初中七年级数学比零小的数(1)
- 格式:doc
- 大小:79.70 KB
- 文档页数:2
浙江省杭州市2023-2024学年七年级数学上第一次月考模拟检测试卷一、选择题(10小题,每小题3分,共30分)A .B .c b -<a c >-用来记录孩子1出生后的天数,如图1所示,孩子1出生后的天数是(天),母亲乙按照母亲甲的做法记录孩子2出生后的天数,如图2所示,则孩子2出生后的天数比孩子1 出生后的天数( )A .少41天B .少42天C .多41天D .多42天9.(2023秋·全国·七年级专题练习)如图,正方形的周长为8个单位,在该正方形的4个顶点处分别标上0,2,4,6,先让正方形上表示数字6的点与数轴上表﹣3的点重合,再将数轴按顺时针方向环绕在该正方形上,则数轴上表示2017的点与正方形上的数字对应的是( )A .0B .2C .4D .610.(2023春·广西南宁·七年级南宁二中校考开学考试)如图,在探究“幻方”、“幻圆”的活动课上,学生们感悟到我国传统数学文化的魅力.一个小组尝试将数字这12 个数填入“六角幻星”图中,使6条边上四个数之和都相等.部分数字已填入圆圈中,则的值为( )A .B .C .3D .4321017+37+27+47= 508⨯⨯⨯⨯5,4,3,2,1,0,1,2,3,4,5,6-----a 4-3-三、解答题(8小题,共66分)①若点B表示的数为2,则在数轴上点2MN MN(1)直接写出:线段的长度是,线段的中点表示的数为浙江省杭州市2023-2024学年七年级数学上第一次月考模拟检测试卷一、选择题(10小题,每小题3分,共30分)A .B .c b-<a c >-故选:A .【点睛】本题考查了数轴的性质,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.7.(2023秋·江苏·七年级专题练习)用“*”定义一种新运算:对于任何有理数a 和b ,规定,如,则的值为( )A .B .8C .D .4【答案】C【分析】按照新定义进行代值,可得,进行计算即可求解.【详解】解:;故选:C .【点睛】本题主要考查了在新定义下含有乘方的有理数的混合运算,理解新定义是解题的关键.8.(2023·浙江温州·校考二模)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.母亲甲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子1出生后的天数,如图1所示,孩子1出生后的天数是(天),母亲乙按照母亲甲的做法记录孩子2出生后的天数,如图2所示,则孩子2出生后的天数比孩子1 出生后的天数( )A .少41天B .少42天C .多41天D .多42天【答案】A 【分析】根据已知算法求出孩子2出生后的天数,相减即可得到答案.【详解】解:由已知算法可知,孩子2出生后的天数是(天),(天),孩子2出生后的天数比孩子1 出生后的天数少41天,故选A .2*a b ab b =+22*323315=⨯+=4*2-8-4-2422-⨯+4*2-2422=-⨯+4=-321017+37+27+47= 508⨯⨯⨯⨯321017273757467⨯+⨯+⨯+⨯=46750841-=- ∴【点睛】本题考查了含乘方的有理数混合运算,理解题意,掌握“结绳计数”满七进一的计算方法是解题关键.9.(2023秋·全国·七年级专题练习)如图,正方形的周长为8个单位,在该正方形的4个顶点处分别标上0,2,4,6,先让正方形上表示数字6的点与数轴上表﹣3的点重合,再将数轴按顺时针方向环绕在该正方形上,则数轴上表示2017的点与正方形上的数字对应的是( )A .0B .2C .4D .6【答案】B 【分析】表示2017的点在﹣1的右侧,从点﹣1到2017共2018个单位长度,根据2018÷8=252……2,是252圈余2个单位长度,所以对应的数字就是2.【详解】解:因为正方形的周长为8个单位长度,所以正方形的边长为2个单位长度.表示2017的点与表示﹣1的点的距离等于2017﹣(﹣1)=2018个单位长度,因为2018÷8=252……2,所以252圈余2个单位长度,所以对应的数字是2.故选:B .【点睛】此题考查了数轴,解题的关键是找出正方形的周长与数轴上的数字的对应关系.10.(2023春·广西南宁·七年级南宁二中校考开学考试)如图,在探究“幻方”、“幻圆”的活动课上,学生们感悟到我国传统数学文化的魅力.