算法题__计算机算法设计与分析期末试题4套(含答案)
- 格式:doc
- 大小:71.00 KB
- 文档页数:18
1、二分搜索算法是利用( A )实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是( A )。
A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是( A )的一搜索方式.A、分支界限法B、动态规划法C、贪心法D、回溯法4、在下列算法中有时找不到问题解的是( B ).A、蒙特卡罗算法B、拉斯维加斯算法C、舍伍德算法D、数值概率算法5. 回溯法解旅行售货员问题时的解空间树是( A )。
A、子集树B、排列树C、深度优先生成树D、广度优先生成树6.下列算法中通常以自底向上的方式求解最优解的是( B )。
A、备忘录法B、动态规划法C、贪心法D、回溯法7、衡量一个算法好坏的标准是(C )。
A 运行速度快B 占用空间少C 时间复杂度低D 代码短8、以下不可以使用分治法求解的是(D )。
A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题9. 实现循环赛日程表利用的算法是( A )。
A、分治策略B、动态规划法C、贪心法D、回溯法10、下列随机算法中运行时有时候成功有时候失败的是(C )A 数值概率算法B 舍伍德算法C 拉斯维加斯算法D 蒙特卡罗算法11.下面不是分支界限法搜索方式的是( D )。
A、广度优先B、最小耗费优先C、最大效益优先D、深度优先12.下列算法中通常以深度优先方式系统搜索问题解的是( D )。
A、备忘录法B、动态规划法C、贪心法D、回溯法13。
备忘录方法是那种算法的变形。
( B )A、分治法B、动态规划法C、贪心法D、回溯法14.哈弗曼编码的贪心算法所需的计算时间为( B )。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)15.分支限界法解最大团问题时,活结点表的组织形式是( B )。
A、最小堆B、最大堆C、栈D、数组16.最长公共子序列算法利用的算法是( B ).A、分支界限法B、动态规划法C、贪心法D、回溯法17.实现棋盘覆盖算法利用的算法是( A )。
大学期末考试试卷B 卷(算法设计与分析)一、选择题(30分,每题2分)1、下面的算法段针对不同的自然数n 作不同的处理,其中函数odd (n) 当n 是奇数时返回true ,否则返回false ,while ( n > 1) if ( odd (n) ) n = 3 * n + 1;else n = n / 2;请问该算法所需计算时间的下界是 。
A .Ω(2n ) B .Ω(nlog n ) C .Ω(n !) D .Ω(logn )2、某体育馆有一羽毛球场出租,现在总共有10位客户申请租用此羽毛球场,每个客户所租用的时间单元如下同一时刻,该羽毛球场只能租借给一位客户,请问在这10位客户里面,体育馆最多能满足 位客户的需求。
P104 A .3 B .4 C .5 D .63、当一个确定性算法在最坏情况下的计算复杂性与其在平均情况下的计算复杂性有较大差别时,可以使用 来消除或减少问题的好坏实例间的这种差别。
A .数值概率算法 B .舍伍德算法 C .拉斯维加斯算法 D .蒙特卡罗算法4、将一个正整数n 表示成一系列正整数之和, n = n 1 + n 2 + … +n k (其中,n 1≥n 2≥ … ≥n k ≥1,k ≥1)正整数n 的一个这种表示称为正整数n 的一个划分。
正整数n 的不同的划分个数总和称为正整数n 的划分数,记作p (n );另外,在正整数n 的所有不同划分中,将最大加数n1不大于m 的划分个数记作q (n ,m )。
则当n=10时,p (n )= 。
A .q (8,8) B .1 + q (9,9) P12 C .2 + q (10,8) D .A ,B ,C 都正确5、对于含有n 个元素的子集树问题,最坏情况下其解空间的叶结点数目为 。
A .n!B .2nC .2n+1-1D .∑=ni i n 1!/! P1406、在棋盘覆盖问题中,对于2k ×2k 的特殊棋盘(有一个特殊方块),所需的L 型骨牌的个数是 A 。
《算法分析与设计》期末复习题(一)一、选择题1.应用Johnson 法则的流水作业调度采用的算法是(D )A. 贪心算法B. 分支限界法C.分治法D. 动态规划算法2.Hanoi 塔问题如下图所示。
现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置。
移动圆盘时遵守Hanoi 塔问题的移动规则。
由此设计出解Hanoi 塔问题的递归算法正确的为:(B )Hanoi 塔3. 动态规划算法的基本要素为(C)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用4. 算法分析中,记号O表示(B),记号Ω表示(A),记号Θ表示(D)。
