测量刚体的转动惯量
- 格式:doc
- 大小:64.50 KB
- 文档页数:7
实验三刚体转动惯量的测定转动惯量是刚体转动中惯性大小的量度。
它与刚体的质量、形状大小和转轴的位置有关。
形状简单的刚体,可以通过数学计算求得其绕定轴的转动惯量;而形状复杂的刚体的转动惯量,则大都采用实验方法测定。
下面介绍一种用刚体转动实验仪测定刚体的转动惯量的方法。
实验目的:1、理解并掌握根据转动定律测转动惯量的方法;2、熟悉电子毫秒计的使用。
实验仪器:刚体转动惯量实验仪、通用电脑式毫秒计。
仪器描述:刚体转动惯量实验仪如图一,转动体系由十字型承物台、绕线塔轮、遮光细棒等(含小滑轮)组成。
遮光棒随体系转动,依次通过光电门,每π弧度(半圈)遮光电门一次的光以计数、计时。
塔轮上有五个不同半径(r)的绕线轮。
砝码钩上可以放置不同数量的砝码,以获得不同的外力矩。
实验原理:空实验台(仅有承物台)对于中垂轴OO’的转动惯量用J o表示,加上试样(被测物体)后的总转动惯量用J 表示,则试样的转动惯量J 1 :J 1 = J –J o (1) 由刚体的转动定律可知:T r – M r = J α (2) 其中M r 为摩擦力矩。
而 T = m(g -r α) (3) 其中 m —— 砝码质量 g —— 重力加速度 α —— 角加速度 T —— 张力1. 测量承物台的转动惯量J o未加试件,未加外力(m=0 , T=0)令其转动后,在M r 的作用下,体系将作匀减速转动,α=α1,有 -M r1 = J o α1 (4) 加外力后,令α =α2m(g –r α2)r –M r1 = J o α2 (5) (4)(5)式联立得J o =212212mr mgrααααα--- (6)测出α1 , α2,由(6)式即可得J o 。
2. 测量承物台放上试样后的总转动惯量J ,原理与1.相似。
加试样后,有 -M r2=J α3 (7) m(g –r α4)r –Mr 2= J α4 (8)∴ J =234434mr mgr ααααα--- (9)注意:α1 , α3值实为负,因此(6)、(9)式中的分母实为相加。
实验讲义补充:1.刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体;2.转动惯量概念:转动惯量是刚体转动中惯性大小的量度;它取决于刚体的总质量,质量分布、形状大小和转轴位置3.转动定律:合外力矩=转动惯量×角加速度4.转动惯量叠加:空盘:1阻力矩2阻力矩+砝码外力→J1空盘+被测物体:1阻力矩2阻力矩+砝码外力→J2被测物体:J3=J2-J15.转动惯量理论公式:圆盘&圆环J=0.5mr2,J=0.5m(r12+r12)6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮半径,3组砝码质量7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值;8.泡沫垫板9.重力加速度:s^210.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体;11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径求平均值12.实验目的:测量值与理论值对比实验计算补充说明:1.有效数字:质量,故有效数字为3位2.游标卡尺:,读数最后一位肯定为偶数;3.