基于改进的BP神经网络估算太阳辐射的研究
- 格式:pdf
- 大小:265.55 KB
- 文档页数:5
光伏发电系统功率预测方法研究综述摘要:目前,光伏发电功率预测可分为依据历史数据建立的物理统计模型和运用智能算法建立的学习模型。
物理统计模型较多采用依据天气预报数据计算预期功率输出,此外还有多尺度软测量、多时间尺度测量等。
而学习模型有利用遗传算法优化BP神经网络、Elman神经网络、长短时记忆神经网络、支持向量机(SVM)、最小二乘支持向量机等。
但是这些模型受到自身参数少、预测时间长等影响,直接导致预测误差增大。
本文主要分析光伏发电系统功率预测方法研究综述。
关键词:光伏发电;功率预测引言太阳能是一种清洁的可再生能源,光伏发电是太阳能利用的主要方式之一。
光伏发电能够减轻化石能源使用过程中产生的空气、水污染等环境问题。
自20世纪80年代起,光伏发电量占不同国家总发电量的比例持续提升,世界主要发达国家均研究光伏发电技术,以提升光伏发电能力。
光伏发电系统受太阳辐射强度与气象条件影响较大,导致系统发电功率存在较高随机性、波动性以及间歇性,这些均对电网稳定运行产生不利影响,因此预测光伏发电功率有重大意义。
1、光伏电站功率监测技术为了提高光伏电站的运行可靠性,减少光伏发电功率波动对电网带来的危害,目前主流的做法是采用由静止同步补偿器和储能系统构成的新型功率补偿器,即当光伏电站发电功率波动引起的电压跌落超过相应极限时,就及时采用该新型功率补偿器向电网提供无功功率。
另一种做法,则是借助短期功率预测算法,提前预判光伏电池板阵列的发电出力,再结合采用功率补偿装置,及时调整光伏电站的工作状态,以降低光伏电站功率波动对电网的危害性。
而以上预防和无功补偿措施的采取,都是基于功率监测结果开展的。
目前在光伏电站,有关功率监测方法和技术实现的研究,通常是与功率补偿策略、短期功率预测算法研究综合在一起进行的。
随着光伏发电项目的不断增多,部分地区在条件适宜的屋顶上也在积极推行小型光伏电站的建设。
如此,这部分屋顶拥有者既是电能的消费者,同时也成为电能的生产者。
基于EEMD和BP神经网络的短期光伏功率预测模型
于群;朴在林;胡博
【期刊名称】《电网与清洁能源》
【年(卷),期】2016(032)007
【摘要】为了实现对并网型光伏电站调度,提出了一种基于集合经验模态能分解(EEMD)与BP神经网络的短期光伏出力的组合预测模型.利用集合经验模态分解将光伏出力序列分解,得到本征模函数分量IMF和剩余分量Res,降低序列的非平稳性.采用游程检验法优化因IMF分量数量多造成的建模过程复杂的问题,针对优化后的分量分别建立相应的BP神经网络预测模型.利用该方法对额定容量为40 kW的光伏系统进行预测,并与EMD-BP神经网络和传统的BP神经网络模型进行比较分析.结果表明,所提出的方法有效地提高了预测精度.