一个小组尝试将数字这12 个数填入“六角幻星”图中,使6条边上四个数之和都相等.部分数字已填入圆圈中,则的值为( )5,4,3,2,1,0,1,2,3,4,5,6-----aA .B .C .3D .4【答案】B 【分析】共有个数,每一条边上4个数的和都相等,共有六条边,所以每个数都加了两遍,这个数共加了两遍后和为,所以每条边的和为,然后利用这个原理将剩余的数填入圆圈中,即可得到结果.【详解】解:因为共有个数,每一条边上个数的和都相等,共有六条边,所以每个数都加了两遍,这个数共加了两遍后和为,所以每条边的和为,所以这一行最后一个圆圈数字应填,则所在的横着的一行最后一个圈为,这一行第二个圆圈数字应填,目前数字就剩下,这一行剩下的两个圆圈数字和应为,则取中的,这一行剩下的两个圆圈数字和应为,则取中的,这两行交汇处是最下面那个圆圈,应填,所以这一行第三个圆圈数字应为,则所在的横行,剩余3个圆圈里分别为,要使和为2,则为故选:【点睛】本题主要考查了幻方的应用,找到每一行的规律并正确进行填数是解题的关键.4-3-1212122124121225,1,5--3a 32,1,1--44,3,0,6--1,54-4,3,0,6--4,0-2,2-24,3,0,6--4,6-4-1,50a 2,0,3a 3-B三、解答题(8小题,共66分)(2)根据数轴可知:①若点B表示的数为2,则在数轴上点点N 表示的数为:;点P 表示的数为:;点N 表示的数为:;点P 表示的数为:253-+=51322-=257--=-522--=-2MN MN(1)直接写出:线段的长度是,线段的中点表示的数为。
课堂教学设计1、复习、导入大于0 的数叫正数,小于0的数叫负数0既不是正数,也不是负数正数的符号用+ 表示,书写时可以省略负数的符号用-表示,书写时不能省略(1)汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正。
汽车向北行驶75km,记做______km(或____km),汽车向南行驶100km,记做________km;(2)如果向银行存入50元记为50元,那么-30.50元表示______________________;复习巩固话题迅速将学生的注意力吸引到课堂上来。
使学生生认知冲突,渴艺望了解其中的奥秘从而调动了学生学习的积极性。
2、精讲新课在小学阶段和上一节中,我们认识了很多数。
回想一下,到目前为止,我们认识了哪些数? 你能举几个例子吗?写在黑板上。
观察黑板上的这些数,能否将所写的数按如下类型进行归类呢?有限小数:0.5 0.25 0.125 1.3 -0.5进一步地,正整数可以写成正分数的形式,可以写成分数形式的数称为有理数(rational number)有理数分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数辨析学生自己尝试分类时,可能会很大略,教师赐予引导和鼓励,划分数的种类要从文字所表示的意义上去引导,这样学生易于理角军有限小数或无限循环小数都可以化成分数,为下-问题做好铺垫,通过将三者进行比较,归纳得出有理数是一个整数和-个非零整数的比的本质特征,让学生深入理解有理数的概念在多媒体上展示有理数的分类表,分分类的标准要引导学生去体会2、精讲新课小故事:有理数其实并不比别的数更“有道理”,事实上是一个翻译失误。
有理数(rational number)一词从西方传来,rational通常的意义是“理性的”,所以被误译为有理数。
但这个词实际上来源于古希腊,在古希腊语中是比率的意思。
所以意义也很明显,就是整数的“比”。
毕达哥拉斯学派认为,世界上一切对象都是由整数或整数之间的商组成,这就是“万物皆数”理论,也是人类对有理数最早的认识和总结。
苏教版七年级数学上册知识点总结第一章有理数1.1 正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
(3)0表示一个确切的量。
如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。
1.2 有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数0 正有理数负整数正分数有理数有理数0(0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数3.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
