第十四章判别分析DiscriminantAnalysis
- 格式:ppt
- 大小:125.50 KB
- 文档页数:46
数据分析知识:数据分析中的判别分析方法判别分析(Discriminant Analysis)是一种经典的统计分析方法,常用于解决分类问题。
通过对已知分类的数据进行学习,再对未知数据进行分类。
判别分析方法的主要目标是确定一个或多个变量的线性组合,这个线性组合在不同类别中能够最大化差异,最小化类内差异。
这篇文章将介绍判别分析的基本概念、方法和应用,并对判别分析和其他分类方法进行比较。
一、判别分析的基本概念1.1判别分析的基本思想判别分析的基本思想是找到一个或多个线性组合,使得不同类别之间的差异最大化,同一类别内的差异最小化。
这个线性组合可以被用来将数据投影到一个低维空间,从而实现分类。
比如,对于二分类问题,找到一条直线将两类数据分开。
1.2判别分析的应用场景判别分析广泛应用于生物医学、社会科学、市场营销等领域。
比如,利用判别分析对患者进行分类,预测其疾病的风险;对消费者进行分类,预测其购买行为等。
1.3判别分析的假设判别分析方法通常有一些假设,比如多元正态性、同方差性和无相关性等。
如果这些假设不成立,可能会影响判别分析的结果。
二、判别分析的方法2.1线性判别分析(LDA)线性判别分析是判别分析中最常用的方法之一。
它通过找到一个或多个线性组合,使得不同类别之间的差异最大化,同一类别内的差异最小化。
在实际应用中,常常利用LDA来降维,然后使用简单的分类器进行分类。
2.2二次判别分析(QDA)二次判别分析是判别分析的一种扩展,它允许类别内的协方差不相等。
相比于LDA,QDA的分类边界更加灵活,但是通常需要更多的参数。
2.3特征抽取判别分析通常需要找到一个或多个变量的线性组合,这些变量通常被称为特征。
特征抽取是判别分析的一个重要步骤,它可以通过一些算法比如主成分分析(PCA)来实现。
特征抽取的目标是尽可能多地保留原始数据的信息,在降低维度的同时尽可能减少信息损失。
三、判别分析的应用3.1医学领域在医学领域,判别分析被广泛应用于疾病诊断、治疗方案选择等方面。
判别分析(discriminant analysis)什么是判别分析判别分析产生于20世纪30年代,是利用已知类别的样本建立判别模型,为未知类别的样本判别的一种统计方法。
近年来,判别分析在自然科学、社会学及经济管理学科中都有广泛的应用。
判别分析的特点是根据已掌握的、历史上每个类别的若干样本的数据信息,总结出客观事物分类的规律性,建立判别公式和判别准则。
当遇到新的样本点时,只要根据总结出来的判别公式和判别准则,就能判别该样本点所属的类别。
判别分析按照判别的组数来区分,可以分为两组判别分析和多组判别分析。
判别分析的方法判别分析(Discriminatory Analysis)的任务是根据已掌握的1批分类明确的样品,建立较好的判别函数,使产生错判的事例最少,进而对给定的1个新样品,判断它来自哪个总体。
根据资料的性质,分为定性资料的判别分析和定量资料的判别分析;采用不同的判别准则,又有费歇、贝叶斯、距离等判别方法。
费歇(FISHER)判别思想是投影,使多维问题简化为一维问题来处理。
选择一个适当的投影轴,使所有的样品点都投影到这个轴上得到一个投影值。
对这个投影轴的方向的要求是:使每一类内的投影值所形成的类内离差尽可能小,而不同类间的投影值所形成的类间离差尽可能大。
贝叶斯(BAYES)判别思想是根据先验概率求出后验概率,并依据后验概率分布作出统计推断。
所谓先验概率,就是用概率来描述人们事先对所研究的对象的认识的程度;所谓后验概率,就是根据具体资料、先验概率、特定的判别规则所计算出来的概率。
它是对先验概率修正后的结果。
距离判别思想是根据各样品与各母体之间的距离远近作出判别。
即根据资料建立关于各母体的距离判别函数式,将各样品数据逐一代入计算,得出各样品与各母体之间的距离值,判样品属于距离值最小的那个母体。
例:世界经济统计研究(1995年)人文指数反映国家综合水平人文发展指数是联合国开发计划署于1990年5月发表的第一份《人类发展报告》中公布的。
统计学习理论中的判别分析一、引言统计学习理论是机器学习领域的重要理论之一,在实际应用中广泛使用。
判别分析作为统计学习理论的重要组成部分,被用于解决分类问题、回归问题以及降维问题。
本文将介绍统计学习理论中的判别分析的概念、原理和实际应用。
二、判别分析的定义判别分析,即Discriminant Analysis,是指利用统计学习的方法,通过对已知类别的样本进行学习建模,从而对未知样本进行分类、回归或降维的过程。
