表面工程的基本涵义、特点、分类及常用工艺方法
- 格式:ppt
- 大小:94.50 KB
- 文档页数:25
表⾯⼯程复习题答案⼀、名词解释表⾯⼯程技术:为满⾜特定的⼯程需求,使材料或零部件表⾯具有特殊的成分、结构和性能(或功能)的化学、物理⽅法与⼯艺。
表⾯能:严格意义上指材料表⾯的内能,包括原⼦的动能、原⼦间的势能以及原⼦中原⼦核和电⼦的动能和势能等。
洁净表⾯:材料表层原⼦结构的周期性不同于体内,但其化学成分仍与体内相同的表⾯。
清洁表⾯:⼀般指零件经过清洗(脱脂、浸蚀等)以后的表⾯。
区别:洁净表⾯允许有吸附物,但其覆盖的⼏率应该⾮常低。
洁净表⾯只有⽤特殊的⽅法才能得到。
清洁表⾯易于实现,只要经过常规的清洗过程即可。
洁净表⾯的“清洁程度”⽐清洁表⾯⾼。
吸附作⽤:物体表⾯上的原⼦或分⼦⼒场不饱和,有吸引周围其它物质(主要是⽓体、液体)分⼦的能⼒。
磨损:相对运动的物质摩擦过程中不断产⽣损失或残余变形的现象。
腐蚀:材料与环境介质作⽤⽽引起的恶化变质或破坏。
极化:腐蚀电池⼯作时,阴、阳极之间有电流通过,使阴、阳极之间的电位差(实际电极电位)⽐初始电位差要⼩得多的现象。
钝化:由于⾦属表⾯状态的改变引起⾦属表⾯活性的突然变化,使表⾯反应速度急剧降低的现象。
(阳极反应受阻的现象)表⾯淬⽕:⽤特定热源将钢铁材料表⾯快速加热到Ac3(对亚共析钢)或者Ac1(对过共析钢)之上(奥⽒体化),然后使其快速冷却并发⽣马⽒体相变,形成表⾯强化层的⼯艺过程。
喷丸强化:利⽤⾼速喷射的细⼩弹丸在室温下撞击受喷⼯件的表⾯,使表层材料在再结晶温度之下产⽣弹、塑性变形,并呈现较⼤的残余压应⼒,从⽽提⾼⼯件表⾯强度、疲劳强度和抗应⼒腐蚀能⼒的表⾯⼯程技术。
(喷丸强化技术)热喷涂:采⽤各种热源使涂层材料加热熔化或半熔化,然后⽤⾼速⽓体使涂层材料分散细化并⾼速撞击到基体表⾯形成涂层的⼯艺过程。
电镀:在含有欲镀⾦属的盐类溶液中,在直流电的作⽤下,以被镀基体⾦属为阴极,以欲镀⾦属或其它惰性导体为阳极,通过电解作⽤,在基体表⾯上获得结合牢固的⾦属膜的表⾯⼯程技术。
表面工程1. 简介表面工程是一种应用于工业生产中的技术,通过对材料表面进行改性或处理,可以改变材料的性质和表面特征,从而提供更好的耐磨、耐腐蚀、耐高温等性能,并增加材料的美观度和装饰性。
表面工程广泛应用于汽车工业、航空航天、电子设备制造、医疗器械、建筑等领域。
2. 表面工程的分类2.1 表面涂覆表面涂覆是将一层或多层涂料、漆膜、涂层等材料均匀地涂覆在材料表面上,形成一层保护层或功能层的处理方法。
常见的表面涂覆技术包括电镀、喷涂、浸镀等。
表面涂覆可以提高材料的耐腐蚀性能、抗磨损性能等,同时也能增加材料的装饰性。
2.2 表面喷涂表面喷涂是将材料的颗粒或粉末喷射到待处理表面上,通过热熔或化学反应使其附着在表面上形成涂层。
表面喷涂常用于金属表面的防护和保护,可以防止氧化、腐蚀和高温等影响。
2.3 表面改性表面改性是通过物理或化学方法对材料表面进行处理,从而改变其物理、化学或机械性能。
常见的表面改性方法包括阳极氧化、磨削、抛光等。
表面改性可以提高材料的硬度、耐磨性、耐腐蚀性等性能。
2.4 表面涂覆与改性的比较表面涂覆和表面改性是表面工程的两种主要方法,它们有各自的特点和适用范围。
表面涂覆主要应用于需要增加防护和装饰性的场合,例如汽车的喷漆,可以保护车身免受腐蚀和刮擦;而表面改性主要应用于需要改变材料性质和提升机械性能的场合,例如通过磨削和抛光改善金属表面的光洁度和平整度。
3. 表面工程的应用3.1 汽车工业在汽车制造过程中,表面工程技术可以使车身更加耐腐蚀、耐磨损,同时也增加了车身的装饰性。
例如,汽车车身经过喷漆和镀膜等表面涂覆技术可以防止腐蚀和刮擦,并提供车身的颜色和亮度;汽车发动机的表面经过热喷涂技术可以提高其耐磨损性和耐高温性能。
3.2 航空航天在航空航天领域,材料的轻量化和高强度是目前的发展趋势。
通过表面涂覆和改性可以增加材料的耐腐蚀性和抗磨损性,从而提高飞机和航天器材料的使用寿命和安全性。