误差&不确定度:(1)理论公式计算的误差:圆盘:J=0.5mR2注意:直接测量的是直径质量m=±;保留4位有效数字um=100%=%半径R=±若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值,取n=6时的,我们处理为0C=,仪器允差,δB=总误差:,ux= m,u rx==%R=±urx=%计算转动惯量的结果表示:J=0.5mR2,总误差:uJ=√[(0.5R2u m)2+(mRu R)2],相对不确定=uJ/J 圆环:J=0.5m(R12+R22),同上.(2)实验测量计算的误差:J=mR(g−Rβ2)β2−β1根据,,对R塔轮半径,m砝码质量,β2和β1求导,J m=R(g−Rβ2)β2−β1J R=mg−2Rβ2β2−β1J β2=−mR2(β2−β1)−mR(g−Rβ2)(β2−β1)^2Jβ1=mR(g−Rβ2)(β2−β1)^2。
刚体转动惯量的测定【实验目的】1. 测定刚体的转动惯量。
2. 验证转动定律及平行移轴定理。
【实验仪器】1.JM-3 智能转动惯量实验仪。
2. 电脑毫秒计。
【实验原理】转动惯量是反映刚体转动惯性大小的物理量,它与刚体的质量及质量对轴的分布有关。
对于几何形状规则,质量分布均匀的物体,可以计算出转动惯量。
但对于几何形状不规则的物体,以及质量分布不均匀的物体,只能用实验方法来测量。
本实验是用转动惯量实验仪和通用电脑式毫秒计来测量几种刚体的转动惯量,并与计算结果加以比较。
转动惯量实验仪,是一架绕竖直轴转动的圆盘支架。
如图一和图二所示。
待测物体可以放 5 6 1. 承物台 2. 遮光细棒 3. 绕线塔轮4. 光电门5. 滑轮6. 砝码图一 刚体转动惯量实验仪 图二 承物台俯视图设转动惯量仪空载(不加任何试件)时的转动惯量为J 0。
我们称它为该系统的本底转动惯量,加试件后该系统的转动惯量用J 1表示,根据转动惯量的叠加原理,该试件的转动惯量J 2为:J 2=J 1-J 0 (1)如何测量J 0、J 1让我们从刚体动力学的理论来加以推导。
一、如果不给该系统加外力矩(即不加重力砝码),该系统在某一个初角速度的启动下转动,此时系统只受摩擦力矩的作用,根据转动定律则有。
-L 2= J 0β1 (2)(2)式中J 0为本底转动惯量,L 2为摩擦力矩,负号是因L 的方向与外力矩的方向相反,β1为角加速度,计算出β1值应为负值。
(即加适当的重力砝码),则该系统的受力分析如图三所示。
mg -T=ma (3) T ·r -L= J 0β2 (4)a=r β2 (5) 图三 示意图 β2是在外力矩与摩擦力矩的共同作用下,系统的角加速度,r 是 塔轮的半径, ⑵、⑶、⑷、⑸、式联立求解得:由于β1本身是负值所以计算时β2-(-β1)=β2+β1,则(6)应该为:同理加试件后,也可用同样的方法测出J 1……,然后代入(1)式减去本底转动惯量J 0即可得到试件的转动惯量。
刚体转动惯量的测量转动惯量是刚体转动时惯性大小的量度,它与刚体的质量、质量对轴的分布以及转轴位置有关。
如果刚体形状规则,质量分布均匀,可以直接计算出它绕特定轴的转动惯量。
但对于几何形状不规则和质量分布不均匀的刚体,只能用实验的方法来测量。
测量转动惯量的方法有很多种,如三线摆法、单悬扭摆法、双悬扭摆法、螺旋弹簧式扭摆法等,本实验介绍了利用螺旋弹簧式扭摆法来测量刚体的转动惯量。
一、实验目的1.观察扭摆振动现象。
2.用扭摆法测量不同形状刚体的转动惯量。
二、实验原理螺旋弹簧式扭摆如图6.1所示,在垂直轴上装有螺旋弹簧,用以产生恢复力矩。
在轴的上方可以装上各种待测刚体。
将刚体在水平面内转过某一角度θ后,在弹簧的恢复力矩的作用下,刚体就开始绕垂直转轴作往返扭转运动。
根据胡克定律,弹簧产生的恢复力矩M 与所转过的角位移θ成正比:θK M −= (1)式中,K 为弹簧的扭转系数,负号表示恢复力矩M 的方向与角位移θ的方向相反。