判别分析的目标是找到一个决策边界,使得同一类别内的样本尽量相似,不同类别之间的样本尽量不相似。
三、判别分析的原理判别分析的原理建立在统计学和概率论基础之上。
常见的判别分析方法包括线性判别分析(Linear Discriminant Analysis, LDA)、二次判别分析(Quadratic Discriminant Analysis, QDA)和支持向量机(Support Vector Machines, SVM)等。
1. 线性判别分析(LDA)线性判别分析是一种经典的判别分析方法,它通过寻找一个投影方向,使得同一类别内样本的投影尽量接近,而不同类别之间的样本的投影尽量远离。
LDA主要包含以下几个步骤:(1)计算各个类别的均值向量和协方差矩阵;(2)计算类间散度矩阵和类内散度矩阵;(3)计算投影方向的特征值和特征向量;(4)选择前k个特征值对应的特征向量作为投影方向。
2. 二次判别分析(QDA)二次判别分析是线性判别分析的一种推广,它假设不同类别的样本具有不同的协方差矩阵,而不仅仅是相同的协方差矩阵。
因此,QDA在处理非线性分类问题时更具优势。
QDA的步骤与LDA类似,只是在计算投影方向时考虑到了协方差矩阵的差异。
3. 支持向量机(SVM)支持向量机是一种非常强大的判别分析方法,它通过寻找一个超平面将样本进行划分,并且最大化分类边界与最近样本点之间的距离。
SVM可以处理非线性分类问题,并且具有良好的泛化性能。
判别分析discriminant analysis什么是判别分析)某些昆虫的性别只有通过解剖才能够判别)但雄性和雌性昆虫在若干体表度量上有些综合的差异。
人们就根据已知雌雄的昆虫体表度量(这些用作度量的变量亦称为预测变量)得到一个标准,并以此标准来判别其他未知性别的昆虫。
)这样虽非100%准确的判别至少大部分是对的,而且用不着杀生。
这就是判别分析判别分析利用已知类别的样本培训模型,为未知样本判类的一种统计方法。
它产生于本世纪30年代。
近年来,在自然科学、社会学及经济管理学科中都有广泛的应用。
判别分析的特点是根据已掌握的、历史上每个类别的若干样本的数据信息,总结出客观事物分类的规律性,建立判别公式和判别准则。
然后,当遇到新的样本点时,只要根据总结出来的判别公式和判别准则,就能判别该样本点所属的类别。
判别分析与聚类的区别)判别分析和聚类分析都是分类.)在聚类分析中,人们一般事先并不知道应该分成几类及哪几类,全根据数据确定。
)但在判别分析中,至少有一个已经明确知道类别的“训练样本”,并利用该样本来建立判别准则,并通过预测变量来为未知类别的观测值进行判别了。
)可以先聚类以得知类型,再进行判别.判别分析的前提假设)多元正态分布¾才可以精确计算显著性检验和分组归属的概率)各组案例的协方差阵相等¾这样就可以简单方便地计算判别函数并进行显著性检验)各组间均值有显著差异)不存在病态矩阵问题¾即每一个判别变量不能是其他变量的线性组合,变量间无高度相关无多重共线性问题)可通过判别前的描述统计量来分析判别分析的方法)距离判别法)典型判别(Fisher判别)法)逐步判别法)贝叶斯判别法(略)1. 根据距离判别的思想)示例数据有4个用来建立判别标准(或判别函数)的(预测)变量,另一个(group)是类别)每一个企业的打分在这4个变量所构成的4维空间中是一个点。
这个数据在4维空间有39个点已知其类别,可以用这些求得每个类型的中心。
判别分析判别分析(discriminant analysis)是一种分类技术。
它通过一个已知类别的“训练样本”来建立判别准则,并通过预测变量来为未知类别的数据进行分类。
判别分析的方法大体上有三类,即Fisher判别(线性判别)、Bayes判别和距离判别。
Fisher判别思想是投影降维,使多维问题简化为一维问题来处理。
选择一个适当的投影轴,使所有的样品点都投影到这个轴上得到一个投影值。
对这个投影轴的方向的要求是:使每一组内的投影值所形成的组内离差尽可能小,而不同组间的投影值所形成的类间离差尽可能大。
Bayes判别思想是根据先验概率求出后验概率,并依据后验概率分布作出统计推断。
距离判别思想是根据已知分类的数据计算各类别的重心,对未知分类的数据,计算它与各类重心的距离,与某个重心距离最近则归于该类。
接下来将通过例题展示不同的判别方法。
例1:在某市场抽取20种牌子的电视机中,5种畅销,8种平销,另外7种滞销。
按电视质量评分、功能评分和销售价格三项指标衡量,销售状态:1为畅销,2为平销,3为滞销。
