药代动力学主要参数意义及计算
- 格式:ppt
- 大小:1.89 MB
- 文档页数:43
测量学试卷 第 4 页(共 7 页)《测量学》模拟试卷1.经纬仪测量水平角时,正倒镜瞄准同一方向所读的水平方向值理论上应相差(A )。
A 180° B 0° C 90° D 270°2. 1:5000地形图的比例尺精度是( D )。
A 5 m B 0.1 mm C 5 cm D 50 cm3. 以下不属于基本测量工作范畴的一项是( C )。
A 高差测量B 距离测量C 导线测量D 角度测量4. 已知某直线的坐标方位角为220°,则其象限角为(D )。
A 220°B 40°C 南西50°D 南西40°5. 由一条线段的边长、方位角和一点坐标计算另一点坐标的计算称为(A )。
A 坐标正算 B 坐标反算 C 导线计算 D 水准计算6. 闭合导线在X 轴上的坐标增量闭合差( A )。
A 为一不等于0的常数B 与导线形状有关C 总为0D 由路线中两点确定7. 在地形图中,表示测量控制点的符号属于(D )。
A 比例符号B 半依比例符号C 地貌符号D 非比例符号8. 在未知点上设站对三个已知点进行测角交会的方法称为(A )。
A 后方交会 B 前方交会 C 侧方交会 D 无法确定9. 两井定向中不需要进行的一项工作是(C )。
A 投点B 地面连接C 测量井筒中钢丝长度D 井下连接10. 绝对高程是地面点到( C )的铅垂距离。
A 坐标原点B 任意水准面C 大地水准面D 赤道面11.下列关于等高线的叙述是错误的是:(A ) A . 高程相等的点在同一等高线上B . 等高线必定是闭合曲线,即使本幅图没闭合,则在相邻的图幅闭合C . 等高线不能分叉、相交或合并一、单项选择题(每小题1 分,共20 分)在下列每小题的四个备选答案中选出一个正确的答案,并将其字母标号填入题干的括号内。
测量学试卷 第 5 页(共 7 页)D . 等高线经过山脊与山脊线正交12.下面关于非比例符号中定位点位置的叙述错误的是(B ) A .几何图形符号,定位点在符号图形中心 B .符号图形中有一个点,则该点即为定位点 C .宽底符号,符号定位点在符号底部中心D .底部为直角形符号,其符号定位点位于最右边顶点处13.下面关于控制网的叙述错误的是(D ) A . 国家控制网从高级到低级布设B . 国家控制网按精度可分为A 、B 、C 、D 、E 五等 C . 国家控制网分为平面控制网和高程控制网D . 直接为测图目的建立的控制网,称为图根控制网14.下图为某地形图的一部分,各等高线高程如图所视,A 点位于线段MN 上,点A 到点M 和点N 的图上水平距离为MA=3mm ,NA=2mm ,则A 点高程为(A )A . 36.4mB . 36.6mC . 37.4mD . 37.6m15.如图所示支导线,AB 边的坐标方位角为''30'30125 =AB α,转折角如图,则CD 边的坐标方位角CD α为( B )A .''30'3075B .''30'3015C .''30'3045D .''30'292516.三角高程测量要求对向观测垂直角,计算往返高差,主要目的是(D ) A . 有效地抵偿或消除球差和气差的影响B . 有效地抵偿或消除仪器高和觇标高测量误差的影响C . 有效地抵偿或消除垂直角读数误差的影响D .有效地抵偿或消除读盘分划误差的影响17.下面测量读数的做法正确的是( C ) A . 用经纬仪测水平角,用横丝照准目标读数A N M373635测量学试卷 第 6 页(共 7 页)B . 用水准仪测高差,用竖丝切准水准尺读数C . 水准测量时,每次读数前都要使水准管气泡居中D . 经纬仪测竖直角时,尽量照准目标的底部18.水准测量时对一端水准尺进行测量的正确操作步骤是( D )。
药代动力学auc药代动力学,简称PK,是药物研究中的一个重要的分支,它是指通过观察药物在体内被细胞、组织和细胞共同吸收、分布、代谢和排出的过程,以及这些过程对药物疗效和安全性的影响,从而更好地理解药物的作用机制,并确定最佳的临床用药方案,为患者获得最佳的药物疗效和最小的不良反应提供参考的学科。
AUC是药代动力学中的一个重要指标,它是指药物在体内的有效浓度(即药物在组织中的细胞摄取量)与时间曲线。
AUC是用来表示药物在体内有效暴露水平的重要指标,是药物疗效和安全性的重要参数。
1、药代动力学AUC的概念及特征AUC是药代动力学中的一个重要指标,代表药物在体内有效暴露水平。
AUC是由数值构成的参数,它可以作为一个定量的指标,可以描述药物在体内的有效暴露量,从而更好地了解药物的药动学特性和安全性。
AUC的值可以用来反映药物在体内的血浆浓度和影响疗效的因素,包括药物的吸收特性、分布和清除特性。
2、药代动力学AUC的计算方法AUC的计算可以通过两种不同的方法完成:测量法和模拟法。
(1)测量法:测量法主要是指将体内血浆药物浓度(C)和时间(t)作为输入参数,用公式C×t来计算AUC。
(2)模拟法:模拟法主要是指根据药物的特性,构建药物动力学模型来估算AUC,例如基于两室模型的模拟法,即用一组参数对药物的动力学行为进行模拟,从而估算AUC。