又根据转动定律,则有22dt d JJ M θβ== (2)其中,J 为刚体的转动惯量,β为角加速度。
联立式(1)、(2)可得:022=+θθJ Kdtd 令ω2=K /J ,上式变为:0222=+θωθdtd (3) 方程(3)表明扭摆运动具有角简谐振动的特征:角加速度与角位移成正比,而方向相反。
其通解为:)cos(0ϕωθθ+=t 式中,θ0为谐振动的角振幅,ϕ为初相位,ω为角速度。
扭摆的振动周期为:KJ T πωπ22==或 K J T 224π=(4) 上式表明,扭摆周期T 的平方与转动惯量J 成正比。
若单独测出扭摆周期,因扭摆系数K 是未知量,所以还不能由式(4)计算出转动惯量,为此,一般采用比较法求出K 。
实验中用一个几何形状规则的圆柱体,它的转动惯量J 1可以根据其质量和几何尺寸用理论公式直接计算得到。
设金属载物圆盘的转动惯量为J 0,转动的周期为T 0,若将圆柱体置于金属载物盘上,测出它的摆动周期T 1,则KJ T 0224π= KJ J T 012214+=π (5) 由式(5)可以确定K ,J 0。
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
刚体转动惯量测量方法
刚体转动惯量测量方法:
①转动惯量作为物体抵抗角加速度变化能力的物理量对于理解机械系统动态行为至关重要;
②实验室中最常见测量方法之一为扭摆法通过观察物体绕轴自由摆动周期计算得出;
③实验装置通常包含一个水平放置的光滑转轴物体被固定于其上允许自由旋转;
④物体释放后开始围绕转轴做小角度振荡运动此时可近似认为角加速度与角位移呈线性关系;
⑤通过光电门或其他计时装置记录物体完成一次完整来回运动所需时间即为周期T;
⑥利用物理公式I=MR²×T²/4π²计算转动惯量其中M代表物体质量R为到转轴距离;
⑦另一种方法为落锤法适用于较大刚体测试过程模拟物体受到瞬间冲击反应;
⑧实验设置包括将待测物体悬挂于可旋转支点下方再用重锤撞击引发瞬时旋转;
⑨测量撞击前后物体角速度变化结合已知冲击力矩即可推算出转动惯量大小;
⑩对于复杂形状或非均匀物质构成的物体往往需要结合数值模拟与实验数据综合分析;
⑪计算机辅助工程软件如ANSYS或MATLAB提供了强大工具箱帮助工程师快速估算复杂结构转动惯量;
⑫不论采用哪种方法都需要仔细校准仪器排除外界干扰确保测量结果准确可靠用于后续工程设计中。
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
刚体转动惯量的测定转动惯量是描述刚体转动惯性大小的物理量,是研究和描述刚体转动规律的一个重要物理量,它不仅取决于刚体的总质量,而且与刚体的形状、质量分布以及转轴位置有关。
对于质量分布均匀、具有规则几何形状的刚体,可以通过数学方法计算出它绕给定转动轴的转动惯量。
对于质量分布不均匀、没有规则几何形状的刚体,用数学方法计算其转动惯量是相当困难的,通常要用实验的方法来测定其转动惯量。
因此,学会用实验的方法测定刚体的转动惯量具有重要的实际意义。
实验上测定刚体的转动惯量,一般都是使刚体以某一形式运动,通过描述这种运动的特定物理量与转动惯量的关系来间接地测定刚体的转动惯量。
测定转动惯量的实验方法较多,如拉伸法、扭摆法、三线摆法等,本实验是利用“刚体转动惯量实验仪”来测定刚体的转动惯量。
为了便于与理论计算比较,实验中仍采用形状规则的刚体。
【实验目的】1. 学习用转动惯量仪测定物体的转动惯量。
2. 研究作用在刚体上的外力矩与刚体角加速度的关系,验证刚体转动定律和平行轴定理。
3. 观测转动惯量随质量、质量分布及转动轴线的不同而改变的状况。
