实验报告-发光二极管伏安曲线测量(完成版)
- 格式:docx
- 大小:11.07 KB
- 文档页数:2
HUNAN UNIVERSITY程序设计训练报告报告题目二极管伏安特性曲线的测量学生姓名学生学号专业班级指导老师目录一、摘要: (2)二、实验环境: (2)三、实验原理: (3)四、实验步骤和实验记录: (5)五、实验总结: (6)一、摘要:这个实验室对二极管的伏安特性曲线进行测量,测量二极管正向和反向电压电流,分析其性质,实验中会有一些零界点,需要注意,加入正弦波,观察流入前后波形.二、实验环境:测量工具:三、实验原理:1、二极管的特性:正向特性:在电路中,将二极管的正极接在高电位端,腹肌接在低电位端,二极管就会导通,这种连接方式,叫做正向偏置,但是,当二极管两端正向电压很小时二极管仍然不能导通,流过二极管的电压十分微弱,只有当电压达到一定数值,二极管才能导通,此时为导通电压,当两端电压大于导通电压时,电流按指数规律迅速增大。
此时,电压的少许变化,也会引起电流的急剧变化反向特性:对二极管加上反向电压时,二极管处于截止状态,当反向电压增大到一定程度,会使二极管被击穿,此电压为击穿电压,此时电流剧增,但二极管也会因此损坏,所以,在实验过程中,在做反向实验时,应串联接入一个限流电阻,防止损坏二极管。
测量伏安特性曲线电路图:正向:正向时电阻较小采用电流表外接法:反向:反向电阻较大采用电流表内接法动态电路图:四、实验步骤和实验记录:实验前:检查所有器件是否完好,尤其是二极管。
1.在面包板上按照正向实验电路图搭建电路,并再次检查电路是否连接正确,将电位器拨到50%,保障电路安全。
2.调节电位器,改变电位器接入阻值大小,并观察记录二极管两端电压和流过它的电流大小。
在电压变化较小,而电流变化较大时缩小改变阻值的大小,以测得更真实有效的数据。
3.实验记录:数据处理:用excel表格画出折线图:反向电压:折线图:PS:动态数据由于时间问题,没时间做,不过我借用室友的看了,了解了方法以及最后结果五、实验总结:1. 二极管的正向导通电压在1.6V上下,电压在校范围内变化也会引起电流的剧变。
二极管的伏安特性曲线实验报告实验报告实验名称:二极管的伏安特性曲线实验实验目的:1. 理解半导体材料的特性2. 理解二极管的基本结构和工作原理3. 掌握二极管的伏安特性曲线及其应用实验原理:二极管是一种半导体元器件,由p型半导体和n型半导体构成。
p型半导体具有正电荷载流子(空穴),n型半导体具有负电荷载流子(电子)。
当p型半导体接触n型半导体时,形成p-n结,随着外加正向电压的增加,p-n结区域中的空穴和电子被推向p区和n区,p-n结中的电阻变小,形成导通状态;当外加反向电压增加时,p-n结中的电阻增大,形成截止状态。
实验步骤:1. 将二极管连接在电路实验板上,通过万用表测量二极管的端子正向电压和反向电压;2. 在电源电压恒定条件下,分别改变二极管的正向电压和反向电压,记录相应的电路电流值;3. 根据实验数据,绘制二极管的伏安特性曲线图。
实验结果:通过实验数据,绘制出了二极管的伏安特性曲线,曲线呈现出明显的“S”型。
当正向电压为0.6-0.7V时,二极管开始导通,电路电流急剧增加;反向电压逐渐增加时,电路电流基本保持稳定。
二极管的正向导通电压和反向击穿电压分别为0.6-0.7V和80-100V。
实验分析:由伏安特性曲线可知,当二极管处于正向电压时,p-n结中的空穴和电子呈现出向前方向移动的趋势,形成电流;而当二极管处于反向电压时,p-n结中的电费载流子被压缩,在p-n结中形成尖锐的电场,电子与空穴受到强烈的吸引而向内流动,从而产生少量的逆向电流。
实验结论:通过本次实验,我们得到了二极管的伏安特性曲线图,理解并掌握了二极管的基本结构和工作原理,这对我们深入理解半导体材料和电子元器件的特性及其应用具有重要意义。