A.渐进下界B.渐进上界C.非紧上界D.紧渐进界E.非紧下界5. 以下关于渐进记号的性质是正确的有:(A)A.f(n)(g(n)),g(n)(h(n))f(n)(h(n))=Θ=Θ⇒=ΘB. f(n)O(g(n)),g(n)O(h(n))h(n)O(f(n))==⇒=C. O(f(n))+O(g(n)) = O(min{f(n),g(n)})D. f(n)O(g(n))g(n)O(f(n))=⇔=6.能采用贪心算法求最优解的问题,一般具有的重要性质为:(A)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用7. 回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。
A.广度优先B. 活结点优先 C.扩展结点优先 D. 深度优先8. 分支限界法在问题的解空间树中,按(A)策略,从根结点出发搜索解空间树。
A.广度优先B. 活结点优先 C.扩展结点优先 D. 深度优先9. 程序块(A)是回溯法中遍历排列树的算法框架程序。
A.B.C.D.10. 回溯法的效率不依赖于以下哪一个因素?(C )A.产生x[k]的时间;B.满足显约束的x[k]值的个数;C.问题的解空间的形式;D.计算上界函数bound的时间;E.满足约束函数和上界函数约束的所有x[k]的个数。
算法期末考试题及答案一、选择题(每题2分,共20分)1. 以下哪个算法不是排序算法?A. 快速排序B. 归并排序C. 深度优先搜索D. 堆排序答案:C2. 在二叉树的遍历算法中,中序遍历的顺序是:A. 先序B. 后序C. 中序D. 层序答案:C3. 动态规划与分治法算法的主要区别在于:A. 问题分解的方式B. 问题解决的顺序C. 存储中间结果的方式D. 问题规模的大小答案:C4. 哈希表的冲突解决方法不包括:A. 开放寻址法B. 链地址法C. 线性探测法D. 排序答案:D5. 以下哪个是图的遍历算法?A. 归并排序B. 深度优先搜索C. 快速排序D. 堆排序答案:B6. 贪心算法的特点是:A. 每一步都选择最优解B. 每一步都选择局部最优解C. 每一步都选择最差解D. 每一步都随机选择解答案:B7. 在算法分析中,时间复杂度O(1)表示:A. 常数时间B. 线性时间C. 对数时间D. 多项式时间答案:A8. 以下哪个是排序算法的时间复杂度为O(n^2)?A. 快速排序B. 归并排序C. 冒泡排序D. 堆排序答案:C9. 递归算法的基本原理是:A. 重复执行B. 分而治之C. 循环调用D. 迭代求解答案:B10. 以下哪个是算法的时间复杂度为O(log n)的典型例子?A. 二分查找B. 线性查找C. 冒泡排序D. 快速排序答案:A二、简答题(每题10分,共20分)1. 简述快速排序算法的基本思想及其时间复杂度。
答案:快速排序是一种分治法的排序算法。
其基本思想是选择一个元素作为“基准”(pivot),然后将数组分为两部分,一部分包含所有小于基准的元素,另一部分包含所有大于基准的元素。
这个过程称为分区(partitioning)。
之后,递归地对这两部分进行快速排序。
快速排序的平均时间复杂度为O(n log n),但在最坏情况下(例如数组已经排序或所有元素相等)时间复杂度为O(n^2)。
2. 解释什么是动态规划,并给出一个动态规划问题的例子。
算法设计与分析试卷一、填空题(20分,每空2分)1、算法的性质包括输入、输出、___、有限性。
2、动态规划算法的基本思想就将待求问题_____、先求解子问题,然后从这些子问题的解得到原问题的解。
3、设计动态规划算法的4个步骤:(1)找出____,并刻画其结构特征。
(2)_______。
(3)_______。
(4)根据计算最优值得到的信息,_______。
4、流水作业调度问题的johnson算法:(1)令N1=___,N2={i|ai>=bj};(2)将N1中作业依ai的___。
5、对于流水作业高度问题,必存在一个最优调度π,使得作业π(i)和π(i+1)满足Johnson不等式_____。
6、最优二叉搜索树即是___的二叉搜索树。
二、综合题(50分)1、当(a1,a2,a3,a4,a5,a6)=(-2,11,-4,13,-5,-2)时,最大子段和为∑ak(2<=k<=4)____(5分)2、由流水作业调度问题的最优子结构性质可知,T(N,0)=______(5分)3、最大子段和问题的简单算法(10分)int maxsum(int n,int *a,int & bestj){intsum=0;for (int i=1;i<=n;i++)for (int j=i;j<=n;j++)int thissum=0;for(int k=i;k<=j;k++)_____;if(thissum>sum){sum=thissum;______;bestj=j;}}return sum;}4、设计最优二叉搜索树问题的动态规划算法OptimalBinarysearchTree? (15分)Void OptimalBinarysearchTree(int a,int n,int * * m, int * * w) {for(int i=0;i<=n;i++) {w[i+1][i]=a[i]; m[i+1][i]=____;} for(int r=0;r<n;r++)for(int i=1;i<=n-r;i++){int j=i+r;w[i][j]=w[i][j-1]+a[j]+b[j];m[i][j]=______;s[i][j]=i;for(int k=i+1;k<=j;k++){int t=m[i][k-1]+m[k+1][j];if(_____) {m[i][j]=t; s[i][j]=k;}}m[i][j]=t; s[i][j]=k;}}5、设n=4, (a1,a2,a3,a4)=(3,4,8,10), (b1,b2,b3,b4)=(6,2,9,15) 用两种方法求4个作业的最优调度方案并计算其最优值?