=24或x=-8〔负数舍去〕。
∴最大数为24,最小数为8。
∴圈出的9个数为8,9,10,15,16,17,22,23,24。
和为144。
应选D。
2.某单位要组织一次篮球联赛,赛制为单循环形式〔每两队之间都赛一场〕,方案安排10场比赛,那么参加比赛的球队应有【】A.7队B.6队C.5队D.4队【答案】C。
【考点】分类归纳〔数字的变化类〕,一元二次方程的应用。
【分析】设邀请x个球队参加比赛,那么第一个球队和其他球队打〔x-1〕场球,第二个球队和其他球队打〔x-2〕场,以此类推可以知道共打〔1+2+3+…+x-1〕= x(x1)2-场球,根据方案安排10场比赛即可列出方程:x(x1)102-=,∴x2-x-20=0,解得x=5或x=-4〔不合题意,舍去〕。
应选C。
3.观察以下一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是 ▲ . 【答案】2k2k+1。
【考点】分类归纳〔数字的变化类〕。
【分析】根据得出数字分母与分子的变化规律:分子是连续的偶数,分母是连续的奇数,∴第k 个数分子是2k ,分母是2k +1。
∴这一组数的第k 个数是2k2k+1。
4. 填在以下各图形中的三个数之间都有相同的规律,根据此规律,a 的值是 ▲ .【答案】900。
初三规律题的解题技巧
初三数学规律题解题技巧
一、发现找规律的方法
观察题目所给的数或式子,分析它们之间的相互联系,从而发现数或式子的变化规律。
二、掌握找规律的方法
1. 标出序列号:找规律的题目,通常按照一定的顺序给出一系列数,要求我们根据这些数的变化规律找出其中的规律。
对于较复杂的找规律题,我们可以先将各个数列出来,然后分析它们的变化趋势,再根据前后的变化关系找出规律。
2. 试探法:有些题目,我们无法从整体上分析出规律,这时我们可以采用试探法。
从数列的第一个数开始,依次代入到公式中,观察结果的变化,从而找出规律。
3. 归纳法:对于一些较为复杂的找规律题目,我们可以采用归纳法。
通过对给出的数列进行观察和分析,归纳出数列中数的变化规律。
三、运用所发现的规律解题
根据所发现的规律,将题目中的数或式子代入到规律中,从而求出答案。
总之,解答初三数学规律题需要我们认真观察、分析、归纳和运用所发现的规律,从而找到解题的方法。
中考数学规律题解题技巧
1. 嘿,你知道吗?对于中考数学规律题,要仔细观察呀!就像找宝藏一样,一点点线索都不能错过呢!比如那道数列题,1,3,5,7,9……这不
是很明显的奇数序列嘛!只要你有一双善于发现的眼睛,还怕找不到规律?
2. 哇塞,做中考数学规律题千万不能心急呀!要慢下来,沉住气!就好像拼图一样,一块一块慢慢来。
比如说图形规律题,一个三角形,两个三角形,然后四个三角形……这不是倍数增长嘛,只要耐心就能找到答案哦!
3. 哎呀呀,可别小瞧了那些数字和图形呀!它们都是有玄机的呢!像那种给出一串数字,然后让你找下一个数的题,就像是一场刺激的探秘之旅。
比如2,4,8,16……这明显就是依次乘以 2 呀,是不是很有趣?
4. 嘿,你想想看,中考数学规律题是不是就像走迷宫呀!得找到正确的路才成。
比如那道根据算式找规律的题,1+3=4,1+3+5=9……这不是连续奇
数的和嘛!只要勇敢尝试,总能走出去的啦!
5. 哇哦,对待中考数学规律题可得动点小脑筋哦!别一根筋呀!好比一道题,一会儿大一会儿小,得变化着看哟!比如大小不同的正方形排列,那规律可得仔细琢磨呢,绝对能让你眼前一亮!
6. 哈哈,做中考数学规律题就是和出题老师斗智斗勇呀!别怕困难,冲呀!就像那道周期规律题,红蓝黄红蓝黄……这周期不就出来啦!只要咱不怕,
肯定能搞定呀!
