数字图像的压缩编码
- 格式:ppt
- 大小:6.36 MB
- 文档页数:97
基于感兴趣区域(ROI)图像的压缩编码研究的开题报告一、研究背景图像压缩编码技术在数字图像处理领域中,具有重要的应用价值。
随着数字图像应用的广泛开展,人们对高清晰度、高保真、低码率的图像压缩编码需求不断增强。
基于感兴趣区域(ROI)图像的压缩编码技术因其优异的压缩性能和易于人机交互的特点,近年来备受关注。
ROI图像是指图像中特定区域,如感兴趣的目标、重要的细节和边缘等,需要高保真度和高清晰度的部分。
基于感兴趣区域的图像压缩编码技术可以将ROI图像进行特殊的处理,保证其高保真度和高清晰度,同时压缩非ROI 图像以减小数据传输的容量,提高数据的传输速率和实时性。
二、研究内容本研究旨在基于感兴趣区域(ROI)图像的压缩编码技术,对数字图像压缩编码进行研究。
具体研究内容包括:1、ROI提取与分割算法研究根据图像的特点和需要,研究ROI提取和分割算法,设计出高效的算法对图像中的ROI进行提取,实现区域分割。
本研究以常见的分割算法为基础,结合ROI的特征和分析,研究基于感兴趣区域的图像分割算法,提高ROI图像的提取效率和准确性。
2、基于ROI的图像压缩编码算法研究结合ROI提取和分割算法,研究基于感兴趣区域的图像压缩编码算法。
本研究以JPEG算法为基础,针对ROI图像的特殊处理,研究ROI 编码策略和非ROI编码策略,实现对数字图像的有效压缩。
3、实验验证通过对比实验验证本研究的ROI压缩编码技术和传统图像压缩编码技术的压缩效果和编解码时间,评估研究成果的有效性和实用性。
本研究还将通过改进和优化ROI压缩编码技术,提高图像的压缩率和保真度。
三、研究意义本研究将深入探究基于感兴趣区域的图像压缩编码技术,针对数字图像处理领域中高清晰度、高保真度、低码率的需求,提出优秀的ROI图像压缩编码技术,为数字图像处理领域的发展做出贡献。
四、研究方法本研究采用实验研究和数据分析方法,设计基于感兴趣区域的图像压缩编码算法,实现对数字图像的有效压缩和处理。
图像编码的基本原理图像编码是数字图像处理中的重要环节,它通过对图像进行压缩和编码,实现对图像信息的有效存储和传输。
在图像编码的过程中,需要考虑到图像的信息量、保真度、压缩比等多个因素,因此,图像编码的基本原理显得尤为重要。
首先,图像编码的基本原理包括两个主要方面,压缩和编码。
压缩是指通过一定的算法和技术,减少图像数据的存储空间和传输带宽,而编码则是将压缩后的图像数据转换成数字信号,以便于存储和传输。
在实际的图像编码过程中,通常会采用有损压缩和无损压缩两种方式,以满足不同应用场景的需求。
有损压缩是指在压缩图像数据的同时,会损失一定的信息量,但可以获得更高的压缩比。
常见的有损压缩算法包括JPEG、MPEG等,它们通过对图像进行离散余弦变换、量化、熵编码等步骤,实现对图像数据的有损压缩。
而无损压缩则是在不损失图像信息的前提下,实现对图像数据的压缩。
无损压缩算法主要包括LZW、Huffman编码等,它们通过对图像数据的统计特性进行编码,实现对图像数据的无损压缩。
除了压缩和编码外,图像编码的基本原理还包括了对图像信息的分析和处理。
在图像编码的过程中,需要对图像进行预处理、采样、量化等操作,以便于后续的压缩和编码。
同时,还需要考虑到图像的特性和人眼的视觉感知特点,以实现对图像信息的高效编码和保真传输。
总的来说,图像编码的基本原理涉及到压缩、编码和图像信息处理等多个方面,它是数字图像处理中的重要环节,直接影响到图像的存储、传输和显示质量。
因此,对图像编码的基本原理进行深入理解和研究,对于提高图像处理技术和应用具有重要意义。
希望本文的介绍能够帮助读者更好地理解图像编码的基本原理,为相关领域的研究和应用提供参考。
数字图像处理中的图像压缩算法随着科技和计算机技术的不断发展,数字图像处理成为了一个非常重要的领域。
数字图像处理技术广泛应用于各个领域,如图像储存、通信、医疗、工业等等。