(15分)三、简答题(30分)1、将所给定序列a[1:n]分为长度相等的两段a[1:n/2]和a[n/2+1:n],分别求出这两段的最大子段和,则a[1:n]的最大子段和有哪三种情形?(10分)答:2、由0——1背包问题的最优子结构性质,可以对m(i,j)建立怎样的递归式? (10分)3、0——1背包求最优值的步骤分为哪几步?(10分)参考答案:填空题:确定性分解成若干个子问题最优解的性质递归地定义最优值以自底向上的方式计算出最优值构造最优解{i|ai<bi} ai的非减序排序;将N2中作业依bi的非增序排序min{bπ(i),aπ(i+1)}≥min{bπ(i+1),aπ(i)}最小平均查找长度综合题:20 min{ai+T(N-{i},bi)}(1=<i<=n) thissum+=a[k] besti=i 0 m[i+1][j] t<m[i][j]法一:min(ai,bj)<=min(aj,bi)因为min(a1,b2)<=min(a2,b1)所以1→2 (先1后2)由min(a1,b3)<=min(a3,b1)得1→3 (先1后3)同理可得:最后为1→3→4→2法二:johnson算法思想N1={1,3,4} N2={2}N¹1={1,3,4} N¹2={2}所以 N¹1→N¹2得:1→3→4→2简答题:1 、(1)a[1:n]的最大子段和与a[1:n/2]的最大子段和相同。
《算法分析与设计》期末试题及参考答案《算法分析与设计》期末试题及参考答案一、简要回答下列问题:1.算法重要特性是什么?1.确定性、可行性、输入、输出、有穷性2.2.算法分析的目的是什么?2.分析算法占用计算机资源的情况,对算法做出比较和评价,设计出额更好的算法。
3.3.算法的时间复杂性与问题的什么因素相关?3. 算法的时间复杂性与问题的规模相关,是问题大小n的函数。
4.算法的渐进时间复杂性的含义?4.当问题的规模n趋向无穷大时,影响算法效率的重要因素是T(n)的数量级,而其他因素仅是使时间复杂度相差常数倍,因此可以用T(n)的数量级(阶)评价算法。
时间复杂度T(n)的数量级(阶)称为渐进时间复杂性。
5.最坏情况下的时间复杂性和平均时间复杂性有什么不同?5. 最坏情况下的时间复杂性和平均时间复杂性考察的是n固定时,不同输入实例下的算法所耗时间。
最坏情况下的时间复杂性取的输入实例中最大的时间复杂度:W(n) = max{ T(n,I) } , I∈Dn平均时间复杂性是所有输入实例的处理时间与各自概率的乘积和:A(n) =∑P(I)T(n,I) I∈Dn6.简述二分检索(折半查找)算法的基本过程。
6. 设输入是一个按非降次序排列的元素表A[i:j] 和x,选取A[(i+j)/2]与x比较,如果A[(i+j)/2]=x,则返回(i+j)/2,如果A[(i+j)/2]<="">7.背包问题的目标函数和贪心算法最优化量度相同吗?7. 不相同。
目标函数:获得最大利润。
最优量度:最大利润/重量比。
8.采用回溯法求解的问题,其解如何表示?有什么规定?8. 问题的解可以表示为n元组:(x1,x2,……x n),x i∈S i, S i为有穷集合,x i∈S i, (x1,x2,……x n)具备完备性,即(x1,x2,……x n)是合理的,则(x1,x2,……x i)(i<n)一定合理。
《计算机算法设计与分析》习题及答案一.选择题1、二分搜索算法是利用( A )实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是( A )。
A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是( A )的一搜索方式。
A、分支界限法B、动态规划法C、贪心法D、回溯法4. 回溯法解旅行售货员问题时的解空间树是( A )。
A、子集树B、排列树C、深度优先生成树D、广度优先生成树5.下列算法中通常以自底向上的方式求解最优解的是( B )。
A、备忘录法B、动态规划法C、贪心法D、回溯法6、衡量一个算法好坏的标准是( C )。
A 运行速度快B 占用空间少C 时间复杂度低D 代码短7、以下不可以使用分治法求解的是( D )。
A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题8. 实现循环赛日程表利用的算法是( A )。
A、分治策略B、动态规划法C、贪心法D、回溯法9.下面不是分支界限法搜索方式的是( D )。
A、广度优先B、最小耗费优先C、最大效益优先D、深度优先10.下列算法中通常以深度优先方式系统搜索问题解的是( D )。
A、备忘录法B、动态规划法C、贪心法D、回溯法11.备忘录方法是那种算法的变形。