总之,中考数学规律题并不可怕,只要掌握了技巧,细心观察和分析,就一定能战胜它!。
初中数学找规律(5)--坐标类一、选择题1、如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()A、(13,13)B、(﹣13,﹣13)C、(14,14)D、(﹣14,﹣14)第2题第1题2、一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是()【列举找规律】A、(16,16)B、(44,44)C、(44,16)D、(16,44)第n圈0 1 2 3 ……n每圈移动次数 1 3 5 7 2n+1中点所在轴y X Y X总的运动次数为S=1+3+5+7+……+2n+1=(n+1)2,452=2025,n+1=45,n=44,终点落在y 轴上,后退17到2008步。
3、在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:(1)、f(a,b)=(﹣a,b).如:f(1,3)=(﹣1,3);(2)、g(a,b)=(b,a).如:g(1,3)=(3,1);(3)、h(a,b)=(﹣a,﹣b).如:h(1,3)=(﹣1,﹣3).按照以上变换有:f(g(2,﹣3))=f(﹣3,2)=(3,2),那么f(h(5,﹣3))等于()A、(﹣5,﹣3)B、(5,3)C、(5,﹣3)D、(﹣5,3)4、在直角坐标系中,一只电子青蛙每次向上或向下或向左或向右跳动一格,现知这只青蛙位于(2,﹣3),则经两次跳动后,它不可能跳到的位置是()A、(3,﹣2)B、(4,﹣3)C、(4,﹣2)D、(1,﹣2)5、如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)(4,0)根据这个规律探索可得,第100个点的坐标为 (14,8) .6、如图,已知A l (1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1),….则点A 2007的坐标为 .【除A1外,四步一循环,一定要和圈数建立函数关系列举A 4n (-n,-n)A 4n-1(-n,n) A 4n-2(n,n),A 4n-3(n,-n+1)】7、已知甲运动方式为:先竖直向上运动1个单位长度后,再水平向右运动2个单位长度;乙运动方式为:先竖直向下运动2个单位长度后,再水平向左运动3个单位长度.在平面直角坐标系内,现有一动点P 第1次从原点O 出发按甲方式运动到点P 1,第2次从点P 1出发按乙方式运动到点P 2,第3次从点P 2出发再按甲方式运动到点P 3,第4次从点P 3出发再按乙方式运动到点P 4,….依此运动规律,则经过第11次运动后,动点P 所在位置P 11的坐标是 .第100次运动后P 100点的坐标是 第2013点的坐标P 2013【提示:两次合起来结果如何 (x,y) →(x+2,y+1)→(x+2-3,y+1-2) →(x-1,y-1)】8、一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是 (5,0) . 9、如图,在平面直角坐标系上有个点P (1,0),点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P 第100次跳动至点P 100的坐标是 .点P 第2009次跳动至点P 2009的坐标是 (503,1003) . 【跳动四次一变化】P0(1,0) P1(1,1) P2(-1,1) P3(-1,2) P4(2,2) P5(2,3) P6(-2,3) P7(-2,4) P8(3,4) P9(3,5) P10(-3,5) P11(-3,6) P12(4,6) …… ………………P4n-3(n,2n-3)P4n-2(-n,2n-10P4n-1(-n ,2n ) P4n(n+1,2n)第8题 第5题第6题10、如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,0)→(1,0)→(1,1)→(2,2)→(2,1)→(2,0)…根据这个规律探索可得,第100个点的坐标是___(13,8)______.11、如图,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…,则点A2010的坐标是(503,-503) .