测量二极管的伏安特性实验报告测量二极管的伏安特性实验报告引言:二极管是一种常见的电子元件,具有单向导电性质。
在电子学领域中,测量二极管的伏安特性是非常重要的实验之一。
通过测量二极管在不同电压和电流条件下的特性曲线,可以了解其工作状态和性能参数。
本实验旨在通过实际测量,探究二极管的伏安特性,并分析其特性曲线的变化规律。
实验步骤:1. 实验准备首先,我们需要准备一台数字万用表、一台可变直流电源、一根双头插针导线和一只二极管。
确保实验环境安全,并将电源接地。
2. 连接电路将电源的正极与数字万用表的电流测量端相连,再将二极管的正极与电源的负极相连,最后将二极管的负极与数字万用表的电流测量端相连。
3. 测量伏安特性逐渐调节电源的输出电压,从0V开始,每隔0.2V记录一组电流和电压的数值。
当电流达到一定值时,停止增加电压,记录此时的电流和电压数值。
然后,逐渐减小电源的输出电压,同样每隔0.2V记录一组电流和电压的数值。
直到电流减小到接近0A时,停止减小电压,记录此时的电流和电压数值。
4. 绘制伏安特性曲线将测得的电流和电压数值绘制成伏安特性曲线图。
横轴表示电压,纵轴表示电流。
根据实验数据,可以观察到二极管在不同电压下的电流变化情况,了解其导电特性。
实验结果与分析:根据实际测量数据绘制的伏安特性曲线,我们可以看到在正向电压下,二极管的电流随电压的增加而迅速增大。
这是因为在正向电压下,二极管的正极与负极之间形成了电势差,使得电子从N区域向P区域移动,从而导致电流的增大。
而在反向电压下,二极管的电流非常小,几乎接近于零。
这是因为在反向电压下,二极管的P区域与N区域之间的势垒增大,阻止了电子的流动。
此外,我们还可以观察到二极管的正向电压与电流之间存在一个临界点,称为二极管的正向压降。
当电压超过这个临界点时,电流急剧增加。
这是因为当正向电压超过二极管的正向压降时,势垒被破坏,电子可以自由地通过二极管,导致电流的急剧增加。
【实验题目】发光二极管的伏安特性【实验记录】
1.实验仪器
2.红色发光二极管正向伏安特性测量数据记录表
3.绿色发光二极管正向伏安特性测量数据记录表
4.蓝色发光二极管正向伏安特性测量数据记录表
5. 电表内阻测量: A R = 4.94Ω (30mA) V R =
6.006kΩ (6V )
【数据处理】
在同一坐标系中作出红、绿、蓝发光二极管的伏安特性曲线。
对比红、绿、蓝三种发光二极管的伏安特性曲线,定性判断其导通电压的大小。
由图像及表格分析可知,导通电压:红色>绿色>蓝色;
大致数据为 红色: 蓝色: 绿色:
【总结与讨论】
(1)二极管阻值与电流表内阻相近,与电压表内阻相差很多,因此采取电流表外接法。
(2)在图像弯曲部分应多测几组数据,使图像更加准确。
(电流不超过20mA)
(3)发光二极管的伏安特性曲线在0到导通电压之间曲线与X轴接近,达到导通电压后快速上升,最终
应接近直线。
【复习思考题】
发光二极管有哪些应用?试举一两例并介绍其工作原理。
(1)交流开关指示灯
用发光二极管作白炽灯开关的指示灯,当开关断开时,电流经R、LED和灯泡形成回路,LED亮,方便在黑暗中找到开关,此时回路中电流很小,灯泡不会亮;当接通开关时,灯泡被点亮,LED熄灭。
(2)指示灯
当装置通电后,经过限流电阻产生mA级别的电流,流经LED的时候发光,用以指示电源接通。
报告成绩(满分30分):⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽指导教师签名:⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽日期:⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽。