在大量的图像处理中,图像压缩算法是非常关键的一环。
本文将介绍一些数字图像处理中的图像压缩算法。
一、无损压缩算法1. RLE 算法RLE(Run Length Encoding)算法是常见的图像无损压缩算法之一,它的主要思想是将连续的像素值用一个计数器表示。
比如将连续的“aaaa”压缩成“a4”。
RLE 算法相对比较简单,适用于连续的重复像素值较多的图像,如文字图片等。
2. Huffman 编码算法Huffman 编码算法是一种将可变长编码应用于数据压缩的算法,主要用于图像无损压缩中。
它的主要思想是将频率较高的字符用较短的编码,频率较低的字符用较长的编码。
将编码表储存在压缩文件中,解压时按照编码表进行解码。
Huffman 编码算法是一种效率较高的无损压缩算法。
二、有损压缩算法1. JPEG 压缩算法JPEG(Joint Photographic Experts Group)压缩算法是一种在有损压缩中广泛应用的算法。
该算法主要是针对连续色块和变化缓慢的图像进行处理。
JPEG 压缩算法的主要思想是采用离散余弦变换(DCT)将图像分割成小块,然后对每个小块进行频率分析,去除一些高频信息,再进行量化,最后采用 Huffman 编码进行压缩。
2. MPEG 压缩算法MPEG(Moving Picture Experts Group)压缩算法是一种针对视频压缩的算法,它主要是对视频序列中不同帧之间的冗余信息进行压缩。
该算法采用了空间域和时间域的压缩技术,包括分块变换编码和运动补偿等方法。
在分块变换编码中,采用离散余弦变换或小波变换来对视频序列进行压缩,再通过运动估计和补偿等方法,去除冗余信息。
三、总结数字图像处理中的图像压缩算法有很多种,其中无损压缩算法和有损压缩算法各有特点。
图像处理中的数字图像压缩数字图像压缩在图像处理中扮演着重要的角色。
数字图像压缩可以将图像数据压缩成更小的文件大小,更方便存储和传输。
数字图像压缩分为有损和无损两种不同的技术,本文将详细讨论这两种数字图像压缩方法。
一、无损压缩无损压缩是数字图像压缩中最常用的技术之一。
无损压缩的优点是可以保持图片原始数据不被丢失。
这种方法适用于那些需要保持原始画质的图片,例如医学成像或者编程图像等。
无损压缩的主要压缩方法有两种:一种是基于预测的压缩,包括差异编码和改进变长编码。
另一种是基于统计的压缩,其中包括算术编码和霍夫曼编码。
差异编码是一种通过计算相邻像素之间的差异来达到压缩目的的方法。
它依赖于下一像素的值可以预测当前像素值的特性。
改进的变长编码是一种使用预定代码值来表示图像中频繁出现的值的压缩技术。
它使用变长的代码,使得频繁出现的值使用较短的代码,而不常用的值则使用较长的代码。
算术编码是一种基于统计的方法,可以将每个像素映射到一个不同的值范围中,并且将像素序列编码成一个单一的数值。
霍夫曼编码也是一种基于统计的压缩方法。
它通过短代码表示出现频率高的像素值,而使用长代码表示出现频率较低的像素值。
二、有损压缩有损压缩是另一种数字图像压缩技术。
有损压缩方法有一些潜在的缺点,因为它们主要取决于压缩率和压缩的精度。
在应用有损压缩技术之前,必须确定压缩强度,以确保压缩后的图像满足预期的需求。
有损压缩方法可以采用不同的算法来实现。
这些算法包括JPEG、MPEG和MP3等不同的格式。
JPEG是最常用的有损压缩算法,它在压缩时可以通过调整每个像素所占用的位数来减小图像的大小。
MPEG是用于压缩视频信号的一种压缩技术。
它可以将视频信号分成多个I帧、P帧和B帧。
I帧代表一个完整的图像,而P帧和B帧则包含更少的信息。
在以后的编码中,视频编码器使用压缩技术将视频序列压缩成较小的大小。
MP3是一种广泛使用的音频压缩技术,它使用了同样的技术,包括频域转换、量化和哈夫曼编码。
图像编码中的数据压缩技术介绍一、背景在数字时代,图像已经成为人们日常生活中不可或缺的一部分。
然而,随着图像数据的增多,存储和传输的需求也越来越大。