1.1正数与负数(第1课时)1.使学生了解正数和负数是怎样产生的.2.使学生了解什么是正数和负数.3.引导学生会用正、负数表示具有相反意义的量.1.感受引入负数的必要性.2.初步使用正数和负数表示具有相反意义的量.了解负数的意义,能在具体的问题情境中,用正数和负数表示具有相反意义的量.新课导入【问题】哪位同学知道这些图片介绍的是什么内容?【师生活动】学生回答,教师补充说明数的产生与日常生活、生产实践的关系,感受数的扩充的必要性,并提出问题:以上这些数够用了吗?【设计意图】使学生感受数的产生和发展离不开生活和生产的需要.新知探究一、探究学习【问题】(1)北京冬季某一天的最高气温为零上3摄氏度,最低气温为零下3摄氏度.如何用数区分“零上3摄氏度”和“零下3摄氏度”?(2)某公司今年7月份盈利50万元,8月份亏损10万元.该公司在记账时如何用数教学目标教学重点教学难点教学过程分别表示“盈利50万元”和“亏损10万元”?(3)某年,我国棉花产量比上年增长7.8%,玉米产量比上年减少0.7%.统计这两种农作物产量的变化情况时,如何用数分别表示“增长7.8%”和“减少0.7%”?【提示】结合实际生活经验,我们知道,零上3摄氏度用3℃表示,零下3摄氏度用-3℃表示.在以上问题中,表示温度、盈亏情况以及产量的增减变化时,既要用到数3,50,7.8%等,还要用到数-3,-10,-0.7%等,它们的实际意义分别是:零上3摄氏度,零下3摄氏度,盈利50万元,亏损10万元,增长7.8%,减少0.7%.【设计意图】提出的三个问题,有的学生凭生活经验可以回答,有的不能回答.让学生阅读并尝试回答,一方面让他们感受在生产生活中需要用到负数,另一方面让他们知道,要解决这些问题,就需要学习新的数的知识,从而激发学生的求知欲.二、新知精讲【问题】根据小学学习的知识,你能指出上述问题中哪些数是正数,哪些数是负数吗?【师生活动】学生回答,给出正确答案后,教师给出正数、负数的描述性定义: 在数学中,我们把像3,50,7.8%这样大于0的数叫作正数.像-3,-10,-0.7%这样在正数前加上符号“-”(负)的数叫作负数.【问题】你能举例说明什么叫一个数的符号吗?【师生活动】学生阅读、举例.一般地,正数的符号是“+”,负数的符号是“-”.0既不是正数,也不是负数.有时,为了明确表达与负数的相反意义,在正数前面也加上符号“+”(读作“正”).例如:+1800,+3,+0.5,+31,…就是1800,3,0.5,13,…. 一个数前面的“+”“-”号叫作它的符号.【设计意图】通过学生举例,可以检验他们的理解情况.因为“0既不是正数,也不是负数”是一种规定,所以老师直接说明,学生记住就可以了.【练习】下面的数中,哪些是负数?哪些是正数? -1,2.5,+43,0,-3.14,120,-1.732,-27. 【答案】负数:-1,-3.14,-1.732,-27. 正数:2.5,+43,120. 【问题】一个数不是正数就是负数,对吗?【答案】不对.0既不是正数也不是负数,0是正数和负数的分界.这里我们要引出一个特殊的数——“0”,0既不是正数,也不是负数.所以,我们现在学习的数就可以分为三类:正数、负数和0.【设计意图】通过练习和提问的方式让学生根据负数的特征识别负数,同时与正数和0进行区分.三、典例精讲【例】某校组织学生去劳动实践基地采摘橘子,并称重、封装.一箱橘子的标准质量是2.5 kg.如果用正数表示超过标准的质量,那么(1)比标准质量多65 g,表示为________,比标准质量少30 g表示为________.(2)50 g表示_________________________________.-27 g表示________________________________.【提示】在这个问题中,多和少具有相反意义,我们可以用正数和负数来表示具有相反意义的量.【答案】(1)比标准质量多65 g用+65 g表示;比标准质量少30 g用-30 g表示.(2)50 g表示这箱橘子的质量比标准质量多50 g,-27 g表示这箱橘子的质量比标准质量少27 g.【数学活动】体重调查党和国家非常重视青少年的身心健康,采取多种举措增强青少年体质.有数据显示,近几年,青少年身体健康状况有一定提升,但肥胖问题仍不容忽视.一种少年儿童的标准体重(单位:kg)的计算方式为:标准体重=(75年龄-)÷2.下表是七年级某小组6位同学的体重情况,其中超出标准体重的千克数记为正数,少于标准体重的千克数记为负数.