C. a 1, 2a,a 1
D. a 1, 2a,a 1
当堂检测
5.若三角形ABC的三a,b,c满足a2+b2+c2+50=6a+8b+10c. 试判断
△ABC的形状.
解:∵ a2+b2+c2+50=6a+8b+10c ∴ a2-6a+9+b2-8b+16+c2-10c+25=0. 即 (a-3)²+ (b-4)²+ (c-5)²=0. ∴ a=3, b=4, c=5 即 a2+b2+c2.
“直角三角形”为条件,数量关系a2+ b2= c2 数量关系a2+ b2= c2为条件,“直角三角形”
为结论. 是直角三角形的性质.
为结论. 是直角三角形的判定.
联系
都与直角三角形有关,都与三边数量关系a2 + b2 = c2有关
讲授新课
典例精析
【例1】下面以a、b、c为边长的三角形是不是直角三角形?若是,请指
∴△ABC直角三角形.
当堂检测
6.一艘在海上朝正北方向航行的轮船,在航行240海里时方位仪坏了,凭经
验,船长指挥船左传90°,继续航行70海里,则距出发地250海里,你能判
断船转弯后,是否沿正西方向航行?
解:由题意画出相应的图形AB=240海里,BC=70海里,AC=250 海里; 在△ABC中AC2-AB2=2502-2402 =4900=702 =BC2 即AB2+BC2=AC2 ∴△ABC是Rt△ 答:船转弯后,是沿正西方向航行的。
解:因为a2=c2-b2,所以a2+b2=c2,所以这个三角形是直角三角形.