为了有效地处理这些图像数据,数据压缩技术应运而生。
二、数据压缩技术的意义数据压缩技术是将一幅图像中的冗余信息去除或者用更少的信息表示同样的内容,从而减小图像数据的存储和传输量。
通过数据压缩技术,不仅可以节省存储空间,还可以提高图像传输速度,降低传输带宽要求。
三、数据压缩的基本原理数据压缩大致可以分为有损压缩和无损压缩两种方法。
1. 无损压缩无损压缩技术是一种将图像数据压缩成更小的规模,但同时保持图像质量不受损的方法。
在无损压缩中,重要的是尽量减小图像数据的冗余度,以减少存储或传输所需的比特数。
最常用的无损压缩方法包括行程编码、霍夫曼编码和算术编码等。
2. 有损压缩有损压缩技术是一种在压缩图像数据时允许一定程度的图像质量损失的方法。
有损压缩方法通过削减图像数据中的冗余信息和不可见的细节来减小文件的大小。
最常用的有损压缩方法包括离散余弦变换和小波变换等。
四、经典的数据压缩算法1. JPEG压缩JPEG压缩是一种广泛应用于数字图像压缩的有损压缩算法。
它主要基于离散余弦变换(DCT)和量化的思想,通过对图像的频域表示进行量化和熵编码,实现对图像数据的压缩。
2. PNG压缩PNG压缩是一种广泛应用于无损图像压缩的算法。
它采用差分编码和行程编码的组合,通过对图像中连续相同像素值的区域进行编码和压缩,实现对图像数据的无损压缩。
五、新兴的数据压缩技术随着科技的发展,新兴的数据压缩技术也不断涌现。
1. 基于深度学习的数据压缩基于深度学习的数据压缩技术利用神经网络模型,通过学习图像数据的特征和规律,实现对图像数据的高效压缩和恢复。
这种方法具有较高的压缩率和较好的图像质量。
2. 全局优化的数据压缩全局优化的数据压缩技术是一种基于整个图像的全局信息进行编码和压缩的方法。
它能够更充分地利用图像中的冗余信息,并在压缩过程中保持图像的可视质量。
MATLAB中的图像压缩和编码方法图像压缩和编码是数字图像处理的重要领域,在各种图像应用中起着至关重要的作用。
在本文中,我们将探讨MATLAB中的图像压缩和编码方法,包括无损压缩和有损压缩,并介绍其中的一些经典算法和技术。
一、图像压缩和编码概述图像压缩是指通过一定的算法和技术来减少图像数据的存储量或传输带宽,以达到节约存储空间和提高传输效率的目的。
而图像编码则是将原始图像数据转换为一系列二进制编码的过程,以便存储或传输。
图像压缩和编码通常可以分为无损压缩和有损压缩两种方法。
无损压缩是指压缩后的数据可以完全还原为原始图像数据,不会引入任何失真或变化。
常见的无损压缩算法有Run-Length Encoding (RLE)、Lempel-Ziv-Welch (LZW)、Huffman编码等。
这些算法通常针对图像中的冗余数据进行编码,如重复的像素值或相似的图像区域。
有损压缩则是在保证一定程度的视觉质量下,通过舍弃或近似原始图像数据来减小存储或传输的数据量。
常见的有损压缩算法有JPEG、JPEG2000、GIF等。
这些算法通过离散余弦变换(DCT)、小波变换或颜色量化等方法,将图像数据转换为频域或颜色空间的系数,并通过量化、编码和压缩等步骤来减小数据量。
二、无损压缩方法1. Run-Length Encoding (RLE)RLE是一种简单高效的无损压缩算法,通过计算连续重复像素值的数量来减小数据量。
在MATLAB中,可以使用`rle`函数实现RLE编码和解码。
例如,对于一幅图像,可以将连续的像素值(如白色)编码为重复的个数,然后在解码时根据重复的个数恢复原始像素值。
2. Lempel-Ziv-Welch (LZW)LZW是一种字典压缩算法,通过将图像中连续的像素序列映射为一个短代码来减小数据量。
在MATLAB中,可以使用`lzwencode`和`lzwdecode`函数实现LZW 编码和解码。
例如,对于一段连续的像素序列,可以将其映射为一个短代码,然后在解码时根据代码恢复原始像素序列。