【易错】第11题第12题12、电子跳蚤游戏盘为△ABC(如图),AB=8,AC=9,BC=10,如果电子跳蚤开始时在BC边上P0点,BP0=4,第一步跳蚤跳到AC边上P1点,且CP1=CP0;第二步跳蚤从P1跳到AB边上P2点,且AP2=AP1;第三步跳蚤从P2跳回到BC边上P3点,且BP3=BP2;…跳蚤按上述规定跳下去,第2008次落点为P2008,则点P2008与A点之间的距离为4.13、以0为原点,正东,正北方向为x轴,y轴正方向建立平面直角坐标系,一个机器人从原点O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2,再向正西方向走9米到达A3,再向正南方向走12米到达A4,再向正东方向走15米到达A5,按此规律走下去,当机器人走到A6时,A6的坐标是.A1(3,0) A2 (3,6) A3 (-6, 6) A4 (-6,-6) A5 (9,-6)A6 (9,12) A7 (-12,12) A8 (-12,-12) A9 (15,-12)……………………A4n-2 (6n-3,6n)A4n-1 (-6n,6n) A4n (-6n,-6n) A4n+1(6n+3,-6n) 14、观察下列有规律的点的坐标:依此规律,A11的坐标为,A12的坐标为.【析:观察图中数据,分下标为奇数和偶数两种情况分析解答.解答:解:观察点的坐标可以得到以下规律:点的横坐标的值就等于对应的点下标的数值;纵坐标,当下标是奇数时是正数,后一偶数项的纵坐标依次比前一偶数项的纵坐标多3,故A11的坐标为(11,16),当下标是偶数时纵坐标是负数,后一偶数项的纵坐标依次为前一偶数项的纵坐标的、、…,故A12的坐标为(12,﹣).故答案分别为:(11,16)、(12,﹣).】15、设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳动1个单位,经过5次跳动质点落在点(3,0)(允许重复过此点)处,则质点不同的运动方案共有种.【注意列举】16、已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为.第16题第17题17.(2013•湛江)如图,所有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则顶点A3的坐标是_________,A92的坐标是_________.18在平面直角坐标系中,一动点从原点0出发,按向上,向右,向下,向右的方向不断移动,每次移动一个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),……那么点A(4n﹢1)(n 为自然数)的坐标为什么?19、(2012•泰安)如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为第18题【解:根据图形,以最外边的正方形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,】练习1(综合题)如图,在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),若点C到直线AB的距离为4,且△ABC是直角三角形,则满足条件的点第19题C有若干个.(1)请在坐标系中把所有这样的点C都找出来,画上实心点,这些点用C1,C2,…表示;(2)写出这些点C1,C2,…对应的坐标.【问题解决的大致步骤已经知道,只是想问一下,根据A、B两点的坐标特点,直线AB∥x 轴,则到直线AB的距离为4的点在平行于直线AB的直线上且距离为4,有两条直线,根据直角三角形斜边上的中线等于斜边的一半,以AB的中点为圆心,半径5画弧与两直线的交点即为直角三角形的第三个顶点,这样的作法的理论依据是什么。
2、找到题目中的改变量,并认真观察改变量的变化规律3、观察与猜想结合找到变量与不变量之间的关系二、平面图形中的规律图形变化也是经常出现的,它的变化规律以代数规律为基础。
作这种数学规律的题目,都会涉及到一个或者几个变化的量。
所谓找规律,多数情况下,是指变量的变化规律。
所以,抓住了变量,就等于抓住了解决问题的关键。
例1用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,第n个图形中需要黑色瓷砖多少块?(用含n 的代数式表示).分析:这一题的关键是求第n 个图形中需要几块黑色瓷砖?在这三个图形中,前边4块黑瓷砖不变,变化的是后面的黑瓷砖。
它们的数量分别是,第一个图形中多出0×3块黑瓷砖,第二个图形中多出1×3块黑瓷砖,第三个图形中多出2×3块黑瓷砖,依次类推,第n个图形中多出(n-1)×3块黑瓷砖。
所以,第n个图形中一共有4+3(n-1)块黑瓷砖,也即(3n+1)块。
有些题目包含着事物的循环规律,找到了事物的循环规律,其他问题就可以迎刃而解。
例4“观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球多少个?”分析:这些球,从左到右,按照固定的顺序排列,每隔10个球循环一次,循环节是●○○●●○○○○○。
每个循环节里有3个实心球。
我们只要知道 2004包含有多少个循环节,就容易计算出实心球的个数。
因为2004÷10 =200(余4)。