( B )A、分治法B、动态规划法C、贪心法D、回溯法12.哈夫曼编码的贪心算法所需的计算时间为( B )。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)13.分支限界法解最大团问题时,活结点表的组织形式是( B )。
A、最小堆B、最大堆C、栈D、数组14.最长公共子序列算法利用的算法是( B )。
A、分支界限法B、动态规划法C、贪心法D、回溯法15.实现棋盘覆盖算法利用的算法是( A )。
A、分治法B、动态规划法C、贪心法D、回溯法16.下面是贪心算法的基本要素的是( C )。
A、重叠子问题B、构造最优解C、贪心选择性质D、定义最优解17.回溯法的效率不依赖于下列哪些因素( D )A.满足显约束的值的个数B. 计算约束函数的时间C.计算限界函数的时间D. 确定解空间的时间18.下面哪种函数是回溯法中为避免无效搜索采取的策略( B )A.递归函数 B.剪枝函数 C。
一、填空题(20分)1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。
2.算法的复杂性有_____________和___________之分,衡量一个算法好坏的标准是______________________。
3.某一问题可用动态规划算法求解的显著特征是____________________________________。
4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X 和Y的一个最长公共子序列_____________________________。
5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。
6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。
7.以深度优先方式系统搜索问题解的算法称为_____________。
8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。
9.动态规划算法的两个基本要素是___________和___________。
10.二分搜索算法是利用_______________实现的算法。
二、综合题(50分)1.写出设计动态规划算法的主要步骤。
2.流水作业调度问题的johnson算法的思想。
3.若n=4,在机器M1和M2上加工作业i所需的时间分别为a i和b i,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。
4.使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。
《算法分析与设计》期末试题及参考答案一、简要回答下列问题:1.算法重要特性是什么?1.确定性、可行性、输入、输出、有穷性2.2.算法分析的目的是什么?2.分析算法占用计算机资源的情况,对算法做出比较和评价,设计出额更好的算法。
3.3.算法的时间复杂性与问题的什么因素相关?3. 算法的时间复杂性与问题的规模相关,是问题大小n的函数。
4.算法的渐进时间复杂性的含义?4.当问题的规模n趋向无穷大时,影响算法效率的重要因素是T(n)的数量级,而其他因素仅是使时间复杂度相差常数倍,因此可以用T(n)的数量级(阶)评价算法。
时间复杂度T(n)的数量级(阶)称为渐进时间复杂性。
5.最坏情况下的时间复杂性和平均时间复杂性有什么不同?5. 最坏情况下的时间复杂性和平均时间复杂性考察的是n固定时,不同输入实例下的算法所耗时间。
最坏情况下的时间复杂性取的输入实例中最大的时间复杂度:W(n) = max{ T(n,I) } , I∈Dn平均时间复杂性是所有输入实例的处理时间与各自概率的乘积和:A(n) =∑P(I)T(n,I) I∈Dn6.简述二分检索(折半查找)算法的基本过程。
6. 设输入是一个按非降次序排列的元素表A[i:j] 和x,选取A[(i+j)/2]与x比较,如果A[(i+j)/2]=x,则返回(i+j)/2,如果A[(i+j)/2]<x,则A[i:(i+j)/2-1]找x,否则在A[ (i+j)/2+1:j] 找x。
上述过程被反复递归调用。
7.背包问题的目标函数和贪心算法最优化量度相同吗?7. 不相同。
目标函数:获得最大利润。
最优量度:最大利润/重量比。
8.采用回溯法求解的问题,其解如何表示?有什么规定?8. 问题的解可以表示为n元组:(x1,x2,……x n),x i∈S i, S i为有穷集合,x i∈S i, (x1,x2,……x n)具备完备性,即(x1,x2,……x n)是合理的,则(x1,x2,……x i)(i<n)一定合理。
计算机算法试题(含答案)算法设计与分析试卷一、填空题(20分,每空2分)1、算法的性质包括输入、输出、___、有限性。
2、动态规划算法的基本思想就将待求问题_____、先求解子问题,然后从这些子问题的解得到原问题的解。
3、设计动态规划算法的4个步骤:(1)找出____,并刻画其结构特征。
(2)_______。
(3)_______。