编码和压缩是处理音频、视频和图像等多媒体数据时必不可少的技术。
通过编码,原始数据被转换成适合存储或传输的格式;而压缩则是为了减少数据量,以节省存储空间和加快传输速度。
在众多的编码及压缩标准中,有三大标准被广泛使用,它们分别是:JPEG、MPEG 和 H.264。
1.JPEG(Joint Photographic Experts Group)JPEG 是一种广泛应用于图像压缩的编码标准,它由联合摄影专家组开发。
JPEG 能够提供很好的压缩比例,同时保持较高的图像质量。
这使得JPEG 成为数字摄影、网页设计和许多其他应用的首选格式。
JPEG 支持多种颜色模式,包括 RGB、CMYK 和灰度。
此外,JPEG 还支持渐进式显示,即图像可以逐步加载,让用户在等待完整图像加载时可以看到低分辨率的预览。
JPEG 压缩算法基于离散余弦变换(DCT),通过量化和哈夫曼编码实现数据的压缩。
由于 JPEG 是有损压缩,因此在高压缩比下可能会出现图像质量的损失。
为了在保持较高图像质量的同时实现较大的压缩比,JPEG 提供了多种压缩级别供用户选择。
2.MPEG(Moving Picture Experts Group)MPEG 是一组用于音频和视频编码的标准,由动态图像专家组开发。
MPEG 标准包括多种类型,如 MPEG-1、MPEG-2、MPEG-4 等。
这些标准在不同的应用场景中有不同的特点和优势。
MPEG-1 主要用于 VCD 和 CD 的音视频编码,其视频编码分辨率较低,适用于较低的传输速率。
MPEG-2 则用于 DVD、数字电视和高清电视等领域,提供了更高的分辨率和更好的图像质量。
MPEG-4 是一种面向对象的编码标准,支持更多的交互功能,如虚拟现实、游戏等。
MPEG 编码算法基于运动补偿和离散余弦变换(DCT),通过帧间预测、运动估计和熵编码实现数据的压缩。
与 JPEG 类似,MPEG 也是有损压缩,但在保证一定图像质量的前提下,可以实现较高的压缩比。
压缩编码方法压缩编码方法什么是压缩编码?压缩编码是一种将原始数据转换成更紧凑表示的方法,以便节省存储空间或传输带宽。
压缩编码方法广泛应用于数据压缩、图像处理、音频编码等领域。
带符号编码方法•霍夫曼编码:通过根据数据出现的频率为其分配变长的编码,从而实现数据的压缩。
常用于无损压缩。
•温度编码:将数字信号表示为温度变化,较小的差异较难察觉,从而实现数据的压缩。
•遗传编码:模仿自然界的遗传过程,使用一个固定长度的编码表示一个较长的串。
无符号编码方法•整数编码:通过将数值转换为其二进制表示形式,从而实现数据的压缩。
•变长编码:为不同的值分配不同长度的编码,较小的值使用较短的编码长度,从而实现数据的压缩。
•字典编码:将经常出现的数据项赋予较短的编码,不经常出现的数据项赋予较长的编码,从而实现数据的压缩。
图像压缩编码方法•RLE编码:通过表示连续出现的相同像素的数量来对图像进行压缩。
•LZW编码:通过建立一个字典来将图像中的相邻像素转换为编码,从而实现数据的压缩。
•DCT编码:将图像转换为频域表示形式,然后对频域系数进行量化和编码。
音频压缩编码方法•PCM编码:将模拟声音信号转换为数字形式,再通过编码对数据进行压缩。
•MP3编码:通过剔除不可察觉的声音信号部分、进行频率转换和量化,从而实现音频的压缩。
•AAC编码:通过对音频信号进行滤波和预测,然后进行频率转换和量化,实现音频的压缩。
视频压缩编码方法•MPEG编码:通过将视频划分为帧,并对每一帧进行压缩编码,从而实现视频的压缩。
•编码:通过运动预测、变换编码和熵编码等方法,对视频数据进行压缩。
•VP9编码:采用更高效的编码算法,从而实现更好的压缩效果。
压缩编码方法在不同领域有不同的应用,通过对数据进行有效的压缩编码,可以实现高效的存储和传输。
不同的方法适用于不同类型的数据,根据实际需求选择合适的压缩编码方法可以提高系统性能和用户体验。
压缩编码的原理压缩编码的原理是基于信息冗余性的概念。