数据集:d6.3> X=read.table("clipboard",header=T) #读取数据存入X中> plot(X$Q, X$C); #做横坐标为Q,纵坐标为C的散点图> text(X$Q, X$C, X$G,adj=-0.8,cex=0.75) #在上一句的散点图中为每个点加文本;Q,C,G表示依据Q和C加上G的文本名字;adj为调整文字与点距离的选项,+为向左,-为向右;cex为调整文字的大小;>plot(X$Q, X$P);text(X$Q, X$P, X$G,adj=-0.8,cex=0.75) #同上> plot(X$C, X$P);text(X$C, X$P, X$G,adj=-0.8,cex=0.75) #同上1.线性判别(等方差)R中线性判别和贝叶斯判别的函数为lda()。
判别分析汇报范文判别分析(Discriminant Analysis)是一种多元统计分析方法,它通过建立线性分类器,将样本根据其特征的分布情况划分到多个预先定义好的类别中。
判别分析在许多实际问题中都有广泛的应用,如金融风险评估、疾病诊断、情感识别等。
在本次汇报中,我将介绍判别分析的基本原理和步骤,以及如何进行判别分析的模型评估和结果解释。
一、判别分析的基本原理判别分析的目标是找到一个线性函数,将样本数据投影到低维空间中,并使得不同类别的样本在投影后的空间中有最大的区分度。
判别分析假设每个类别的样本在每个特征上都是以多元正态分布的方式分布的,因此它也被称为线性判别分析(Linear Discriminant Analysis,LDA)。
判别分析的基本思想是通过计算各个类别的均值向量和类内离散度矩阵(Within-class Scatter Matrix)来获得判别函数。
判别函数在特征空间中为超平面,可以将不同类别的样本分开。
二、判别分析的步骤判别分析的步骤主要包括数据预处理、模型训练和模型评估等。
1.数据预处理数据预处理是判别分析的第一步,它包括数据清洗、特征选择和数据标准化等。
数据清洗主要是去除异常值和缺失值,特征选择是为了选取对判别函数有重要影响的特征,数据标准化是为了使不同特征之间具有可比性。
2.模型训练模型训练是判别分析的核心步骤,它主要包括计算均值向量和类内离散度矩阵、计算类间离散度矩阵(Between-class Scatter Matrix)和求解广义特征值问题等。
通过这些步骤可以得到判别函数的系数,进而得到判别函数。
3.模型评估模型评估是为了评估判别函数的性能和判别模型的准确性。
常用的模型评估指标包括分类准确率、召回率、精确率和F1值等。
通过这些指标可以对判别函数的预测结果进行评估。
三、判别分析的模型评估和结果解释判别分析的模型评估可以通过交叉验证等方法来进行。
交叉验证可以将数据集划分为训练集和测试集,并使用训练集来训练判别模型,在测试集上对模型进行评估。
判别分析的原理及其操作1 判别分析的原理1.1 判别分析的涵义判别分析(Discriminant Analysis,简称DA)技术是由费舍(R.A.Fisher)于1936年提出的。
它是根据观察或测量到的若干变量值判断研究对象如何分类的方法。
具体地讲,就是已知一定数量案例的一个分组变量(grouping variable)和这些案例的一些特征变量,确定分组变量和特征变量之间的数量关系,建立判别函数(discriminant function),然后便可以利用这一数量关系对其他已知特征变量信息、但未知分组类型所属的案例进行判别分组。
沿用多元回归模型的称谓,在判别分析中称分组变量为因变量,而用以分组的其他特征变量称为判别变量(discriminant variable)或自变量。
判别分析技术曾经在许多领域得到成功的应用,例如医学实践中根据各种化验结果、疾病症状、体征判断患者患的是什么疾病;体育选材中根据运动员的体形、运动成绩、生理指标、心理素质指标、遗传因素判断是否选入运动队继续培养;还有动物、植物分类,儿童心理测验,地理区划的经济差异,决策行为预测等。
1.2 判别分析的假设条件判别分析的基本条件是:分组变量的水平必须大于或等于2,每组案例的规模必须至少在一个以上;各判别变量的测度水平必须在间距测度等级以上,即各判别变量的数据必须为等距或等比数据;各分组的案例在各判别变量的数值上能够体现差别。
判别分析对判别变量有三个基本假设。
其一是每一个判别变量不能是其他判别变量的线性组合。
否则将无法估计判别函数,或者虽然能够求解但参数估计的标准误很大,以致于参数估计统计性不显著。
其二是各组案例的协方差矩阵相等。
在此条件下,可以使用很简单的公式来计算判别函数和进行显著性检验。
其三是各判别变量之间具有多元正态分布,即每个变量对于所有其他变量的固定值有正态分布。
1.3 判别分析的过程1.3.1 对已知分组属性案例的处理此过程为判别分析的第一阶段,也是建立判别分析基本模型的阶段,即分析和解释各组指标特征之间的差异,并建立判别函数。