3.3 电子设备制造表面工程在电子设备制造中起着至关重要的作用。
表面工程技术一、热喷涂热喷涂技术是采用气体、液体燃料或电弧、等离子弧、激光等作热源,使金属、合金、金属陶瓷、氧化物、碳化物、塑料以及它们的复合材料等喷涂材料加热到熔融或半熔融状态,通过高速气流使其雾化,然后喷射、沉积到经过预处理的工件表面,从而形成附着牢固的表面层的加工方法。
1.热喷涂具有以下特点:1)取材范围广,几乎所有的工程材料都可以作为喷涂材料。
2)几乎所有固体材料都可以作为基体进行喷涂。
3)工艺灵活, 施工范围小到10mm的内孔,大到铁塔、桥梁。
4)喷涂层厚度可调范围大,从几十微米到几毫米,而且表面光滑,加工量少。
5)工件受热程度可以控制,热喷涂时工件受热程度可控制在30~200℃之间,保证不改变基体的金相组织,工件不会发生畸变。
6)比电镀生产率高。
7)可赋予普通材料以特殊的表面性能,可使材料满足耐磨、耐蚀、抗高温氧化、隔热等性能要求,达到节约贵重材料,提高产品质量,满足多种工程和尖端技术的需求。
2.热喷涂工艺原理喷涂层是由无数变形粒子互相交错呈波浪式堆叠在一起的层状组织结构。
3.热喷涂材料热喷涂材料的材质可分为金属及其合金、陶瓷、金属化合物、某些有机塑料、玻璃、复合材料等。
4.几种不同热源的热喷涂方法1)火焰喷涂火焰喷涂的基本原理是通过乙炔、氧气喷嘴出口处产生的火焰,将线材(棒材)或粉末材料加热熔化,借助压缩空气使其雾化成微细颗粒,喷向经预先处理的粗糙工件表面使之形成涂层。
2)电弧喷涂电弧喷涂的基本原理是将两根被喷涂的金属丝作自耗性电极,连续送进的两根金属丝分别与直流的正负极相连接。
在金属丝端部短接的瞬间,由于高电流密度,使两根金属丝间产生电弧,将两根金属丝端部同时熔化,在电源作用下,维持电弧稳定燃烧;在电弧发射点的背后由喷嘴喷射出的高速压缩空气使熔化的金属脱离金属丝并雾化成微粒,在高速气流作用下喷射到基材表面而形成涂层。
3)等离子喷涂等离子喷涂法是利用等离子焰的热能将引入的喷涂粉末加热到熔融或半熔融状态,并在高速等离子焰的作用下,高速撞击工件表面,并沉积在经过粗糙处理的工件表面形成很薄的涂层。
《材料表面工程》考试要点二、简答题1、表面工程技术的特点与意义;(1)主要作用在基材表面,对远离表面的基材内部组织与性能影响不大。
因此,可以制备表面性能与基材性能相差很大的复合材料。
(2)采用表面涂(镀)、表面合金化技术取代整体合金化,使普通、廉价的材料表面具有特殊的性能,不仅可以节约大量贵重金属,而且可以大幅度提高零部件的耐磨性和耐蚀性,提高劳动生产率,降低生产成本。
(3)可以兼有装饰和防护功能,有力推动了产品的更新换代。
(4)表面薄膜技术和表面微细加工技术具有微细加工功能,是制作大规模集成电路、光导纤维和集成光路、太阳能薄膜电池等元器件的基础技术。
(5)二维的表面处理技术已发展成为三维零件制造技术(生长型制造法),不仅大幅度降低了零部件的制造成本,亦使设计与生产速度成倍提高。
(6)表面工程技术已成为制备新材料的重要方法,可以在材料表面制备整体合金化难以做到的特殊性能合金等。
5. 写出Young方程,并用图示法说明“润湿”与“不润湿”;4、写出Young方程,并用图示法说明“润湿”与“不润湿”;Young方程:润湿的定义:7、金属材料腐蚀控制及防护方法;1)、产品合理设计与正确选材;2)、电化学保护;3)、表面覆层和表面处理;4)、加入缓蚀剂。
8. 表面预处理的工序包括哪些答:表面预处理是表面工程技术能否成功实施的关键因素。
主要工序包括:机械性清理,脱脂,化学浸蚀、抛光和电化学抛光,脱脂—浸蚀综合处理等。
9、形成热扩渗层的基本条件及机理;基本条件:(1)渗入元素必须能够与基体金属形成固溶体或金属件化合物;(2)欲渗元素与基体之间必须有直接接触;(3)被渗元素在基体金属中要有一定的渗入速度;对靠化学反应提供活性原子的热扩渗:(4)该反应必须满足热力学条件。