JPEG是图像压缩编码标准JPEG(Joint Photographic Experts Group)是一种常见的图像压缩编码标准,它是一种无损压缩技术,可以有效地减小图像文件的大小,同时保持图像的高质量。
JPEG压缩技术广泛应用于数字摄影、网页设计、打印和传真等领域,成为了图像处理中不可或缺的一部分。
JPEG压缩编码标准的原理是基于人眼对图像细节的感知特性,通过去除图像中的冗余信息和不可见细节,从而实现图像的压缩。
在JPEG压缩中,图像被分割成8x8像素的块,然后对每个块进行离散余弦变换(DCT),将图像从空间域转换到频域。
接着,对DCT系数进行量化和编码,最后使用熵编码对图像进行压缩。
这样的压缩方式可以显著减小图像文件的大小,同时保持图像的视觉质量。
JPEG压缩标准的优点之一是可以根据需要选择不同的压缩比,从而在图像质量和文件大小之间取得平衡。
在数字摄影中,用户可以根据拍摄场景和要求选择不同的压缩比,以满足对图像质量和文件大小的需求。
此外,JPEG格式的图像可以在不同的设备和平台上进行广泛的应用和共享,具有很好的兼容性。
然而,JPEG压缩也存在一些缺点。
由于JPEG是一种有损压缩技术,因此在高压缩比下会出现明显的失真和伪影。
特别是在连续的编辑和保存过程中,图像的质量会逐渐下降,出现“JPEG失真”。
因此,在图像处理中需要注意选择合适的压缩比,避免过度压缩导致图像质量下降。
另外,JPEG格式不支持透明度和动画等高级特性,对于一些特殊的图像处理需求可能不够灵活。
在这种情况下,可以考虑使用其他图像格式,如PNG和GIF,来满足特定的需求。
总的来说,JPEG作为一种图像压缩编码标准,具有广泛的应用和重要的意义。
它在数字摄影、网页设计、打印和传真等领域发挥着重要作用,为图像处理和传输提供了有效的解决方案。
然而,在使用JPEG格式进行图像处理时,需要注意选择合适的压缩比,避免过度压缩导致图像质量下降。
同时,也需要根据具体的需求考虑使用其他图像格式来满足特定的需求。
图像编码有哪些国际标准图像编码是数字图像处理中的一个重要环节,它涉及到图像的压缩、存储和传输等方面。
在国际上,有一些图像编码的标准被广泛应用,它们为图像编码提供了统一的规范,促进了图像处理技术的发展。
接下来,我们将介绍一些常见的图像编码国际标准。
首先,JPEG(Joint Photographic Experts Group)是图像编码中最为常见的国际标准之一。
JPEG标准采用了一种有损压缩的方法,能够在一定程度上减小图像文件的大小,同时保持图像质量。
这使得JPEG成为了广泛应用于数字摄影和网络传输的图像编码标准。
其次,PNG(Portable Network Graphics)是另一种常见的图像编码国际标准。
与JPEG不同,PNG采用了无损压缩的方法,能够保持图像的原始质量。
此外,PNG还支持透明度和索引色等特性,使得它在网页设计和图像编辑领域有着广泛的应用。
除了JPEG和PNG,还有一些其他的图像编码国际标准,如GIF(Graphics Interchange Format)、TIFF(Tagged Image File Format)等。
它们各自具有特定的优势和适用范围,为不同领域的图像处理提供了多样化的选择。
此外,随着图像处理技术的不断发展,一些新的图像编码国际标准也在不断涌现。
比如,HEVC(High Efficiency Video Coding)是一种针对视频编码的国际标准,它能够在保持高清画质的同时显著减小视频文件的大小,为高清视频传输和存储提供了更好的支持。
总的来说,图像编码国际标准在数字图像处理中起着至关重要的作用,它们为图像的压缩、存储和传输提供了统一的规范,推动了图像处理技术的不断进步。
随着技术的不断发展,我们相信会有更多更好的图像编码国际标准涌现,为数字图像处理领域带来更多的创新和发展。
图像编码是将图像数据进行压缩存储的过程,它在数字图像处理领域占据着重要的地位。