所以,2004个球里有200个循环节,还余4个球。
200个循环节里有200×3=600个实心球,剩下的4个球里有2个实心球。
所以,一共有602个实心球。
例5 平面内的一条直线可以将平面分成两个部分,两条直线最多可以将平面分成四个部分,三条直线最多可以将平面分成七个部分…根据以上这些直线划分平面最初的具体的情况总结规律,探究十条直线最多可以将平面分成多少个部分。
04选填压轴之找规律目录中考考点解读 (1)重点知识重拾 (1)知识点1、关于x轴、y轴或原点对称的点的坐标的特征 (1)知识点2、点的平移 (1)知识点3、两点间的距离 (1)知识点4、旋转 (2)选填常考题型整理 (2)选填小题狂做 (5)中考考点解读规律探究型问题在中考数学中一般以选择题或者填空题中的压轴题形式出现,出题难度一般在中上等。
主要命题方式有数式规律、图形变化规律、点的坐标规律等。
虽然规律探索问题却并不是每个城市的必考题,个别省市经常出。
又因为各省市模拟考或者月考中出现几率较大且难度也较大,所以掌握其基本的考试题型及解题技巧还是非常有必要的。
重点知识重拾知识点1、关于x轴、y轴或原点对称的点的坐标的特征点P(a,b)与关于x轴对称点的坐标为(a,-b)点P(a,b)与关于y轴对称点的坐标为(-a,b)点P(a,b)与关于原点对称点的坐标为(-a,-b)口诀:关于谁对称,谁不变,另一个变号,关于原点对称都变号知识点2、点的平移点P(a,b)沿x轴向右(或向左)平移m个单位后对应点的坐标是a±m,b;点P(a,b)沿y轴向上(或向下)平移n个单位后对应点的坐标是a,b±n.口诀:横坐标右加左减,纵坐标上加下减.知识点3、两点间的距离在x轴或平行于x轴的直线上的两点P1(x1,y),P2(x2,y)间的距离为x1−x2在y轴或平行于y轴的直线上的两点P1(x,y1),P2(x,y2)间的距离为y−y2任意两点P1(x1,y1),P2(x2,y2),则线段P1P22,2任意两点P(x,y),P(x,y),则线段P知识点4、旋转1.旋转的三要素:旋转角度,旋转中心和旋转方向。
2.旋转的性质:旋转前后对应的图形全等,对应的旋转角度相等。
3.中心对称:特别的,如果旋转角度为180︒,那么旋转前后两个图形成中心对称。
注意:两个图形成中心对称和中心对称图形要区别清楚,两个图形成中心对称指的是两个图形,中心对称图形指的是一个图形,比如说平行四边形是一个中心对称图形。
中考数学找规律典型题总结1、如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。
在电子数字计算机中用的是二进制,只要两个数码:0和1。
如二进制中101=1×22+0×21+1×20等于十进制的数5,10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23,那么二进制中的1101等于十进制的数 。
2、从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前10个奇数(即当最后一个奇数是19时),它们的和是 。
3、小王利用计算机设计了一个计算程序,输入和输出的数据如下表:A 、618B 、638C 、658 D 、6784、如下左图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要 枚棋子.5、如下右图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第n 个小房子用了 块石子。
6、如下图是用棋子摆成的“上”字:第一个“上”字 第二个“上”字 第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上” 字分别需用 和 枚棋子;(2)第n 个“上”字需用 枚棋子。
7、如图一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分,则这串珠子被盒子遮(1)(2)(3)第4题住的部分有_______颗.8、根据下列5个图形及相应点的个数的变化规律:猜想第6个图形有个点,第n个图形中有个点。
9、下面是按照一定规律画出的一列“树型”图:经观察可以发现:图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出5个“树枝”,图(4)比图(3)多出10个“树枝”,照此规律,图(7)比图(6)多出个“树枝”。