机理:(1)产生渗剂元素的活性原子并提供给基体金属表面;(2)渗剂元素的活性原子吸附在基体金属表面上,随后被基体金属所吸收,形成最初的表面固溶体或金属间化合物,建立热扩渗所必须的浓度梯度;(3)渗剂元素原子向基体金属内部扩散,基体金属原子也同时向渗层中扩散,使扩散层增厚。
1.3 表面技术的分类材料表面工程是一门新兴学科,或者说是正在形成的一门学科,是一门多学科的边缘学科。
该学科中应该包括哪些内容,如何分类,国内外都无公认的说法。
从不同的角度进行归纳,就会有不同的分类。
如:按作用原理可分为:<1>原子沉积:沉积物以原子、离子、分子和粒子集团等原子尺度的粒子形态在材料表面上形成覆盖层,如电镀、化学镀、物理气相沉积、化学气相沉积等。
<2>颗粒沉积:沉积物以宏观尺度的颗粒形态在材料表面上形成覆盖层,如热喷涂、搪瓷涂覆等。
<3>整体覆盖:它是将涂覆材料于同一时间施加于材料表面,如包箔、贴片、热浸镀、涂刷、堆焊等。
<4>表面改性:用各种物理、化学等方法处理表面,使之组成、结构发生变化,从而改变性能,如表面处理、化学热处理、电子束表面处理、离子注入等。
按表面强化层材料可分为:<1>金属材料层;<2>陶瓷材料层;<3>高分子材料层。
按工艺特点可分为:<1>电镀,<2>化学镀,<3>热渗镀,<4>热喷涂,<5>堆焊,<6>化学转化膜,<7>涂装,<8>表面彩色,<9>气相沉积,<10>“三束”改性,<11>表面热处理,<12>形变强化,<13>衬里等,每一类又可分为一些更细的工艺项目。
图1-1 材料表面工程技术的分类该分类方法比较清晰地体现了工程技术的特点,而且与工程技术上的名称基本一致,容易记忆。
但缺乏学术上的逻辑性,因为有些技术尽管工艺不一样,但基本的改质机理是相同或相似的。
按工艺特点分类方法示意图如图1-1所示。
按表面改质的目的或性质可分为:<1>表面耐磨和减磨技术,<2>表面耐蚀抗氧化技术,<3>表面强化(提高疲劳强度)技术,<4>表面装饰技术,<5>功能表面技术,<6>表面修复技术。
材料表面工程技术及其应用发展材料表面工程技术是一种针对材料表面进行改性的工艺方法,是将表面物理化学效应作为主要手段,通过材料表面的改性,使之具有所需的物理化学性能,并能够在一定的应用领域内寻找到具体应用。
随着工业发展,新型材料和新工艺的发展,在材料表面工程技术领域又出现了一些新的进展和发展。
这些新技术不仅能够改善材料表面的性能,而且还能降低加工成本、提高生产效率、延长产品寿命等诸多优点。
本文将从材料的基本表面工程技术和新型表面工程技术两个方面入手,探讨材料表面工程技术的应用发展现状及其未来发展趋势。
一、材料基本表面工程技术材料表面工程技术有着悠久的历史,其中最基本的工艺方法就是表面处理。
表面处理技术主要分为化学方法和物理方法两种,它们都可以提高材料表面的性能,以适应所需的特殊应用。
1. 化学方法化学方法是利用化学反应的原理,将一种材料的表面改变成另一种具有良好性能的物质。
工艺技术包括酸碱蚀刻、镀层、硅化等多个步骤,常见的有以下几种:(1)镀层技术。
镀层技术是在材料表面沉积一层具有特定性质的金属或合金,以提高它的耐腐蚀性、导电性、机械性等性能。
(2)合金化技术。
合金化技术是指通过某种方法,将一种单一金属与另一种非金属物质混合起来,形成一种新的化合物,以提高材料的密实度、耐腐蚀性、硬度、抗磨损等性能。
(3)氧化技术。
氧化技术是将材料表面经过氧化处理,形成一层氧化膜,以提高材料的氧化稳定性、机械强度、电学性能等。
2. 物理方法物理方法是利用材料表面的物理化学性质,通过物理手段达到改性的目的。
物理方法工艺技术包括机械加工、薄膜技术、沉积技术等,常见的有以下几种:(1)机械加工技术。
机械加工技术是指在材料表面切削、磨削、拋光等加工过程中,使其表面得到平坦、光滑、无毛刺的效果。
它可以提高材料的机械强度、表面光泽度、耐磨性等性能。
(2)热喷涂技术。
热喷涂技术是指将一种或多种材料加热至高温状态,喷出来的材料在表面冷凝形成一层膜,膜与基体结合强度高,不易脱落,可提高材料的耐磨、耐腐蚀等性能。