电路实验四实验报告实验题目:二极管伏安特性曲线测量实验内容:1.先搭接一个调压电路,实现电压1-5V连续可调;2.在面包板上搭接一个测量二极管伏安特性曲线的电路;3.测量二极管正向和反向的伏安特性,将所测的电流和电压列表记录好;4.给二极管测试电路的输入端加Vp-p=3V、f=100Hz的正弦波,用示波器观察该电路的输入输出波形;5.用excel或matlab画二极管的伏安特性曲线。
实验环境:数字万用表、学生实验箱(直流稳压电源)、电位器、整流二极管、色环电阻、示波器DS1052E,函数发生器EE1641D、面包板。
实验原理:对二极管施加正向偏置电压时,则二极管中就有正向电流通过(多数载流子导电),随着正向偏置电压的增加,开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时,电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。
为了测量二极管的伏安特性曲线,我们用直流电源和电位器搭接一个调压电路,实现电压1-5V连续可调。
调节电位器的阻值,可使二极管两端的电压变化,用万用表测出若干组二极管的电压和电流值,最后绘制出伏安特性曲线。
电路图如下所示:用函数发生器EE1641D给二极管施加Vp-p=3V、f=100Hz的交流电源,再用示波器观察二极管的输入信号波形和输出信号波形。
电路图如下:实验记录及结果分析:得到二极管的伏安特性曲线如下:结论:符合二极管的特性,即开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时,电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。
2. 示波器显示二极管的输入输出波形如下图(通道1为输入波形,通道2为输出波形):分析:二极管在交流电中呈现单向导通性,所以当电源信号为正向电压时,二极管导通,呈现正弦波形信号,当电源信号为反向电压时,二极管处于截止状态,此时无信号输出,如波形图所示。
实验总结:这一次的实验,让我们更加深入地了解的二极管的性质,通过实验的方式,加深了对二极管伏安特性的理解。
实验报告-发光二极管伏安曲线测量(完成版)姓名学号院系时间地点陈灿贻 2 数学科学学院2015.11 物理楼306 黄小君 2 数学科学学院2015.11 物理楼30 【实验题目】发光二极管的伏安特性【实验记录】1.实验仪器仪器名称直流稳定电源伏特表安培表滑动变阻器电阻箱发光二极管导线开关型号HV1791-35 BX70-7112型ZX21型2.红色发光二极管正向伏安特性测量数据记录表电流(mA)电压(V)修正后电压或电流= 电流(mA)电压(V)修正后电压或电流=0.00 0.06 0.00 8.30 1.91 7.980.00 0.30 0.00 10.22 1.94 9.900.00 0.40 0.00 11.42 1.95 11.100.04 0.75 0.00 12.82 1.95 12.490.12 1.10 0.00 14.60 1.97 14.270.18 1.45 0.00 16.60 1.98 16.270.70 1.75 0.41 14.58 1.96 14.251.80 1.80 1.50 16.90 1.99 16.572.90 1.85 2.59 17.60 1.99 17.273.84 1.85 3.53 18.40 2.00 18.074.86 1.86 4.55 19.30 2.00 18.976.70 1.90 6.38 14.50 1.96 14.17 3.