【问题】(1)表中哪几位同学的体重超出标准体重?分析该小组同学的体重超出或少于标准体重的情况.【提示】编号是2,4,5的三位同学的体重超出了标准体重.该小组同学体重超出标准体重和体重少于标准体重的人数相等.【问题】(2)表中哪位同学的体重最符合这种标准体重?要想了解同学的体重情况,除了判断正负数,还要考虑什么?据此进一步分析该小组同学的整体体重情况.【提示】3号同学的体重最符合标准体重.要想了解同学的体重情况,除了判断正负数,还要考虑实际体重与标准体重的差距大小.该小组的6名同学中有3名同学的体重超出标准体重,有3名同学的体重不足标准体重.其中4,5,6号同学的体重与标准体重差距较大,需要合理饮食,加强锻炼.(答案不唯一)【师生活动】学生回答,教师纠正,师生共同总结.【归纳】从以上问题的解答过程中,总结出如何使用正数和负数表示实际问题中具有相反意义的量:首先,我们要先找出问题中表示具有相反意义的量的词语,如“零上”和“零下”、“盈利”和“亏损”、“增长”和“减少”、“多”和“少”等;然后,我们指定一方用正数表示,那么另一方就用负数表示,例如,指定“增长”为正,则“减少”即为负.其次,实际问题中,有时需要描述指定方向变化的量,如在农作物产量问题中,玉米产量比上年“减少0.7%”可以表示为“增长-0.7%”,这就是说,增长量是一个负数实际上是减少了,也可以说成是“负增长”.【设计意图】使学生学会用正数和负数表示实际中具有相反意义的量,明确用正数和负数表示相反意义的量的前提是指定方向,深入理解正负数的意义.【练习】1.某商品8月份的销量比上月增加108件,7月份的销量比上月减少81件,6月份的销量比上月增加53件.用正数和负数表示这三个月该商品销量比上月的增长量.答:增加108件,应记为108件;减少81件,应记为-81件;增加53件,应记为53件.2.如果把一个物体向右移动1 m记作移动+1 m,那么这个物体又移动了-1 m表示什么意思?如何描述此时物体的位置?答:如果把一个物体向右移动1 m记作移动+1 m,那么这个物体又移动了-1 m表示物体又向左移动1 m.此时物体回到了初始位置.课堂小结板书设计一、正数和负数的概念二、0的意义三、相反意义的量课后任务完成教材P3练习1~4题.教学反思_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________。
2023-2024学年七年级数学上册《第一章有理数的加减法》同步练习题有答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.式子-4-2-1+2的正确读法是()A.减4减2减1加2 ;B.负4减2减1加2;C.-4,-2,-1加2 ;D.4,2,1,2的和.2.对于代数式−2+k的值,下列说法正确的是()A.比−1大B.比−1小C.比k小D.比k大3.若|m|=3,|n|=2,且mn<0,则m﹣n的值是()A.﹣1或1 B.5 C.﹣5或5 D.﹣14.用[x]表示不大于x的整数中最大的整数,如[2.4]=2,[﹣3.1]=﹣4,请计算[5.5]+[﹣4 1]=()2A.﹣1 B.0 C.1 D.25.下列计算中,正确的是()A.(﹣6)+(﹣4)=﹣2 B.﹣9+(﹣4)=﹣13C.|﹣9|+9=0 D.﹣9+4=﹣136.不改变原式的值,将6−(+3)−(−7)+(−2)中的减法改成加法,并写成省略加号的形式的是()A.−6−3+7+2B.6−3−7−2C.6−3+7−2D.6+3−7−27.如图,若各行、各列、各条斜线上的三个数之和相等,则图中a处应填的可能值为()。
A.4 B.5 C.6 D.78.某商店出售三种不同品牌的面粉,面粉袋上分别标有质量,如下表:面粉种类A品牌面粉B品牌面粉C品牌面粉质量标示(20±0.4)kg (20±0.3)kg (20±0.2)kg现从中任意拿出两袋不同品牌的面粉,这两袋面粉的质量最多相差()A.0.4kg B.0.6kg C.0.7kg D.0.8kg二、填空题9.﹣9,6,﹣3三个数的和比它们绝对值的和小.10.弥阳镇某天早晨的气温是18℃,中午上升6℃,半夜又下降5℃,则半夜的气温是℃.11.若数轴上表示3的点为M,那么在点M右边,相距2个单位的点所对应的数是.12.某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是星期.星期一二三四最高气温10℃12℃11℃9℃最低气温3℃0℃﹣2℃﹣3℃13.