【总页数】6页(P132-137)
【作者】于群;朴在林;胡博
【作者单位】沈阳农业大学信息与电气工程学院,辽宁沈阳 110866;沈阳农业大学信息与电气工程学院,辽宁沈阳 110866;沈阳农业大学信息与电气工程学院,辽宁沈阳 110866
【正文语种】中文
【中图分类】TM615
【相关文献】
1.基于EEMD-HS-SVM的短期风功率组合预测模型 [J], 姬广龙;袁越;黄俊辉;关志坚;吴涵;杨苏
2.基于Kalman滤波和BP神经网络的光伏超短期功率预测模型 [J], 王雨;苏适;严玉廷
3.基于改进EEMD-SE-ARMA的超短期风功率组合预测模型 [J], 田波;朴在林;郭丹;王慧
4.基于改进BP神经网络的光伏发电系统输出功率短期预测模型 [J], 丁明;王磊;毕锐
5.基于CEEMDAN和改进时间卷积网络的短期风电功率预测模型 [J], 赵凌云;刘友波;沈晓东;刘代勇;吕霜
因版权原因,仅展示原文概要,查看原文内容请购买。
神经网络算法的光伏发电预测研究式中,P V为光伏电源的输出功率;源额定功率;G C为工作点的辐射强度;温度,其值与环境温度近似;k为功率温度系数。
由此式中,di为Xi和Yi之间的等级差。
气温、相对湿度、全球水平辐射(W/m2)、风向、降水的逐小时数据;Y2.2 光伏发电输出功率预测模型建立(1)构建神经网络架构。
具有s型隐神经元和线性输出神经元的两层前馈网络,在数据一致和隐层神经元足够多的情况下,可以很好地拟合多维映射问题。
本文利用MATLAB中的神经网络拟合模块,建立具有图2 双层前馈神经网络输入-输出关系(2)结果分析。
经过MATLAB模拟贝叶斯算法训练出来的模型,多次调整分析后,每迭代一次神经网络参数都会经过调整,经过多次迭代后,均方误差(MSE)随之降低,但是随着网络开始过度拟合训练后,验证的数据集将会增加,均方误差也会增加,matlab中均方误式中,SSE表示和方差;n表示样本个数;真实数据;表示拟合的数据;w i>0。
图3为神经网络的训练性能,由图可知,经过轮的训练迭代之后,最佳的训练性能是第0.15283,并且整体的训练结果和测试结果的变化曲线相对贴合,说明训练出来的神经网络模型图3 神经网络训练性能结语本研究通过选用斯皮尔曼相关性分析识别出影响光伏发电输出功率的关键因素,并采用贝叶斯正则化算法优化神经网络,构建了对光伏发电输出功率的准确预测模型。
该模型建基于大量实践数据,能够捕获复杂的非线性关系,实现更高的准确性和稳定性。
核心优势在于提升了光伏发电输出功率预测的精度。
通过重要影响因素选择和优化算法,模型达到了较高的解释力和精度。
本研究进一步提高了光伏发电输出功率预测模型的准确率。
本模型所采用的自变量在实际中较难获取,未来研究应与实践紧密结合,构建精度更高、覆盖更广、实用价值更大的光伏发电输出功率预测模型,为我国光伏发电事业发展提供有力支撑。
参考文献:图1 2015年全年光伏发电数据集表1 光伏发电阵列参数名称参数数组评级10.5kW面板评级175W面板数量2×30面阵列区2×38.37m2逆变器尺寸2×6kW逆变器类型SMA SMC 6000A 追踪器类型DEGEnergie 5000NT。
基于神经网络的光伏发电预测技术研究近年来,随着清洁能源的发展,光伏发电已成为一种越来越受欢迎的能源选择。
与传统的化石能源相比,光伏发电具有无污染、无噪音、自动化程度高等诸多优点,因此备受人们的青睐。
然而,由于受天气等因素的影响,光伏发电的输出电量存在很大的波动性,如何准确地预测光伏发电的输出电量,便成为了光伏发电领域需要解决的重要问题。
传统的光伏发电预测方法主要依赖于经验公式和物理模型,但由于光伏发电系统本身比较复杂,其受影响因素众多,这种方法往往难以精确地预测输出电量。
因此,近年来,越来越多的学者开始采用神经网络技术来解决这一问题。
神经网络是一种模拟人脑神经元之间联结的计算模型,通过学习复杂的输入输出关系,可以实现非线性的函数逼近。
在光伏发电领域中,神经网络技术可以通过学习历史数据,来建立一个模型,预测未来的光伏发电输出电量。
具体而言,神经网络预测方法一般包括以下几个步骤:首先,需要收集历史的光伏发电数据,包括日期、时间、天气、光照强度、温度等诸多因素。
其次,需要对这些数据进行预处理,包括去除异常值、数据归一化等操作。
接着,根据统计学和时间序列分析的方法,对光伏发电数据进行描述性统计和时序分析。
最后,选择适当的神经网络结构和算法,采用训练数据对模型进行训练,得到预测模型。
在实际应用中,预测模型可以通过实时的光伏发电数据进行更新和修正,以提高预测的准确度。
神经网络技术具有很强的自适应性和非线性函数逼近能力,因此可以很好地适应光伏发电系统的复杂性和不确定性。
同时,与传统的基于经验公式和物理模型的方法相比,神经网络技术不需要对光伏发电系统进行复杂的建模,也不需要极其繁琐的参数调整,使得预测操作更加简单和高效。
然而,神经网络技术也存在着一定的局限性和挑战。
首先,神经网络预测模型需要消耗大量的计算资源和训练数据,要想得到更好的预测结果需要进行复杂的训练操作。
其次,神经网络模型具有一定的黑盒性,即对于一些预测结果不能够直接给出准确的解释,这在一定程度上增加了预测结果的不可信度。