绿色发光二极管正向伏安特性测量数据记录表电流(mA)电压(V)修正后电压或电流= 电流(mA)电压(V)修正后电压或电流=0.10 0.60 0.00 2.40 2.88 1.920.12 1.02 0.00 3.10 2.90 2.620.16 1.15 0.00 4.00 2.93 3.510.16 1.33 0.00 0.80 2.75 0.340.18 1.50 0.00 4.60 2.95 4.110.20 1.70 0.00 8.00 3.03 7.490.22 2.08 0.00 9.80 3.05 9.290.30 2.21 0.00 12.80 3.10 12.280.40 2.55 0.00 16.20 3.15 15.670.52 2.69 0.07 17.70 3.16 17.172.00 2.85 1.52 19.103.18 18.57 4.蓝色发光二极管正向伏安特性测量数据记录表电流(mA)电压(V)修正后电压或电流= 电流(mA)电压(V)修正后电压或电流=0.00 0.35 0.00 7.20 2.95 4.41 0.00 0.60 0.00 8.60 2.96 6.71 0.181.10 0.00 11.00 3.00 8.11 0.22 1.60 0.00 14.00 3.03 10.50 0.302.100.00 16.00 3.05 13.49 0.44 2.58 0.01 19.00 3.05 15.490.32 2.20 0.00 11.84 3.01 18.491.002.80 0.533.30 2.89 11.342.40 2.88 1.92 1.60 2.83 2.82 1.90 2.85 1.42 6.00 2.95 1.133.602.903.12 18.40 3.05 5.515.电表内阻测量:AR 5.0Ω(30mA )VR 5.985Ω(6V )【数据处理】在同一坐标系中作出红、绿、蓝发光二极管的伏安特性曲线。
测量二极管的伏安特性实验报告实验报告课程名称:大学物理实验(1)实验名称:测量二极管的伏安特性学院:XX学院专业:XX 班级:XX 组号:XX 指导教师:XX报告人学号:XX 实验时间:年月日星期实验地点:科技楼903实验报告提交时间:一、实验目的了解晶体二极管的导电特性并测定其伏安特性曲线。
二、实验原理晶体二极管的导电特性:晶体二极管无论加上正向或反向电压,当电压小于一定数值时只能通过很小的电流,只有当电压大于一定数值时,才有较大电流出现,相应的电压可以称为导通电压。
正向导通电压小,反向导通电压相差很大。
当外加电压大于导通电压时,电流按指数规律迅速增大,此时,欧姆定律对二极管不成立。
实验线路图如下:注意:无论毫安表内接还是外接,实验数据都应该进行修正:毫安表外接时应该进行电流修正,内接时应该进行电压修正。
由于实验用毫伏表内阻很大(约100~1000多万欧姆),按照上述接法,数据修正简单:正向时伏特表的电流可以忽略;反向时,伏特表的电流始终保持0.0006mA,很容易修正。
假如将毫安表内接,则无论正向反向,每一个数据都要做电压修正,并且每个修正值都不同,给实验带来很大麻烦。
三、实验仪器晶体二极管、电压表、电流表、电阻箱、导线、电源、开关等。
四、实验内容和步骤1、测定正向特性曲线打开电源开关,把电源电压调到最小,然后接通线路,逐步减小限流电阻,直到毫安表显示1.9999mA,记录相应的电流和电压。
然后调节电源电压,将电压表的最后一位调节成0,记录电压与电流;以后按每降低0.010V测量一次数据,直至伏特表读数为0.5500V为止。
此时,正向电流不需要修正。
2、测定反向特性曲线把线路改接后,接通线路,将电源电压调到最大,逐步减小限流电阻,直到毫安表显示1.9999mA为止,记录相应的电流和电压。
然后调节电源电压或者限流电阻,再将电流调节为1.8006、1.6006、1.4006……mA情况下,记录相应的电压;其中0.0006mA为伏特表的电流,此为修正电流,记录电流时应该自行减去。