(4)根据计算最优值得到的信息,_______。
4、流水作业调度问题的johnson算法:(1)令N1=___,N2={i|ai>=bj};(2)将N1中作业依ai的___。
5、对于流水作业高度问题,必存在一个最优调度π,使得作业π(i)和π(i+1)满足Johnson不等式_____。
6、最优二叉搜索树即是___的二叉搜索树。
二、综合题(50分)1、当(a1,a2,a3,a4,a5,a6)=(-2,11,-4,13,-5,-2)时,最大子段和为∑ak(2<=k<=4)____(5分)2、由流水作业调度问题的最优子结构性质可知,T(N,0)=______(5分)3、最大子段和问题的简单算法(10分)int maxsum(int n,int *a,int & bestj){intsum=0;for (int i=1;i<=n;i++)for (int j=i;j<=n;j++)int thissum=0;for(int k=i;k<=j;k++)_____;if(thissum>sum){sum=thissum;______;bestj=j;}}return sum;}4、设计最优二叉搜索树问题的动态规划算法OptimalBinarysearchTree? (15分)Void OptimalBinarysearchTree(int a,int n,int * * m, int * * w) { for(int i=0;i<=n;i++) {w[i+1][i]=a[i]; m[i+1][i]=____;} for(int r=0;r<n;r++)< p="">for(int i=1;i<=n-r;i++){int j=i+r;w[i][j]=w[i][j-1]+a[j]+b[j];m[i][j]=______;s[i][j]=i;for(int k=i+1;k<=j;k++){int t=m[i][k-1]+m[k+1][j];if(_____) {m[i][j]=t; s[i][j]=k;}}m[i][j]=t; s[i][j]=k;}}5、设n=4, (a1,a2,a3,a4)=(3,4,8,10), (b1,b2,b3,b4)=(6,2,9,15) 用两种方法求4个作业的最优调度方案并计算其最优值?(15分)三、简答题(30分)1、将所给定序列a[1:n]分为长度相等的两段a[1:n/2]和a[n/2+1:n],分别求出这两段的最大子段和,则a[1:n]的最大子段和有哪三种情形?(10分)答:2、由0——1背包问题的最优子结构性质,可以对m(i,j)建立怎样的递归式? (10分)3、0——1背包求最优值的步骤分为哪几步?(10分)参考答案:填空题:确定性分解成若干个子问题最优解的性质递归地定义最优值以自底向上的方式计算出最优值构造最优解{i|ai<="" p="">bi的非增序排序min{bπ(i),aπ(i+1)}≥min{bπ(i+1),aπ(i)}最小平均查找长度综合题:20 min{ai+T(N-{i},bi)}(1=<i<=n) 0="" besti="i" m[i+1][j]="" p="" t<m[i][j]<="" thissum+="a[k]">法一:min(ai,bj)<=min(aj,bi)因为min(a1,b2)<=min(a2,b1)所以1→2 (先1后2)由min(a1,b3)<=min(a3,b1)得1→3 (先1后3)同理可得:最后为1→3→4→2法二:johnson算法思想N1={1,3,4} N2={2}N11={1,3,4} N12={2}所以N11→N12得:1→3→4→2简答题:1 、(1)a[1:n]的最大子段和与a[1:n/2]的最大子段和相同。
(1)用计算机求解问题的步骤:1、问题分析2、数学模型建立3、算法设计与选择4、算法指标5、算法分析6、算法实现7、程序调试8、结果整理文档编制(2)算法定义:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程(3)算法的三要素1、操作2、控制结构3、数据结构算法具有以下5个属性:有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。
确定性:算法中每一条指令必须有确切的含义。
不存在二义性。
只有一个入口和一个出口可行性:一个算法是可行的就是算法描述的操作是可以通过已经实现的基本运算执行有限次来实现的。
输入:一个算法有零个或多个输入,这些输入取自于某个特定对象的集合。
输出:一个算法有一个或多个输出,这些输出同输入有着某些特定关系的量。
算法设计的质量指标:正确性:算法应满足具体问题的需求;可读性:算法应该好读,以有利于读者对程序的理解;健壮性:算法应具有容错处理,当输入为非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果。
效率与存储量需求:效率指的是算法执行的时间;存储量需求指算法执行过程中所需要的最大存储空间。
一般这两者与问题的规模有关。
经常采用的算法主要有迭代法、分而治之法、贪婪法、动态规划法、回溯法、分支限界法迭代法也称“辗转法”,是一种不断用变量的旧值递推出新值的解决问题的方法。
