高温合金的真空感应超纯净熔炼
- 格式:pdf
- 大小:216.81 KB
- 文档页数:3
1. 镍基合金熔炼工艺国内外镍基高温合金、镍基耐蚀合金、精密合金的熔炼设备主要有真空感应炉、真空自耗炉、电渣炉、电子束炉和等离子电弧炉等。
1)真空感应炉(VIM)真空感应熔炼是一种成熟的真空熔炼方法,是镍基高温合金、耐蚀合金等的重要生产工艺,特别是对于含有铝、钛等活泼元素较多的合金,必须采用真空感应熔炼。
VIM可提供对化学成分最大程度的控制,防止了溶液与大气中氢、氧、氮的接触。
真空下反应的进行和完成比在大气下要快。
除了使溶液均匀外,感应搅拌能持续将反应物带到熔体和真空界面,从而使精炼反应顺利进行。
气体夹杂和痕量元素的蒸发能改善大多数高温合金的力学性能。
VIM缺点在于大多数最终产品都必须进行重熔,主要是为了减少偏析和控制凝固组织以及耐火材料的侵蚀,采用CaO耐火材料坩埚、电磁搅拌、陶瓷过滤等技术均可以有效提高合金的纯净度。
新建3座12 tVIM,熔炼周期14 h/炉,平均每炉产量12 t,年产能18000 t,可满足规划生产真空感应炉锭17685.8 t/a的要求。
2)电渣重熔炉(ESR)电渣冶金是目前生产高品质材料的重要方法,具有纯度高、含硫量低、非金属夹杂物少、钢锭表面光滑、结晶均匀致密、金相组织和化学成分均匀的优点,广泛应用于航天航空、军工、能源、船舶、电子、石化、重型机械和交通等国民经济的重要领域。
电渣重熔的目的是通过将化学精炼和控制凝固结合起来生产高质量铸锭。
电渣重熔过程中,金属材料能够被熔渣有效地精炼,合金中的非金属夹杂物、气体和硫含量显著减少,合金的纯净度提高,因而合金的力学性能得到改善。
电渣熔炼过程中,始终有液态渣的保护,使金属不与空气接触,合金元素烧损低,成分容易控制;避免了熔炼过程中耐火材料的污染;铸锭组织致密,缩孔较小,没有疏松及皮下气泡等缺陷,提高了材料的塑性;设备简单,易于操作。
然而ESR也存在许多不足之处,如熔炼和凝固速率偏低、熔渣吸收气体、活泼元素不易控制以及电极重熔过程经受高温氧化等。
真空感应熔炼原理及工艺一、引言真空感应熔炼是一种常用的金属熔炼技术,它利用感应加热和真空环境来实现金属的高温熔化和精细处理。
本文将介绍真空感应熔炼的原理和工艺,并探讨其在金属加工领域的应用。
二、真空感应熔炼的原理1. 感应加热原理真空感应熔炼是基于感应加热原理进行的。
感应加热是利用电磁感应现象,通过变化的磁场在导体内感应出涡流,从而产生热量。
在真空感应熔炼中,通过感应线圈产生的高频交变磁场作用下,金属料块内部产生涡流,并迅速升温,最终达到熔化温度。
2. 真空环境的作用真空环境对于真空感应熔炼至关重要。
首先,真空环境可以减少金属与氧、氮等气体的接触,避免金属被氧化或气体吸收,从而提高金属的纯度和质量。
其次,真空环境可以降低金属的气化温度,使金属在较低温度下熔化,减少能源消耗和金属蒸发损失。
最后,真空环境还可以减少金属与炉膛内壁的接触,避免污染和杂质的产生。
三、真空感应熔炼的工艺1. 准备工作在进行真空感应熔炼之前,需要对金属料块进行预处理,包括清洗、切割和称重等。
同时,还需要准备好感应线圈、感应炉膛和真空系统等设备,并进行检查和调试,确保正常运行。
2. 熔炼过程将预处理好的金属料块放入感应炉膛内,然后启动感应线圈,产生高频交变磁场。
金属料块受到磁场的作用,内部涡流产生,温度迅速升高,最终达到熔化温度。
同时,开启真空系统,将炉膛内的气体抽出,形成真空环境。
在熔炼过程中,可以根据需要进行金属的合金化和成分调整。
3. 精细处理在金属熔化后,可以进行一系列的精细处理,包括脱气、去杂、调温等。
通过控制真空度和温度,可以实现金属的脱气和杂质的去除,提高金属纯度和质量。
同时,还可以根据需要调整金属的温度,以满足后续工艺的要求。
四、真空感应熔炼的应用真空感应熔炼广泛应用于金属材料的制备和加工领域。
首先,它可以用于高纯度金属的制备,如高纯铜、高纯铝等。
其次,它可以用于合金的制备,如钢、铜合金等。
此外,真空感应熔炼还可以用于金属粉末的制备、金属材料的再生利用等方面。
真空感应熔炼技术的发展及趋势我们来回顾一下真空感应熔炼技术的发展历程。
20世纪60年代,真空感应熔炼技术开始应用于实际生产中,但由于设备和工艺的限制,其应用范围受到了一定的局限。
随着科学技术的不断进步,真空感应熔炼技术在20世纪80年代得到了快速发展。
新型设备的引入和工艺的改进使得真空感应熔炼技术在金属材料制备和合金研究中发挥了重要作用。
真空感应熔炼技术的主要优势在于它可以在高温下实现金属的精确控制。
通过调整真空度和熔炼温度,可以控制合金中各元素的含量和晶体结构,从而获得具有特定性能的材料。