【实验仪器】ZKY-ZS 转动惯量实验仪及其附件(砝码,金属圆柱、圆盘及圆柱), ZKY-J1通用电脑计时器.图1 转动惯量测定装置实物图【实验原理】根据刚体的定轴转动定律dtd JJ M ωβ==, 只要测定刚体转动时所受的合外力矩及该力矩作用下刚体转动的角加速度β,则可计算出该刚体的转动惯量,这是恒力矩转动法测定转动惯量的基本原理和设计思路。
一、转动惯量J 的测量原理砝码盘及其砝码是系统转动的动力。
分析转动系统受力如图2所示:当砝码钩上放置一定的砝码时,若松开手,则在重力的作用下,砝码就会通过细绳带动塔轮加速转动。
当砝码绳脱离塔轮后,系统将只在摩擦力矩的作用下转动。
图2 转动系统受力图本实验中待测试件放在实验台上,随同实验台一起做定轴转动。
设空实验台(未加试件)转动时,其转动惯量为0J ,加上被测刚体后的转动惯量为J ,由转动惯量的叠加原理可知,则被测试件的转动惯量被测J 为0J J J -=被测 或 被测物J J J +=0实验时,先测出系统支架(空实验台)的转动惯量0J ,然后将待测物放在支架上,测量出转动惯量为J ,利用上式可计算出待测物的转动惯量。
测量刚体的转动惯量实验实验目的:1. 了解刚体的转动惯量的概念;3. 通过实验测量出不同物体的转动惯量,并计算出实验数据的平均值和标准偏差。
实验原理1.定义在物理学中,转动惯量是刚体沿着某个轴线转动的惯性量度。
当物体绕某一轴线旋转时,与转动轴垂直距离为r的质点,其对轴线的力矩为Fr,力矩的大小与质点的距离r有关。
一个物体的转动惯量就是其质量分布规律和物体构形、轴线位置等因素所决定的惯性量度。
2.具体计算方法刚体绕轴转动时,转动惯量与转动轴有关。
设转动轴为z轴,物体某一质点的坐标为(x,y,z),其质量为m,与z轴的距离为r,此质点对z轴的贡献是:Ir=m r2对于整个物体,所有质点对z轴的贡献叠加起来,就得到了整个物体相对于z轴的转动惯量,即通常情况下,应用叠加原理将整个物体内部相对于其它轴的转动惯量算出来,然后贝努利原理求得相对于某个轴的转动惯量。
3.实验方法本实验采用转动台平衡法,将受测物体弯挂在牵引线上,在规定的时间内给它以规定的角度的转动,然后测量转动惯量。
1) 弯挂物体,使它沿著摇晃轴(即z轴)平衡,确定物体与转动轴是平衡状态。
2) 水平移动弯挂物体的位置,使物体在水平方向上产生一个小的竖直角度。
松开物体后,它将在规定时间内平衡起来。
3)测量不同位移下回复振动的周期T,通过计算得到物体的转动惯量。
4. 实验仪器转动惯量测量装置、感应式编码器,数据采集器,计算机等。
5.实验步骤1)根据实验要求选择实验物体:小木棒、小圆盘、大木棒等。
(注:必须在实验前仔细测量物体的质量)3)将物体的初始位置水平移动一点,然后将其松开,记录振动的周期T1。
4)重复上述步骤,但每次增加一个小的角度,直到转动惯量达到了所需的最大值,记录全部数据。
5)把所有实验数据填入实验数据表中,并计算出相对误差、标准偏差,将结果汇总到汇总表中。
注意事项:1) 实验中所使用的支撑杆垂直于地面,固定牢靠,并要保持牵引线的水平状态使实测数据尽量准确。
刚体转动惯量的测量1. 引言刚体转动惯量是描述刚体绕某一轴旋转时所表现出的惯性特性,它反映了刚体对旋转运动的抵抗能力。
测量刚体转动惯量对于研究物体的旋转运动和确定物体的物理特性具有重要意义。
本文将介绍刚体转动惯量的定义、测量方法以及实验步骤。
2. 刚体转动惯量的定义刚体转动惯量(或称为“转动惯性矩”)是描述刚体绕某一轴旋转时所表现出的抵抗力矩大小的物理量。
它与刚体质量分布和轴线位置相关,可以用数学公式表示为:I=∫r2⋅dm其中,I为刚体相对于旋转轴的转动惯量,r为质点到旋转轴的距离,dm为质点的微小质量。
3. 测量方法3.1 转动定律法利用牛顿第二定律和角加速度与力矩之间的关系,可以通过测定加速度和力矩来计算刚体的转动惯量。