利用迭代算法解决问题,需要做好以下三个方面的工作:一、确定迭代模型。
在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。
二、建立迭代关系式。
所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。
迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。
三、对迭代过程进行控制。
在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。
不能让迭代过程无休止地重复执行下去。
迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。
e i rb ei n一.填空题: 1. 元运算2. O 3.∑∈nD I I t I p )()(4. 将规模为n 的问题分解为子问题以及组合相应的子问题的解所需的时间5. 分解,递归,组合6. 在问题的状态空间树上作带剪枝的DFS 搜索(或:DFS+剪枝)7. 前者分解出的子问题有重叠的,而后者分解出的子问题是相互独立(不重叠)的8. 局部9. 高10. 归并排序算法11. 不同12. v=random (low, high); 交换A[low]和A[v]的值 随机选主元13. 比较n二.计算题和简答题:1. 阶的关系:(1) f(n)= O(g(n))(2) f(n)=(g(n))Ω (3) f(n)=(g(n))Ω (4) f(n)= O(g(n))3. (1) i>=1 (2)k[i]+1 (3) 1(4) i+1 (5) k[i]=0 (6) tag[x, y]=0(7) x=x-dx[k[i]]; y=y-dy[k[i]]四.算法设计题:1. 贪心选择策略:从起点的加油站起每次加满油后不加油行驶尽可能远,直至油箱中的油耗尽前所能到达的最远的油站为止,在该油站再加满油。
算法MINSTOPS输入:A、B两地间的距离s,A、B两地间的加油站数n,车加满油后可行驶的公里数m,存储各加油站离起点A的距离的数组d[1..n]。
输出:从A地到B地的最少加油次数k以及最优解x[1..k](x[i]表示第i次加油的加油站序号),若问题无解,则输出no solution。
d[n+1]=s; //设置虚拟加油站第n+1站。
for i=1 to nif d[i+1]-d[i]>m thenoutput “no solution”; return //无解,返回end ifend fork=1; x[k]=1 //在第1站加满油。
s1=m //s1为用汽车的当前油量可行驶至的地点与A点的距离i=2while s1<sif d[i+1]>s1 then //以汽车的当前油量无法到达第i+1站。
算法设计与分析复习题目及答案一、算法的基本概念1、什么是算法?算法是指解决特定问题的一系列明确步骤,它具有确定性、可行性、有穷性、输入和输出等特性。
例如,计算两个数的最大公约数的欧几里得算法,就是通过反复用较小数去除较大数,然后将余数作为新的较小数,直到余数为 0,此时的除数就是最大公约数。
2、算法的复杂度包括哪些?它们的含义是什么?算法的复杂度主要包括时间复杂度和空间复杂度。
时间复杂度是指算法执行所需要的时间量,通常用大 O 记号来表示。
例如,一个算法的时间复杂度为 O(n),表示其执行时间与输入规模 n成正比。
空间复杂度则是算法在运行过程中所需要的额外存储空间的大小。
比如说,一个算法需要创建一个大小为 n 的数组来存储数据,那么其空间复杂度就是 O(n)。
二、分治法1、分治法的基本思想是什么?分治法的基本思想是将一个规模为 n 的问题分解为 k 个规模较小的子问题,这些子问题相互独立且与原问题结构相同。
然后分别求解这些子问题,最后将子问题的解合并得到原问题的解。
2、请举例说明分治法的应用。
例如归并排序算法。
将一个未排序的数组分成两半,对每一半分别进行排序,然后将排好序的两部分合并起来。
其时间复杂度为 O(nlogn),空间复杂度为 O(n)。
三、动态规划1、动态规划的基本步骤有哪些?动态规划的基本步骤包括:(1)定义问题的状态。
(2)找出状态转移方程。
(3)确定初始状态。
(4)计算最终的解。
2、解释最长公共子序列问题,并给出其动态规划解法。
最长公共子序列问题是指找出两个序列的最长公共子序列的长度。
假设我们有两个序列 X 和 Y,用 dpij 表示 X 的前 i 个字符和 Y 的前 j 个字符的最长公共子序列长度。
状态转移方程为:如果 Xi 1 == Yj 1,则 dpij = dpi 1j 1 + 1否则 dpij = max(dpi 1j, dpij 1)四、贪心算法1、贪心算法的特点是什么?贪心算法在每一步都做出当前看起来最优的选择,希望通过这种局部最优选择达到全局最优解。
(1)用计算机求解问题的步骤:1、问题分析2、数学模型建立3、算法设计与选择4、算法指标5、算法分析6、算法实现7、程序调试8、结果整理文档编制(2)算法定义:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程(3)算法的三要素1、操作2、控制结构3、数据结构算法具有以下5个属性:有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。