1.在平面内直角坐标系中,正方形A 1B 1C 1D 1、D 1E 1E 2B 2、A 2B 2C 2D 2、D 2E 3E 4B 3…按如图所示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3…则正方形A 2017B 2017C 2017D 2017的边长是2.如图,正方形ABCD 的四个顶点在坐标轴上,A 点坐标为(3,0),假设有甲、乙两个物体分别由点A 同时出发,沿正方形ABCD 的边作环绕运动,物体甲按逆时针方向匀速运动,物体乙按顺时针方向匀速运动,如果甲物体12秒钟可环绕一周回到A 点,乙物体24秒钟可环绕一周回到A 点,则两个物体运动后的第2017次相遇地点的坐标是3.如图,点A (0,1),点B (﹣,0),作OA 1⊥AB ,垂足为A 1,以OA 1为边作Rt △A 1OB 1,使∠A 1OB 1=90°,∠B 1=30°,作OA 2⊥A 1B 1,垂足为A 2,再以OA 2为边作Rt △A 2OB 2,使∠A 2OB 2=90°,∠B 2=30°,…,以同样的作法可得到Rt △A n OB n ,则当n=2017时,点A 2017的纵坐标为4.如图,点O (0,0),A (0,1)是正方形的两个顶点,以对角线OA 1为边作正方形 OAA 1B 再以正方形OA 1A 2B 1的对角线OA 2作正方形OA 2A 3B 2,…,依此规律,则点A 8的坐标是5.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2016次运动后,动点P 的坐标是6.如图,正方形ABCD 的边长为1,电子蚂蚁P 从点A 分别以1个单位/秒的速度顺时针绕正方形运动,电子蚂蚁Q 从点A 以3个单位/秒的速度逆时针绕正方形运动,则第2017次相遇在( )A.点A B.点B C.点C D.点D7.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第17次碰到矩形的边时,点P的坐标为8.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A8的坐标是9.在平面直角坐标系中,把△ABC先沿x轴翻折,再向右平移3个单位得到△A1B1C1现把这两步操作规定为一种变换.如图,已知等边三角形ABC的顶点B、C的坐标分别是(1,1)、(3,1),把三角形经过连续5次这种变换得到三角形△A5B5C5,则点A的对应点A5的坐标是10.如图所示,在平面直角坐标系中,已知点A (1,2),B (﹣2,2),C (﹣2,﹣2),D(1,﹣2),把一根长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→D→C→B→A…的顺序紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是11.如图,在平面直角坐标系xOy中,点P (1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,….照此规律,点P第100次跳动至点P100的坐标是12.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P伴随点,已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A2017的坐标为13.下列依次给出的点的坐标(0,3),(1,1),(2,﹣1),(3,﹣3),…,依此规律,则第2017个点的坐标为13.如图,点A1的坐标为(1,0),A2在y 轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x 轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2017的横坐标是14.如图,在平面直角坐标系中,从点P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次扩展下去,则P2017的坐标为15.如图,矩形BCDE的各边分别平行于x 轴与y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2018次相遇地点的坐标是16.对有序数对(x,y)的一次操作变换记为P1(x,y),定义其变换法则如下:P1(x,y)=(x+y,x﹣y),且规定P m(x,y)=P1(P m ﹣1(x﹣y))(n为大于1的整数).如P1(1,2)=(3,﹣1),P2(1,2)=P1(P1(1,2))=P1(3,﹣1)=(2,4),P3(1,2)=P1(P2(1,2))=P1(2,4)=(6,﹣2).则P2010(1,﹣1)的坐标为17.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动,即(0,0)→(0,1)→(1,1)→(1,0)…,且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是18.