具体步骤如下:1.将待测刚体固定在水平轴上,并使其能够绕该轴自由旋转。
2.在刚体上施加一个垂直于旋转轴的力矩,使刚体产生角加速度。
3.测量施加力矩前后刚体的角加速度,并计算力矩大小。
4.根据牛顿第二定律和角加速度与力矩之间的关系,计算出刚体的转动惯量。
3.2 定滑轮法利用滑轮原理,可以通过测量绕定滑轮旋转的物体的线速度、重物块质量以及滑轮半径来计算刚体的转动惯量。
具体步骤如下:1.将待测刚体固定在定滑轮上,并使其能够自由旋转。
2.在滑轮上挂一重物块,将其与刚体通过一根绳子相连。
3.调整重物块的高度,使得刚体开始自由旋转。
4.测量重物块下降的高度和旋转时间,并记录滑轮半径和重物块质量。
5.根据滑轮原理和动能定理,计算出刚体的转动惯量。
4. 实验步骤4.1 转动定律法实验步骤1.准备实验装置:水平轴、刚体、力矩测量仪器等。
2.将刚体固定在水平轴上,并保证其能够自由旋转。
3.在刚体上施加一个垂直于旋转轴的力矩,使其产生角加速度。
4.使用力矩测量仪器测量施加力矩前后的角加速度,并记录下来。
5.根据牛顿第二定律和角加速度与力矩之间的关系,计算出刚体的转动惯量。
4.2 定滑轮法实验步骤1.准备实验装置:定滑轮、刚体、重物块、绳子等。
测量刚体的转动惯量
一. 实验简介
在研究摆的重心升降问题时,惠更斯发现了物体系的重心与后来欧勒称之为转动惯量的量。
转动惯量是表征刚体转动惯性大小的物理量,它与刚体的质量、质量相对于转轴的分布有关。
本实验将学习测量刚体转动惯量的基本方法,目的如下:
1(用实验方法验证刚体转动定律,并求其转动惯量;
2(观察刚体的转动惯量与质量分布的关系
3(学习作图的曲线改直法,并由作图法处理实验数据。
二. 实验仪器
刚体转动仪,滑轮,秒表,砝码
刚体转动仪:
包括:
A.、塔轮,由五个不同半径的圆盘组成。
上面绕有挂小砝码的细线,由它对刚体施加外力矩。
B、对称形的细长伸杆,上有圆柱形配重物,调节其在杆上位置即可改变转动惯量。
与A和配重物构成一个刚体。
C.、底座调节螺钉,用于调节底座水平,使转动轴垂直于水平面。
此外还有转向定滑轮,起始点标志,滑轮高度调节螺钉等部分。
三. 实验原理
1(刚体的转动定律
具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:
M = Iβ (1)
利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2(应用转动定律求转动惯量
如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,
2其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为T和轴摩擦力力矩M。
由转动定律可得到刚体的转动运动方程:T - M = rfrfIβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到: 2m(g - a)r - M = 2hI/rt (2) f
M与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g, f 所以可得到近似表达式:
2mgr = 2hI/ rt (3) 式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量I。
3(验证转动定律,求转动惯量
从(3)出发,考虑用以下两种方法:
2A(作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r 和砝码下落高度h,(3)式变为:
