有限集上单、满射关系
定理 设f:A→B,且A和B都是有限集。
(1)若f是单射,则|A|≤ |B| (2)若f是满射,则|A|≥ |B| (3)若f是双射,则|A|=|B|
(1)的逆否命题即为鸽笼原理。
设f:X→Y,若X和Y是有限集,且∣X∣=∣Y∣, 则f为单射f为满射。 证明:‘’ 若f为单射,则∣X∣=∣f(X)∣ ∵∣X∣=∣Y∣
注意: (1)在函数中,前域为X,与定义域相同,dom(f)=X, 值域ran(f)Y,ran(f)也可记为f(X); (2)函数的单值性,若f(x)=y1,f(x)=y2,则y1=y2. 对于关系R (1)关系R的定义域与前域: dom (R) = {x∣ y∣< x,y>R} X; (2)<x,y1>R且<x,y2>R且y1≠y2可以为真 n元函数 具有定义域X=× ni=1Xi的函数f叫做n元函数,函数值用 f(x1,……,xn)表示。
即z=g(f(x))=g∙f(x)。
∴g∙f是满射。
例:设f(x)=x+2,g(x)=x-2,h(x)=b)若g,f是单射,则g∙f是 单射 证明:x1,x2X,若x1x2, ∵f为单射, ∴f(x1)f(x2),又∵g为单射, ∴g(f(x1))g(f(x2)) ∴g∙f为单射。 c)由a),b)知,若g,f为双射,则g∙f 为双射。 例:设f(x)=x+2,g(x)=x-2,h(x)=3x, 均为实数集合到实数集合的双射, 则g∙f(x)=g(x+2)= (x+2) -2=x,为双射。 h∙g∙f(x)=3x,为双射。
若X≠,Y=,则从X到Y唯一的关系是空关系,不是一个函
数。
像、逆像
f:X→Y