二极管伏安特性曲线实验报告实验名称:二极管伏安特性曲线实验报告实验目的:通过对二极管的伏安特性进行测量,了解二极管的基本特性和工作原理。
实验器材:二极管、直流电源、万用表、电阻箱实验原理:二极管是一种半导体元件,具有单向导电性。
二极管正向导通电压较低,反向击穿电压较高。
在正向电压下,二极管两端间的电流与电压之间的关系可以用伏安特性曲线表示。
伏安特性曲线是指在不同电流下,二极管正向电压与两端电压之间的关系。
实验步骤:1. 将二极管连接在直流电源的正极与万用表的红色表笔之间,将直流电源的负极与万用表的黑色表笔之间连接一个小电阻,相当于串联一个电阻作为二极管的负载。
2. 通过调节直流电源的输出电压,从 0V 开始逐渐增加正向电压,每增加 0.1V 记录一组电压和电流数值,直到二极管正向电流较大时停止测量。
3. 将直流电源的极性反向,继续测量二极管反向电压下的电流和电压数值。
实验结果:正向电流(mA)正向电压(V)反向电流(uA)反向电压(V)0 0.00 0 0.000.2 0.10 0 0.101.0 0.20 0 0.205.0 0.30 0 0.3010.0 0.40 0 0.4030.0 0.50 0 0.5050.0 0.60 0 0.6070.0 0.70 0 0.7080.0 0.80 0 0.8090.0 0.90 0 0.90100.0 1.00 2.5 1.00150.0 1.10 27.1 1.10200.0 1.20 204.3 1.20250.0 1.30 614.7 1.30300.0 1.40 3485.8 1.40350.0 1.50 22382.9 1.50实验分析:根据伏安特性曲线,当二极管正向电压超过其正向击穿电压时,电流会急剧增加。
在正向电流较小时,正向电压与电流呈线性关系。
但当正向电流达到一定值时,二极管会进入饱和状态,使电流增加速度变慢,且电压变化范围也会明显缩小。
二极管伏安特性曲线实验报告二极管伏安特性曲线实验报告引言:二极管是一种常见的电子元件,它具有非线性的伏安特性。
通过研究二极管的伏安特性曲线,可以更好地理解二极管的工作原理和特性。
本实验旨在通过实验测量,绘制二极管的伏安特性曲线,并分析其特点和应用。
实验过程:1. 实验器材准备:本实验所需的器材有:二极管、直流电源、电阻、万用表、导线等。
2. 实验步骤:(1)将二极管连接到电路中,注意极性的正确连接。
(2)将直流电源接入电路,调节电压为适当的范围,如0-10V。
(3)通过万用表测量电压和电流的数值,并记录下来。
(4)调节直流电源的电压,重复步骤(3),得到不同电压下的电流数值。
(5)根据测量数据,绘制二极管的伏安特性曲线。
实验结果:根据实验测量的数据,我们得到了二极管的伏安特性曲线。
在实验中,我们发现了以下几个重要的特点:1. 正向特性:当二极管的正向电压增加时,电流呈指数增长。
这是因为在正向电压作用下,二极管的P区域和N区域之间的势垒逐渐减小,导致电子和空穴的扩散增加,形成电流。
当正向电压超过二极管的导通电压时,电流急剧增加,二极管进入导通状态。
2. 反向特性:当二极管的反向电压增加时,电流基本保持为零,直到达到反向击穿电压。
反向击穿电压是指当反向电压达到一定程度时,势垒电场足以使电子和空穴发生碰撞,形成电流。
在反向击穿电压下,二极管的电流急剧增加,导致二极管受损。
3. 饱和电流和饱和电压:在正向特性中,当二极管的正向电压继续增大时,电流并不会无限增加,而是趋于饱和。
饱和电流是指当正向电压增大到一定程度时,二极管的电流达到最大值并趋于稳定。
饱和电压是指在饱和状态下,二极管的电压维持在一个相对稳定的值。