2M = K/ t (4) 1
2式中K = 2hI/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成1
2反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
22从m – 1/t图中测得斜率K,并用已知的h、r、g值,由K = 2hI/ gr求得刚11
体的I。
B(作r – 1/t图法:配重物的位置不变,即选定一个刚体,取砝码m和下落高度h为固定值。
将式(3)写为:
r = K/ t (5) 2
1/2式中K = (2hI/ mg)是常量。
上式表明r与1/t成正比关系。
实验中换用不同2
的塔轮半径r,测得同一质量的砝码下落时间t,用所得一组数据作r,1/t
图,应是直线。
即若所作图是直线,便验证了转动定律。
1/2从r,1/t图上测得斜率,并用已知的m、h、g值,由K = (2hI/ mg)求出刚2
体的I。
四. 实验步骤及注意事项
实验步骤:
1.调节实验装置:调节转轴垂直于水平面
调节滑轮高度,使拉线与塔轮轴垂直,并与滑轮面共面。
选定砝码下落起点到地面的高度h,并保持不变。
2.观察刚体质量分布对转动惯量的影响
取塔轮半径为3.00cm,砝码质量为20g,保持高度h不变,将配重物逐次取三种不同的位置,分别测量砝码下落的时间,分析下落时间与转动惯量的关系。
本项实验只作定性说明,不作数据计算。
3.测量质量与下落时间关系:
测量的基本内容是:更换不同质量的砝码,测量其下落时间t。
用游标卡尺测量塔轮半径,用钢尺测量高度,砝码质量按已给定数为每个5.0g;用秒表记录下落时间。
将两个配重物放在横杆上固定位置,选用塔轮半径为某一固定值。
将拉线平行缠绕在轮上。
逐次选用不同质量的砝码,用秒表分别测量砝码从静止状态开始下落到达地面的时间。
对每种质量的砝码,测量三次下落时间,取平均值。
砝码质量从5g开始,每次增加5g,直到35g止。
用所测数据作图,从图中求出直线的斜率,从而计算转动惯量。
4.测量半径与下落时间关系
测量的基本内容是:对同一质量的砝码,更换不同的塔轮半径,测量不同的下落时间。
将两个配重物选在横杆上固定位置,用固定质量砝码施力,逐次选用不同的塔轮半径,测砝码落地所用时间。
对每一塔轮半径,测三次砝码落地之间,取其平均值。
注意,在更换半径是要相应的调节滑轮高度,并使绕过滑轮的拉线与塔轮平面共面。
由测得的数据作图,从图上求出斜率,并计算转动惯量。
注意事项: 1(仔细调节实验装置,保持转轴铅直。
使轴尖与轴槽尽量为点接触,使轴转动自如,且不能摇摆,以减少摩擦力矩。
2(拉线要缠绕平行而不重叠,切忌乱绕,以防各匝线之间挤压而增大阻力。
3(把握好启动砝码的动作。
计时与启动一致,力求避免计时的误差。
4(砝码质量不宜太大,以使下落的加速度a不致太大,保证a<<g条件的满足。
实验结果及数据记录
1. 砝码质量m与下落时间的关系:
2. 转动半径r与下落时间t的关系
六.思考题
(1)由实验数据所作的m-(1/t)2图中,如何解释在m轴上存在截距,
22因为准确的表达式为m(g-a)r-Mf=2hI/rt,而计算式为近似表达式
mgr=2hI/rt,因而在m轴上存在截距:X=Mf+mar。
(2)定性分析实验中的随机误差和可能的系统误差。
随机误差主要表现在时间t的测量上,和高度的测量,系统误差主要表现在摩擦力矩Mf与加速度a=rβ被忽略。
七.小结
模拟实验是实验的另一种形式,虽为模拟,却也真实,让人能体会到实验的基本思想与主要内容。
其中的问题主要体现在对实验的熟悉与仪器的调节上。
过程中,由于数据基本做到随机,因此结果还不错。
总之收获还是不小的。