3、药代动力学AUC的临床意义AUC是一个重要的药物疗效和安全性测量指标,它能够反映药物在体内的有效程度,可以根据AUC值来确定药物的药动学特性和安全性,从而为临床使用提供参考。
AUC值能够评估药物的药代动力学性质,从而研究不同药物的个体差异以及患者的最佳剂量和用药间隔,以及药物的安全性评价,帮助医师采用最佳临床用药方案,让患者获得最佳的药物疗效。
结论药代动力学AUC反映药物在体内的有效暴露水平,是药物疗效和安全性重要的参数,有助于选择最佳的用药方案,以求获得最佳的治疗效果。
药代动力学参数摘要
引言
药代动力学是研究药物在体内吸收、分布、代谢和排泄等过程
的科学,通过测定药物浓度与时间的关系,可以得到一系列药代动
力学参数。
这些参数对于了解药物的药效作用、药物治疗剂量和疗
效的预测都起到重要的作用。
本文将对常见的几个药代动力学参数
进行摘要和说明。
体内药物总清除率(CL)
体内药物总清除率是描述药物在体内被清除的速度和途径的参数,它等于药物在单位时间内从体内被清除的数量除以药物在体内
的平均药物浓度。
CL的数值越大,说明药物在体内被清除得越快,半衰期越短。
生物利用度(F)
生物利用度是指药物通过口服途径进入体内后能够达到系统循
环的百分比。
它是衡量药物口服吸收程度的参数。
生物利用度的数
值范围从0到1,数值越接近1则说明药物吸收效率越高。
药物分布容积(Vd)
药物分布容积是指体内溶液容积大小可以完全容纳药物的程度。
它是药物在体内分布的参数,与药物在体内的浓度和组织分布有关。
药物分布容积越大,说明药物在组织间的分布越广泛。
药物半衰期(t1/2)
药物半衰期是指药物浓度下降到其初始浓度一半所需的时间。
它是描述药物在体内消除速度的重要参数。
半衰期越长,药物在体
内的时间越长,需要的给药次数就越少。
结论
药代动力学参数对于了解药物在体内的各个过程以及药物的治
疗效果具有重要意义。
体内药物总清除率、生物利用度、药物分布
容积和药物半衰期是常见的药代动力学参数,在药物研发和临床使
用中发挥着重要作用。
为了定量地描述体内药量随时间变化的规律性,常借助数学的原理和⽅法来阐明。
⼀、药物的时量关系和时效关系 时量关系:⾎浆药物浓度随时间的推移⽽发⽣变化的规律。
⽤时量曲线表⽰:给药后,不同时间采集⾎样,分取⾎浆,⽤适当的⽅医`学教育搜集整理法测定⾎浆中的药物浓度,以时间为横坐标、⾎药浓度为纵坐标,得到反映⾎浆中药物浓度动态变化的曲线,称其为⾎药浓度-时间曲线,即时量曲线。
⾎药浓度变化→反映作⽤部位药物浓度的变化→药物的效医`学教育搜集整理应随时间变化。
表现:药效从显效到消失的过程,药效与时间的这种关系成为药物的时效关系。
图2—1为单次⼝服给药后⾎药浓度-时间曲线,反医`学教育搜集整理映药物吸收、分布和消除之间的相互消长的关系。
曲线分为三相: 吸收分布相:曲线的上升段,药物⾃给药部位迅速吸收,迅速向组织中分布,药物吸收远⼤于消除。
平衡相:曲线的中间段,药物吸收速率和消除速率相当,体内药量达到暂时的动态平衡,⾎药浓度的变化趋于平缓。
消除相:曲线的下降段,⾎药浓度迅速下降。
曲线下⾯积(AUC):时-量曲线下医`学教育搜集整理所覆盖的⾯积,反映药物在⾎液中的总量。
意义:反映药物的吸收程度,对于同⼀受试者,AUC⼤则药物吸收程度⾼。
曲线⼜可分为三期: 潜伏期:给药后到开始出现疗效的时间。
反映药物的吸收与分布,也与药物的消除有关。
有效期:药物维持在最低有效浓度之医`学教育搜集整理上的时间。
长短取决于药物的吸收和消除速率。
在此期中: ⾎药浓度有⼀峰值,称为峰浓度。
对于特定的药物制剂,峰浓度与给药剂量成正⽐。
达到峰浓度所需的时间称为达峰时间,其长短与吸收和消除的速率有关。
C max和Tmax的⼤⼩综合反映药物制医`学教育搜集整理剂的吸收、分布、排泄和代谢情况。
同⼀受试者Cmax和Tmax主要与药物制剂有关。
残留期:⾎药浓度已降到最低有效浓度以下,直⾄完全从体内消除的时间。
长短取决于药物的消除速率。
药代动力学auc计算公式
药物的药代动力学曲线描述了药物在体内的浓度随时间的变化情况。
药代动力学参数AUC(曲线下面积)是衡量药物在体内曲线下面积的指标,反映了药物在体内的总体曝露程度。
AUC的计算公式可以根据药物的浓度-时间数据进行数值积分来得到。
通常,如果药物在体内的浓度随时间的变化可以用连续函数描述,那么AUC可以通过以下积分公式计算:
AUC = ∫ C(t) dt
其中,C(t)表示药物在不同时间点的浓度。
积分的上限和下限应该根据具体情况设置,以涵盖所需的时间范围。
需要注意的是,药物的浓度数据通常是离散的,例如在不同时间点采集到的样本浓度。
在这种情况下,可以使用数值积分方法,如梯形法则或辛普森法则,来近似计算AUC值。
请注意,具体计算AUC的方法和公式可能会因药物的特性、给药途径和研究设计等因素而有所不同。
因此,在实际应用中,建议根据具体情况和相关文献选择合适的计算方法和公式进行AUC的计算。