输入-1,按图所示的程序运算,则输出的结果是.三、解答题14.计算下列各题(1)6+(−14)−(−39)(2)−7−(−11)+(−9)−(+2)(3)20.36+(−1.4)+(−13.36)+1.4(4)(+325)+(−278)−(−535)+(−18)15.如图:(1)在数轴上标出表示-a、-b的点;(2)a 0;b 0;│a││b│; a-b 0(3)用“<”号把a、b、0、-a、-b连接起来.(4)、化简:|a|+|b|−|a−b|−|a+b|16.体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩测试记录,其中“+”表示成绩大于15秒.问:﹣0.8 +1 ﹣1.2 0 ﹣0.7 +0.6 ﹣0.4 ﹣0.1(1)这个小组男生的达标率为多少?(达标率=达标人数总人数)(2)这个小组男生的平均成绩是多少秒?17.某日上午,司机老苏在东西走向的中山路上运营,如果规定向东为正,向西为负,出租车的行车里程如下(单位:km):+8, -6, -5, +10, -5, +3, -2, +6, +2, -5(1)最后一名乘客送到目的地时,老苏离出车地点的距离是多少千米?在出车地点的什么方向?(2)若每千米耗油0.2升,这天上午出租车共耗油多少升?18.甲、乙两商场上半年经营情况如下(“+”表示盈利,“﹣”表示亏本,以百万为单位)月份一二三四五六甲商场+0.8 +0.6 ﹣0.4 ﹣0.1 +0.1 +0.2乙商场+1.3 +1.5 ﹣0.6 ﹣0.1 +0.4 ﹣0.1(1)三月份乙商场比甲商场多亏损多少元?;(2)六月份甲商场比乙商场多盈利多少元?(3)甲、乙两商场上半年平均每月分别盈利或亏损多少元?参考答案1.B2.C3.C4.B5.B6.C7.D8.C9.2410.1911.512.三13.114.(1)6+(−14)−(−39)=−8+39=31;(2)−7−(−11)+(−9)−(+2)=−7+11−9−2=−7;(3)20.36+(−1.4)+(−13.36)+1.4=20.36+(−13.36)+(−1.4)+1.4=7;(4)(+325)+(−278)−(−535)+(−1)=(+325)−(−535)+(−278)+(−18)=9−3=6 .15.(1)解:画数轴如下:(2)>;<;<;>(3)解:由数轴得:b<−a<0<a<−b;(4)解:|a|+|b|−|a−b|−|a+b|=a−b−(a−b)+(a+b)=a+b.16.(1)解:成绩记为正数的不达标,只有2人不达标,6人达标.这个小组男生的达标率=6÷8=75%(2)解:﹣0.8+1﹣1.2+0﹣0.7+0.6﹣0.4﹣0.1=﹣1.615﹣1.6÷8=14.8秒17.(1)解: +8+( -6)+ (-5)+ ( +10)+ ( -5)+ ( +3)+ ( -2)+ (+6)+ ( +2)+ ( -5 )=6(千米)。
人教版七年级数学上册有理数负数的由来及其重要意义初一数学的学习将给同学们带来数学学习崭新的一页.特别是负数的引入,更是激起同学们对数学学习的无限遐想.今天就和同学们一道来认识这位新朋友――负数.一.负数的由来1.负数在中国的发展经历据史料记载,早在两千多年前,中国就有了正负数的概念,掌握了正负数的运算法则.(1)最早的负数定义三国时期著名数学家刘徽在负数概念的建立上贡献最大.刘徽第一次给出了正负数的定义.他说:“今两算得失相反,要令正负以名之.”意思就是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们.(2)最早的负数记法刘徽第一次给出了区分正,负数的方法.他说:“正算赤,负算黑;否则以斜正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数.用不同颜色的数表示正,负数的习惯,一直保留到现在.现在一般用红色表示负数,我们经常见到这样的报道:说某国家财政出现了赤字,就是说明财政的收入数字亮起"红色"即表明支出大于收入,财政上亏了钱.就是说收入是一个负数.(3)最早的正负数加减法的法则中国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之.”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”.用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加.