如图,矩形ABCD的两边BC、CD分别在x轴、y轴上,点C与原点重合,点A(﹣1,2),将矩形ABCD沿x轴向右翻滚,经过一次翻滚点A对应点记为A1,经过第二次翻滚点A对应点记为A2…依此类推,经过5次翻滚后点A对应点A5的坐标为19.在平面直角坐标系中,对于平面内任一点(x,y),规定以下两种变换:(1)f(x,y)=(x,﹣y),如f(2,3)=(2,﹣3);(2)g(x,y)=(x﹣2,y+1),如g(2﹣2,3+1)=(0,4);依此变换规律,若f[g(a,b)]=(2,1),则()A.a=4,b=﹣2B.a=2,b=﹣1C.a=0,b=﹣2D.a=0,b=020.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P2017的坐标是21.如图,在平面直角坐标系中,边长为1的正方形OA1B1C的对角线A1C和OB1交于点M1,以M1A1为对角线作第二个正方形A2A1B2M1,对角线A1M1和A2B2交于点M2;以M2A1为对角线作第三个正方形A3A1B3M2,对角线A1M2和A3B3交于点M3;…依此类推,第n个正方形对角线交点M n的坐标为22.如图,一个实心点从原点出发,沿下列路径(0,0)→(0,1)→(1,0)→(1,1)→(1,2)→…每次运动一个点,则运动到第2017次时实心点所在位置的横坐标为23.如图,一个机器人从点O出发,向正西方向走2m到达点A1;再向正北方向走4m 到达点A2,再向正东方向走6m到达点A3,再向正南方向走8m到达点A4,再向正东方向走10m到达点A5,…按如此规律走下去,当机器人走到点A2017时,点A2017的坐标为24.已知点E(x0,y0),F(x2,y2),点M(x1,y1)是线段EF的中点,则x1=,y1=.在平面直角坐标系中有三个点A(1,﹣1),B(﹣1,﹣1),C(0,1),点P(0,2)关于A的对称点为P1(即P,A,P1三点共线,且PA=P1A),P1关于B的对称点为P2,P2关于C的对称点为P3,按此规律继续以A,B,C为对称点重复前面的操作,依次得到P4,P5,P6,…,则点P2015的坐标是25.在一单位为1的方格纸上,有一列点A1,A2,A3,…,A n,…,(其中n为正整数)均为网格上的格点,按如图所示规律排列,点A1(2,0),A2(1,﹣1),A3(0,0),A4(2,2),…,则A2017的坐标为26.如图,点A(1,0)第一次跳动至点A1(﹣1,1),第二次跳动至点A2(2,1),第三次跳动至点A3(﹣2,2),第四次跳动至点A4(3,2),…,依此规律跳动下去,点A第102次跳动至点A102的坐标是27.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)、…根据这个规律,第2016个点的坐标为28.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1.将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2015次,点B的落点依次为B1,B2,B3,…,则B2015的坐标为29.如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次1,2,3,4,…,同心圆与直线y=x和y=﹣x分别交于A1,A2,A3,A4,…,则点A2015的坐标是30.如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,保持上述运动过程,经过的正六边形的顶点是()A.C或E B.B或DC.A或C D.B或F31.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4、…,△16的直角顶点的坐标为32.如图:有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则顶点A91的坐标是33.如图,将边长为1的正方形OAPB沿x 轴正方向连续翻转8次,点P依次落在点P、P2、P3、P4、…P x的位置,则点P9的横坐标是34.在直角坐标系中点A1的坐标为(1,0),过点A1作x轴的垂线交直线y=2x于A2,过点A2作直线y=2x的垂线交x轴于A3,过点A3作x轴的垂线交直线y=2x于A4…,依此规律,则A10的坐标为35.一质点P从距原点1个单位的M点处向原点方向跳动,第一次跳动到OM的中点M3处,第二次从M3跳到OM3的中点M2处,第三次从点M2跳到OM2的中点M1处,如此不断跳动下去,则第n次跳动后,该质点到原点O的距离为36.如图,电子跳蚤游戏盘为△ABC,AB=8,AC=9,BC=10,如果电子跳蚤开始时在BC边上的P0点,BP0=4.