这种精确控制的能力使得真空感应熔炼技术在航空航天、能源、汽车等领域得到广泛应用。
随着科学技术的不断进步,真空感应熔炼技术也在不断发展。
首先,设备的改进使得真空感应熔炼技术更加高效和可靠。
新型的感应熔炼炉具有更高的熔炼效率和更稳定的熔炼温度控制,从而提高了生产效率和产品质量。
其次,熔炼工艺的改进使得真空感应熔炼技术可以制备更复杂和高性能的材料。
例如,通过精确控制熔炼温度和熔炼时间,可以实现金属材料的纳米晶化和均匀化处理,从而提高材料的强度和硬度。
此外,新型的熔炼工艺还可以实现多元合金的制备和复合材料的熔炼,从而获得具有特殊性能的材料。
未来,随着科学技术的不断进步,真空感应熔炼技术将会继续发展并发挥更大的作用。
首先,随着新材料的涌现,真空感应熔炼技术将在新材料的制备和研究中发挥重要作用。
例如,通过引入新的合金元素和控制熔炼工艺,可以实现新型材料的制备,如高温合金、超导材料和高强度钢等。
其次,随着环保意识的提高,真空感应熔炼技术将在资源循环利用和废弃物处理中发挥重要作用。
例如,通过回收废旧金属和利用废弃物进行熔炼,可以实现资源的有效利用和环境的可持续发展。
真空感应熔炼技术是一项重要的金属材料制备和加工技术,其发展历程和未来趋势与科学技术的进步密切相关。
通过不断改进设备和工艺,真空感应熔炼技术将在新材料制备、环境保护和资源循环利用等方面发挥更大的作用。
单晶高温合金的熔炼方法主要包括真空熔炼和电渣重熔。
真空熔炼是一种在一定真空条件下进行的熔炼方法,其主要步骤包括:
1. 准备原材料:根据配方准备单晶合金的各个组分,包括镍基高温合金锭、钼、铬、钴等,确保其纯度达到要求。
2. 熔炼过程:在真空炉内加热合金和其它原材料,以避免任何氧或氢的污染。
熔化金属后,调整合金成分并加热至熔化状态。
3. 金属净化:通过搅拌和电弧搅拌熔融金属,可以去除任何杂质并提高合金的纯净度。
4. 浇注成型:将熔融合金倒入模具中,并在合适温度下进行浇注,以获得最佳的结晶形态。
5. 冷却:将合金冷却,形成单晶合金。
电渣重熔则是另一种常用的单晶高温合金的熔炼方法。
它利用电流通过熔融金属和熔渣时产生的电阻热进行熔炼,并在结晶器中形成单晶。
电渣重熔的过程包括:
1. 准备原材料:与真空熔炼相同,需要准备镍基高温合金锭、钼、铬、钴等原材料。
2. 熔炼:在特制的电渣熔炼炉中熔炼金属,确保金属纯净且无氧化物。
3. 重熔金属浇注:将熔融金属倒入结晶器中,进行多次重熔,以形成单晶合金。
相较于其它熔炼方法,如一般浇铸或感应炉熔炼,真空熔炼和电渣重熔可以有效提高单晶高温合金的纯净度,减少有害杂质,从而提升其高温性能和抗氧化能力。
总的来说,这两种方法都能有效制备出性能优越的单晶高温合金,而电渣重熔方法尤其适合于生产大规格和特殊性能要求的单晶高温合金。
具体的熔炼方法选择需要根据生产需求和工艺条件来确定。
高温合金生产工艺高温合金生产工艺是指在高温下制造高温合金材料的过程。
高温合金具有良好的高温性能,广泛应用于航空航天、石化、电力等领域。
下面将介绍高温合金的生产工艺。
高温合金生产工艺主要包括原料准备、熔炼、热处理和成型。
首先是原料准备。
高温合金的主要成分是金属元素和合金元素。
金属元素主要包括镍、钴、钛等,合金元素主要包括铬、铝、钽等。
这些元素需要通过冶金方法提取和净化,确保原料的纯度和稳定性。
然后是熔炼。
高温合金的熔炼通常采用真空感应熔炼或真空电弧熔炼。
在熔炼过程中,将预先准备好的金属和合金元素按照一定的配方比例放入熔炼炉中,并施加高温和真空环境,使其熔化和混合均匀。
熔炼过程需要根据具体合金的特性进行控制,以确保合金的成分和性能符合要求。
接下来是热处理。
热处理是高温合金生产过程中非常重要的一环。
通过热处理,可以改善合金的晶粒结构和力学性能。
热处理工艺主要包括退火、固溶处理和时效处理。
通过控制热处理的时间、温度和冷却速度等参数,可以调整合金的晶体结构和相变,使得合金具有良好的高温强度和高温抗氧化性能。
最后是成型。
高温合金的成型工艺主要包括热加工和冷加工两种方法。
热加工主要是指铸造、锻造和热轧等工艺,通过加热和机械变形来制造高温合金的零部件。
冷加工则是指通过冷变形,如冷轧、冷拔等工艺来制造合金的线材和板材等。
这些成型工艺需要根据具体的合金材料和零部件的要求来选择和控制,以确保合金材料的成型精度和性能。
综上所述,高温合金的生产工艺包括原料准备、熔炼、热处理和成型等环节。
每个环节都需要严格控制工艺参数,以确保合金材料具有良好的高温性能和颗粒结构。
高温合金的生产工艺是一个复杂而精细的过程,需要依靠先进的设备和技术来实现。