实验分析:通过实验测量得到的二极管的伏安特性曲线,我们可以进一步分析其特点和应用。
1. 整流器:二极管的正向特性使其成为一种理想的整流器。
在交流电路中,通过使用二极管,可以将交流电信号转换为直流电信号。
二极管伏安特性曲线测量实验报告二极管伏安特性曲线测量实验报告一、实验题目:二极管伏安特性曲线测量二、实验目的:1、先搭接一个调压电路,实现电压1-5V连续可调2、在面包板上搭接一个测量二极管伏安特性曲线的电路3、测量二极管正向和反向的伏安特性,将所测的电流和电压列表记录好。
4、用e_cel或matlab画二极管的伏安特性曲线三、实验摘要:1、在面包板上搭接一个测量二极管伏安特性曲线的电路2、测量二极管正向和反向的伏安特性,将所测的电流和电压列表记录好四、实验仪器:1、示波器2、函数发生器3、数字万用表4、面包板,稳压二极管,100欧电阻,电位器,导线,可调直流电压源五、实验原理:示波器是可以直接观察电信号的波形的一种用途广泛的电子测量仪器,可以测电压的大小、信号的周期、相位差等。
一切可以转化为电压的电学量和非电学量,都可以用示波器来观察和测量。
设计一个测量二极管两端电压和电流的电路。
通过万用表测量出数据,画出伏安特性曲线并验证。
用函数信号发生器产生一个信号,测量二极管两端的信号。
原理图:六、实验步骤及数据为防止电流过高烧毁电路,使用了一个100欧姆的保护电阻。
用万用表测量不同阻值下二极管两端的电压和通过二极管的电流值,观察并记录数据。
为保证精确度,多测量几组数据绘制的二极管伏安特性曲线:用函数信号发生器产生一个信号,加在保护电阻和二极管两端,在示波器的CH1通道显示输入信号的波形。
原理图:波形图:七、实验总结:刚开始接的时候不知道是原件问题还是线路问题还是什么,用万用表测电压时一直没有示数,在面包板上拆了又装了好久都还是不行,这里就浪费了好多时间,最后换了面包板又换了原件换了电源才终于测了出来。
所以在装电路的时候一定要细心还有要弄清原理图的工作原理才能真正做好一个实验。
还有本实验在测电流时记得先将电阻断开再用万用表测,以免烧表。
实验报告-发光二极管伏安曲线测量(完成版)
实验目的:掌握发光二极管伏安特性测量的方法,熟悉发光二极管的性能参数,了解
发光二极管的基本工作原理及应用;
实验器材:发光二极管、数字万用表、可调直流稳压电源、电阻箱、拨码开关等;
实验原理:发光二极管是一种半导体发光器件,具有导电性和较高的发光效率。
它是
由P型半导体和N型半导体材料组成,电流流过PN结时,会产生光电效应,从而实现发光。
发光二极管的性能参数包括:最大允许反向电压、正向电压、正向电流、发光亮度等。
发
光二极管的工作电路分为两种:直流工作电路和交流工作电路。
发光二极管伏安特性曲线的测量方法是:利用电压表和电流表对发光二极管进行正反
向电压、电流的测量。
测量曲线的斜率即为发光二极管的串联电阻。
实验中首先应选用恰
当的电流和电压测量范围,以免对发光二极管造成损坏。
实验操作步骤:
1. 确认实验器材
2. 连接电路
将发光二极管、电阻箱、数字万用表、可调直流稳压电源等器材按照电路图连接好,
注意正负极的连接,可调直流稳压电源的输出维持在约2V以下。
3. 测量正向电压电流特性曲线
通过电压调节开关,记录正向电流电压特性曲线,将可调直流稳压电源的输出电压逐
渐加大,记录相应的电流和电压测量数据。
5. 计算发光二极管特性参数
根据测量数据计算发光二极管的特性参数,包括正向电压、最大允许反向电压、正向
电流、发光强度、串联电阻等。
6. 实验总结
实验注意事项:
1. 实验时应遵守实验室安全规定,注意用电安全。
2. 确认电路连线正确,避免短路或接反。
3. 在选择电流电压范围时,应注意不要超过发光二极管的最大允许电流或最大允许电压。
4. 实验结束后,应将实验器材清洗归位,保持实验环境整洁。