零减正数得负数,零减负数得正数.异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加.零加正数等于正数,零加负数等于负数.”这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是中国数学家杰出的贡献之一.除《九章算术》定义有关正负运算方法外,东汉末年刘烘(公元206年)、宋代扬辉(1261年)也论及了正负数加减法则,都与九章算术所说的完全一致.特别值得一提的是,元代著名数学家朱世杰在1299 年编写的《算学启蒙》中,《明正负术》一项讲了正负数加减法法则,一共八条,比《九章算术》更加明确.在“明乘除段”中有“同名相乘为正,异名相乘为负”之句,也就是(±a)×(±b)=+ab,(±a)×( b)=-ab,这样的正负数乘法法则,是中国最早的记载.除此外,书中还给出倒数的概念和基本性质.《算学启蒙》作为一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展.2.负数在国外的发展经历印度是在中国之后最早提出负数的国家.628年左右的婆罗摩笈多(598-665).他提出了负数的运算法则,并用小点或小圈记在数字上表示负数.与中国古代数学家不同,西方数学家更多的是研究负数存在的合理性.16、17世纪欧洲大多数数学家不承认负数是数.帕斯卡认为从0减去4是纯粹的胡说.帕斯卡的朋友阿润德提出一个有趣的说法来反对负数,他说(-1):1=1:(-1),那么较小的数与较大的数的比怎么能等于较大的数与较小的数比呢?直到1712年,连莱布尼兹也承认这种说法合理.在欧洲初步认识提出负数概念,最早要算意大利数学家斐波那契(1170-1250).他在解决一个盈利问题时说︰我将证明这个问题不可能有解,除非承认这个人可以负债.15世纪的舒开(1445?-1510?)和16世纪的史提非(1553)虽然他们都发现了负数,但又都把负数说成是荒谬的数.韦达知道负数的存在,但他完全不要负数.笛卡儿部分地接受了负数,他把方程的负根叫假根.邦别利(1526-1572)给出了负数的明确定义.史提文在方程里用了正、负系数,并接受了负根.基拉德(1595-1629)把负数与正数等量齐观、并用减号“-”表示负数.总之在16、17世纪,欧洲人虽然接触了负数,但对负数的接受的进展是缓慢的.英国著名代数学家德·摩根在1831年仍认为负数是虚构的.他用以下的例子说明这一点:“父亲56岁,其子29岁.问何时父亲年龄将是儿子的二倍?”他列方程56+x=2(29+x),并解得x=-2.他称此解是荒唐的.当然,欧洲18世纪排斥负数的人已经不多了.随着19世纪整数理论基础的建立,负数在逻辑上的合理性才真正建立.二.负数的意义通过今天的学习,我们认识到负数的意义是十分巨大的.负数引入的必要性问题1:现在有两个温度计,温度计液面指在0以上第6刻度,它表示的温度是6℃,那么温度计液面指在0以下第6刻度,这时的温度如何表示呢?如果还用6℃来表示,那么就无法区分是零上6℃还是零下6℃,因此我们需要引入一种新数——负数.问题2从中国地形图上可以看到,有一座世界最高峰—珠穆朗玛峰,图上标着8844M;还有一个吐鲁番盆地,图上标着-155M.你能说出它们的高度各是多少吗?这个例子也说明了我们为了实际需要引入负数,是为了区分海平面以上与海平面以下高度.引入负数后,我们的数学观会发生哪些改变呢?1.正数与负数通过添加"-"可以相互转换任何正数前加上负号都转换成了负数.如数2,在其前面添加符号"-"就得到负数:-2.任何负数前加上负号都转换成了正数.如数-2,在其前面添加符号"-"就得到正数:-(-2)=2.这也就说明了一切物质都是有条件的联系着的这条朴素的唯物主义联系观.2. 负数可以进行大小比较的 负数的引入,得以合理后,其大小的问题也得到了明确的界定.也许是因为发现较晚的缘故吧,人们对它的大小界定也十分巧合的界定为:负数比零小,正数大于一切的负数.同时也特别的声明:零既不是正数,也不是负数.例1 在21、0、1、﹣2这四个数中,最小的数是( ) A .21 B . 0 C .1 D .﹣2 分析: 根据正数大于一切负数,知道21、1不是最小的;根据0大于一切负数,知道0不是最小的.所以最小的数是-2.解: 选D . 点评: 确定最小数的基本原则有三条:(1)正数大于0,大于一切的负数;(2)0大于一切的负数;(3)两个负数比较,绝对值大的反而小.熟记三条原则是正确解题的关键.3.