确定性:算法中每一条指令必须有确切的含义。
不存在二义性。
只有一个入口和一个出口可行性:一个算法是可行的就是算法描述的操作是可以通过已经实现的基本运算执行有限次来实现的。
输入:一个算法有零个或多个输入,这些输入取自于某个特定对象的集合。
输出:一个算法有一个或多个输出,这些输出同输入有着某些特定关系的量。
算法设计的质量指标:正确性:算法应满足具体问题的需求;可读性:算法应该好读,以有利于读者对程序的理解;健壮性:算法应具有容错处理,当输入为非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果。
效率与存储量需求:效率指的是算法执行的时间;存储量需求指算法执行过程中所需要的最大存储空间。
一般这两者与问题的规模有关。
经常采用的算法主要有迭代法、分而治之法、贪婪法、动态规划法、回溯法、分支限界法迭代法也称“辗转法”,是一种不断用变量的旧值递推出新值的解决问题的方法。
利用迭代算法解决问题,需要做好以下三个方面的工作:一、确定迭代模型。
在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。
二、建立迭代关系式。
所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。
迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。
三、对迭代过程进行控制。
在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。
不能让迭代过程无休止地重复执行下去。
迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。
对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。
编写计算斐波那契(Fibonacci)数列的第n项函数fib(n)。
斐波那契数列为:0、1、1、2、3、……,即:fib(0)=0;fib(1)=1;fib(n)=fib(n-1)+fib(n-2) (当n>1时)。
写成递归函数有:int fib(int n){ if (n==0) return 0;if (n==1) return 1;if (n>1) return fib(n-1)+fib(n-2);}一个饲养场引进一只刚出生的新品种兔子,这种兔子从出生的下一个月开始,每月新生一只兔子,新生的兔子也如此繁殖。
如果所有的兔子都不死去,问到第12 个月时,该饲养场共有兔子多少只?分析:这是一个典型的递推问题。
我们不妨假设第 1 个月时兔子的只数为 u 1 ,第 2 个月时兔子的只数为 u2 ,第3 个月时兔子的只数为 u 3 ,……根据题意,“这种兔子从出生的下一个月开始,每月新生一只兔子”,则有u 1 = 1 , u 2 = u 1 +u 1 × 1 = 2 , u 3 =u 2 +u 2 × 1 =4 ,……根据这个规律,可以归纳出下面的递推公式:u n = u n - 1 × 2 (n ≥ 2)对应 u n 和 u n -1 ,定义两个迭代变量 y 和x ,可将上面的递推公式转换成如下迭代关系:y=x*2x=y让计算机对这个迭代关系重复执行 11 次,就可以算出第 12 个月时的兔子数。
参考程序如下:clsx=1for i=2 to 12y=x*2x=ynext iprint yend分而治之法1、分治法的基本思想任何一个可以用计算机求解的问题所需的计算时间都与其规模N有关。
问题的规模越小,越容易直接求解,解题所需的计算时间也越少。
例如,对于n个元素的排序问题,当n=1时,不需任何计算;n=2时,只要作一次比较即可排好序;n=3时只要作3次比较即可,…。
而当n 较大时,问题就不那么容易处理了。
要想直接解决一个规模较大的问题,有时是相当困难的。
分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
分治法所能解决的问题一般具有以下几个特征:(1)该问题的规模缩小到一定的程度就可以容易地解决;(2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;(3)利用该问题分解出的子问题的解可以合并为该问题的解;(4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
3、分治法的基本步骤分治法在每一层递归上都有三个步骤:(1)分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;(2)解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题;(3)合并:将各个子问题的解合并为原问题的解。
快速排序在这种方法中,n 个元素被分成三段(组):左段l e f t,右段r i g h t和中段m i d d l e。