通过合理选择和减少冗余的编码方式,可以有效地降低图像的存储空间和传输带宽。
本文将介绍图像编码常用的方法,包括无损编码和有损编码两大类。
一、无损编码无损编码是指在压缩图像数据时能够完全还原原始信息的编码方法。
常用的无损编码方法有:1. 霍夫曼编码霍夫曼编码是一种变长编码方法,它根据每个符号出现的概率进行编码,出现频率高的符号用短码表示,出现频率低的符号用长码表示。
通过构建霍夫曼树,可以实现对图像数据的高效压缩。
2. 预测编码预测编码是一种根据已知像素值预测待编码像素值的方法。
常用的预测编码方法有差值编码和差分编码。
差值编码将像素值与周围像素值的差作为编码值,差分编码则是将像素值与前一个像素值的差进行编码。
这种编码方式能够显著减少冗余信息,提高图像编码效率。
二、有损编码有损编码是指在压缩图像数据时会丢失一部分信息的编码方法。
常用的有损编码方法有:1. 离散余弦变换(DCT)DCT是将图像数据转换到频域的一种方法,通过将图像分块并进行DCT变换,可以将图像数据转换为频域系数。
DCT编码后的图像在高频部分的系数较小,可通过舍弃掉一部分高频系数来减少数据量,从而实现压缩。
2. 小波变换小波变换可以将图像数据分解成多个频域的子带,其中包含了不同尺度和方向的信息。
通过对低频系数进行较少的保留和高频系数的舍弃,可以实现对图像数据的压缩。
3. 基于向量量化的编码基于向量量化的编码是一种将相似的图像块归类到同一类别并用较少的索引值表示的编码方式。
通过对图像块进行聚类和索引编码,可以有效地降低图像数据的存储空间。
总结起来,图像编码常用的方法包括无损编码和有损编码两大类。
无损编码通过霍夫曼编码和预测编码等方法实现对图像数据的高效压缩;有损编码通过DCT、小波变换和基于向量量化的编码等方法在压缩图像数据的同时,会有一定的信息损失。
根据实际需求和应用场景,选取适合的编码方法可以达到较好的图像压缩效果。
JPEG是图像压缩编码标准JPEG是一种图像压缩编码标准,它是一种广泛应用的图像压缩格式,可以在保持图像质量的同时减小图像文件的大小,使得图像在存储和传输过程中更加高效。
JPEG的全称是Joint Photographic Experts Group,它是一种有损压缩的图像格式,也是目前应用最为广泛的图像格式之一。
JPEG图像压缩编码标准的出现,使得图像在存储和传输过程中占用更小的空间,这对于网络传输和存储设备的容量都是非常有利的。
JPEG图像压缩编码标准的核心思想是通过舍弃一些人眼不易察觉的细节来减小图像的大小,从而达到压缩图像的目的。
在保证图像质量的前提下,JPEG可以将图像文件的大小减小到原来的很小一部分,这对于存储和传输来说都是非常有益的。
在JPEG图像压缩编码标准中,压缩的过程分为两个阶段,分别是亮度和色度的压缩。
在亮度的压缩中,采用的是离散余弦变换(DCT)的方法,它将图像分成8x8的小块,然后对每个小块进行DCT变换,得到频域的系数。
而在色度的压缩中,采用的是色度子采样的方法,将色度分量的分辨率降低,从而减小了色度分量的数据量。
这两种压缩方法结合在一起,就实现了对图像的高效压缩。
值得一提的是,JPEG是一种有损压缩的格式,这意味着在压缩过程中会丢失一些图像的细节信息,从而导致图像质量的损失。
因此,在进行JPEG压缩时,需要根据实际需求来选择合适的压缩比例,以在图像质量和文件大小之间取得平衡。
通常情况下,对于要求较高图像质量的场景,可以选择较小的压缩比例,而对于一些网络传输和存储空间有限的场景,可以选择较大的压缩比例。
除了JPEG之外,还有一些其他的图像压缩编码标准,例如PNG、GIF等,它们各有特点,适用于不同的场景。
在实际应用中,需要根据实际需求来选择合适的图像格式和压缩方法,以达到最佳的效果。
总的来说,JPEG作为一种图像压缩编码标准,具有高效压缩、广泛应用的特点,可以在保证图像质量的前提下减小图像文件的大小,使得图像在存储和传输过程中更加高效。