第一步跳蚤跳到AC边上P1点,且CP1=CP0;第二步跳蚤从P1跳到AB 边上P2点,且AP2=AP1;第三步跳蚤从P2跳回到BC边上P3点,且BP3=BP2;…跳蚤按上述规则跳下去,第n次落点为P n(n为正整数),则点B与P2012之间的距离为图2图1O E 2D 2E 1D 1OE 1D 1CB A CBAD 3图3E 3E 2OD 2D 1E 1CBA OF 3A 3E 3F 2D 2E 21C 3B 3C 2B 22F 1D 3C 1B 11M 1M 2M 3A 3A 2xyA 1OlOxy A 2A 1B 137.下面是一个按某种规律排列的数阵: 根据数阵排列的规律,第n (n 是整数,且n >3)行从左向右数第n -2个数是______________. 38.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切,……,按这样的规律进行下去,A 10B 10C 10D 10E 10F 10的边长为39.设△ABC 的面积为1,如图1将边BC ,AC 分别2等分,BE 1,AD 1相交于点O ,△AOB 的面积记为S 1;如图2将边BC ,AC 分别3等分,BE 1,AD 1相交于点O ,△AOB 的面积记为S 2;……,依此类推,则S n 可表示为__________(用含n 的代数式表示,其中n 为正整数).40.如图,抛物线y =x 2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A 1,A 2,A 3,…,A n .将抛物线y =x 2沿直线l :y =x 向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M 1,M 2,M 3,…,M n 都在直线l :y =x 上;②抛物线依次经过点A 1,A 2,A 3,…,A n .则顶点M 2 014的坐标为(________,________)41.如图,在平面直角坐标系中,已知直线l :1y x =--,双曲线1y x =,在l 上取一点A 1,过A 1作x 轴的垂线交双曲线于点B 1,过B 1作y 轴的垂线交l 于点A 2;请继续操作并探究:过A 2作x 轴的垂线交双曲线于点B 2,过B 2作y 轴的垂线交l 于点A 3;…;这样依次得到l 上的点A 1,A 2,A 3,…,A n .记点A n 的横坐标为a n ,若a 1=2,则a 2=____,a 2 013=_____;若要将上述操作无限次地进行下去,则a 1不能取的值是_____42.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2 015秒时,点P的坐标是43.如图,已知△OBC 是直角三角形,边OB 在x轴正半轴上,∠OBC =90°,且OB =1,BC 将△OBC 绕原点O 逆时针旋转60°,再将其各边扩大为原来的m 倍,使OB 1=OC ,得到△OB 1C 1;将△OB 1C 1绕原点O 逆时针旋转60°,再将其各边扩大为原来的m 倍,使OB 2=OC 1,得到△OB 2C 2;……;如此继续下去,得到△OB 2 014C 2 014,则点C 2 014的坐标是______.44.如图,在平面直角坐标系xOy 中,点A 1,A 2,A 3,…和B 1,B 2,B 3,…分别在直线y=kx+b 和x 轴上,△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形,如果A 1(1,1),A 2(,),那么点A 3的纵坐标是,点An 的纵坐标是.45.如图,在平面直角坐标系中,∠AOB=30°,点A 坐标为(2,0),过A 作AA 1⊥OB ,垂足为点A 1;过点A 1作A 1A 2⊥x 轴,垂足为点A 2;再过点A 2作A 2A 3⊥OB ,垂足为点A 3;则A 2A 3= ;再过点A 3作A 3A 4⊥x 轴,垂足为点A 4…;这样一直作下去,则A 2017的纵坐标为 .46.如图,AB ⊥y 轴,垂足为B ,将△ABO 绕点A 逆时针旋转到△AB 1O 1的位置,使点B的对应点B 1落在直线y=﹣x 上,再将△AB 1O 1绕点B 1逆时针旋转到△A 1B 1O 2的位置,使点O 1的对应点O 2落在直线y=﹣x 上,依次进行下去…若点B 的坐标是(0,1),则点O 12的纵坐标为 .47.如图,已知A 1,A 2,A 3,…A n 是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n ﹣1A n =1,分别过点A 1,A 2,A 3,…A n 作x 轴的垂线交反比例函数y=(x >0)的图象于点B 1,B 2,B 3,…B n ,过点B 2作B 2P 1⊥A 1B 1于点P 1,过点B 3作B 3P 2⊥A 2B 2于点P 2…,记△B 1P 1B 2的面积为S 1,△B 2P 2B 3的面积为S 2…,△B n P n B n +1的面积为S n ,则S 1+S 2+S 3+…+S n = .。