中段仅包含一个元素。
左段中各元素都小于等于中段元素,右段中各元素都大于等于中段元素。
因此l e f t和r i g h t中的元素可以独立排序,并且不必对l e f t和r i g h t的排序结果进行合并。
m i d d l e中的元素被称为支点( p i v o t )。
图1 4 - 9中给出了快速排序的伪代码。
/ /使用快速排序方法对a[ 0 :n- 1 ]排序从a[ 0 :n- 1 ]中选择一个元素作为m i d d l e,该元素为支点把余下的元素分割为两段left 和r i g h t,使得l e f t中的元素都小于等于支点,而right 中的元素都大于等于支点递归地使用快速排序方法对left 进行排序递归地使用快速排序方法对right 进行排序所得结果为l e f t + m i d d l e + r i g h t考察元素序列[ 4 , 8 , 3 , 7 , 1 , 5 , 6 , 2 ]。
假设选择元素6作为支点,则6位于m i d d l e;4,3,1,5,2位于l e f t;8,7位于r i g h t。
当left 排好序后,所得结果为1,2,3,4,5;当r i g h t排好序后,所得结果为7,8。
把right 中的元素放在支点元素之后,l e f t中的元素放在支点元素之前,即可得到最终的结果[ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ]。
把元素序列划分为l e f t、m i d d l e和r i g h t可以就地进行(见程序1 4 - 6)。
在程序1 4 - 6中,支点总是取位置1中的元素。
也可以采用其他选择方式来提高排序性能,本章稍后部分将给出这样一种选择。
程序14-6 快速排序template<class T>void QuickSort(T*a, int n){// 对a[0:n-1] 进行快速排序{// 要求a[n] 必需有最大关键值quickSort(a, 0, n-1);template<class T>void quickSort(T a[], int l, int r){// 排序a [ l : r ],a[r+1] 有大值if (l >= r) return;int i = l, // 从左至右的游标j = r + 1; // 从右到左的游标T pivot = a[l];// 把左侧>= pivot的元素与右侧<= pivot 的元素进行交换while (true) {do {// 在左侧寻找>= pivot 的元素i = i + 1;} while (a < pivot);do {// 在右侧寻找<=pivot 的元素j = j - 1;} while (a[j] > pivot);if (i >= j) break; // 未发现交换对象Swap(a, a[j]);}// 设置p i v o ta[l] = a[j];a[j] = pivot;quickSort(a, l, j-1); // 对左段排序quickSort(a, j+1, r); // 对右段排序}贪婪法它采用逐步构造最优解的思想,在问题求解的每一个阶段,都作出一个在一定标准下看上去最优的决策;决策一旦作出,就不可再更改。
制定决策的依据称为贪婪准则。
贪婪法是一种不追求最优解,只希望得到较为满意解的方法。
贪婪法一般可以快速得到满意的解,因为它省去了为找最优解要穷尽所有可能而必须耗费的大量时间。
贪婪法常以当前情况为基础作最优选择,而不考虑各种可能的整体情况,所以贪婪法不要回溯。
【问题】背包问题问题描述:有不同价值、不同重量的物品n件,求从这n件物品中选取一部分物品的选择方案,使选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大。
#include<stdio.h>void main(){intm,n,i,j,w[50],p[50],pl[50],b[5 0],s=0,max;printf("输入背包容量m,物品种类n :");scanf("%d %d",&m,&n);for(i=1;i<=n;i=i+1){printf("输入物品的重量W和价值P :");scanf("%d %d",&w[i],&p[ i]);pl[i]=p[i];s=s+w[i];}if(s<=m){printf("wholechoose\n");//return;}for(i=1;i<=n;i=i+1){max=1;for(j=2;j<=n;j=j+1)if(pl[j]/w[j]>pl[max]/w[ma x])max=j;pl[max]=0;b[i]=max;}for(i=1,s=0;s<m && i<=n;i=i+1)s=s+w[b[i]];if(s!=m)w[b[i-1]]=m-w[b[i-1]];for(j=1;j<=i-1;j=j+1)printf("choose weight %d\n",w[b[j]]);}动态规划的基本思想前文主要介绍了动态规划的一些理论依据,我们将前文所说的具有明显的阶段划分和状态转移方程的动态规划称为标准动态规划,这种标准动态规划是在研究多阶段决策问题时推导出来的,具有严格的数学形式,适合用于理论上的分析。