确定负数的位置当同学们学习了数轴后,就不难发现,在数轴上,负数都在0的左侧.4.用负数更加直观的描述相反意义的量.例2 如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作( )A .﹣500元B .﹣237元C .237元D .500元分析: 对于相反意义的量,在表示时,同学们要明确两点,一是这个量的符号是哪一种,是"+",还是"-";二是明确量值的大小,不能改变的.在这里收入记作了"+",所以支出的符号应该是"-",而量值为237,合起来就是-237元.解:选B.点评:在解答这类问题时,同学们要做到三个确定:(1)根据规定,确定哪个方向的量是"+","-",则相反量的符号就对应为"-","+";(2)确定变化的量值;(3)确定组合的顺序:符号+数值+单位.5.用负数定义新的概念学习了负数后,我们可以借助负数的符号特点,对一些新概念进行定义.如相反数的概念:只有符号不同的两个数称互为相反数.有如绝对值的概念:负数的绝对值等于这个数的相反数.6.用负数定义运算的法则学习了负数后,我们就定义了有负数参与的加法,减法,乘法,除法,乘方等运算的法则.如负负得正的法则等.总之负数的引入,极大地丰富了数学的内涵发展,同时也将人们对数的认识提高了一个新的更高的层次.。
2.1比零小的数(1)
【学习目标】
通过生活实例认识负数,扩展数的范围。
【学习重点】
会从实际生活中认识负数,懂得负数的相关含义。
【自主学习】
1、 —5读着__________,+23
读着_______________. 2、 0既不是____________,又不是____________.
3、 ___________数比0小,______________数比0大。
4、 在0,3,+2.3,—16,23,—112
中,正数有__________个,负数有____________个。
5、 请分别写出3个负数,3个正数
负数:__________,_________,_________.正数:__________,__________,______________.
【例题剖析】
例1、所有的正数组成正数集合,所有负数组成负数集合,把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:
,0,5%
正数集合 负数集合
例2、有位同学说“一个数如果不是正数,必定就是负数.” 你认为这句话对吗?为什么?
例3、观察下面依次排列的各数,按照它的规律写出后面的数及其他要求的数。
(1)、—1、2、—3、4、—5、________,___________,第2008个数是_________.
(2)、1、12
、—
13、—14、15、16、—17、—18
、______,_______,第100个数是____. (3)、12、—34、78、—1516、3132、_______,________. (4)、4、—16、36、—64、_______,—144、__________.
2.4,31,2002,7.8,52,6,9----
【基础演练】
1、在数 3,-0.2,1,0,81,73-中,负数有 个,正数有 个
2、把下列各数填入相应的集合中:
-11,
127,4.8,+90,73,-2.9,-61,0,45,-7.46。
正数集合 负数集合
3、观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的3个数
(1)、1,-1,1,-1,1,-1,1,-1, , , ,……
(2)、1,-2,3,-4,5,-6,7,-8, , , ,……
(3)、-2,4,-8,16, , ……
【能力提升】
1、下列各数中,哪些是正数?哪些是负数?
+1;-25;5;0;7
22;-3.14;0.001;-99 2、把下列各数填入相应的集合中:
-6.5, 722 , 3.14, 0, 2009, 37
-, -0.142857, 95%
3、课后,同学们在交流学习心得时,小莉说:“一个数,不是正数,必是负数”。
小明说:“带有‘-’号的数就是负数,带有‘+’号的数就是正数” 。
你认为他们的说法正确吗?谈谈你的看法。
4、对某校初三的学生进行引体向上的测试,以7个为标准,超过7个记为正,不足7个记为负,其中8名男生的成绩如下:(1)、这8名男生有几人达标?达标是多少?
将目标融于心间,让每个脚印都坚实有力
(编写:蒋继盛)
… … 正数集合 负数集合。