液压机械无级变速器传动特性分析
- 格式:doc
- 大小:18.00 KB
- 文档页数:6
液压机械无级变速器设计与试验分析摘要:液压机械无级变速器(HMCVT)兼具机械传动高效和液压传动无级调速的特点,适应了大功率拖拉机的传动要求。
功率经分流机构分流,液压调速机构中的变量泵驱动定量马达,在正、反向最大速度间无级调速,液压调速机构与机械变速机构相配合,经汇流机构汇合,实现档位内微调,通过换挡机构实现档位间粗调,最终实现车辆的无级变速。
关键词:单行星齿轮;液压机械无级变速器;设计对大马力拖拉机进行动力学和运动学分析,根据性能参数,设计一种单行星排汇流液压机械无级变速器(HMCVT),包括发动机、液压调速机构和离合器的选择,单行星齿轮、换挡机构齿轮传动比的设计。
一、变速器总体设计方案1.变速器用途和选材。
设计一种用于时速-10~30 km/h大马力拖拉机的单行星排汇流液压机械无级变速器。
变速器由纯液压起步、后退档,液压机械4个前进档位和2个后退档位构成。
液压调速机构选择SAUER90系列055型变量泵、定量马达及附件,采用电气排量控制(EDC)构成闭环回路。
选择潍柴WP4.165柴油机作为变速器配套发动机,最大输出功率Pemax=120 kW,全负荷最低燃油消耗率gemin=190 g/kW·h,额定转速nemax=2 300 r/min,最大转矩Temax=600 N·m。
汇流机构选用2K-H行星排,行星排特性参数k定义为行星排齿圈齿数与太阳轮齿数之比,取k=3.7。
太阳轮、行星架材料选用20crmnti,齿圈材料选用40cr。
模数为3,实际中心距为57 mm,太阳轮与行星架采用角度变位,行星架与齿圈采用高度变位。
太阳轮轴连接液压调速机构可使系统增速减矩,并充分利用液压元件特性,以提高使用寿命。
2.变速器设计方案。
液压机械无级变速器设计方案如图1。
变速器输入轴、输出轴和液压动力输入轴成“品”字型布局,行星排通过离合器与机械动力输入轴和液压机械输出轴相连。
1.机械动力输入轴2.输入轴3.前进后退档接合套4.变量泵5.定量马达6.液压机械输出轴7.液压动力输入轴8.输出轴图1 液压机械无级变速器结构图离合器L1、L2由比例压力阀控制,结合平稳,起主离合器作用,其它离合器采用电磁换向阀控制,以降低成本;变速器起步和制动为纯液压传动,此时,离合器L8接合;L1~L4是行星排同步离合器,L5~L7是换挡机构离合器。
Nu Vinci无级变速器的特性分析、试验及应用研究的开题报告一、研究背景在自行车、电动车等交通工具中,变速器是常见的必备装置。
传统的变速器使用齿轮来实现变速,但齿轮传动存在限制,如变速段数有限、换挡不顺畅等问题。
为了解决这些问题,Nu Vinci无级变速器被发明出来。
Nu Vinci无级变速器是一种采用球形转子和离心力原理来实现变速的新型变速器。
它采用液压耦合器,并通过改变齿轮扭转因素来调整传动比,达到无级变速的效果。
由于其独特的设计,Nu Vinci无级变速器具有以下优点:1. 变速连续而不分段;2. 变速控制灵活,能够适应各种道路和行驶情况;3. 变速顺畅,换挡操作简单且减少了换挡时产生的冲击;4. 变速器寿命较长,维护保养简单。
目前,Nu Vinci无级变速器已广泛应用于自行车、电动车和轻型摩托车等交通工具中。
然而,由于其工作原理较为复杂,学术界对其特性和应用研究还较为有限。
二、研究内容本研究拟从以下几个方面进行深入研究:1. Nu Vinci无级变速器的工作原理及特性分析;2. Nu Vinci无级变速器的试验研究,建立模型并验证理论;3. Nu Vinci无级变速器在自行车、电动车等交通工具中的应用研究。
三、研究方法1. 理论分析法:对Nu Vinci无级变速器的工作原理、特性进行理论分析,探究其工作原理和特点。
2. 试验研究法:采用实验方法对Nu Vinci无级变速器进行测量、分析,并建立相关的模型和理论。
通过试验数据的分析和模型的验证,进一步确认其特性。
3. 实际应用研究法:在自行车、电动车等交通工具中应用Nu Vinci无级变速器,并对其效果进行实测和研究。
四、研究意义本研究能够深入了解Nu Vinci无级变速器的特性和工作原理,为其在自行车、电动车等交通工具中的应用提供理论基础和实践支撑。
同时,也有助于推动Nu Vinci无级变速器的技术发展和应用推广。
五、研究计划第一年:1. 完成Nu Vinci无级变速器的特性分析;2. 搭建Nu Vinci无级变速器试验平台;3. 进行Nu Vinci无级变速器的试验研究。
现在车辆上的传动装置多采用机械式变速器,1液力机械式变速器(AT)液力机械式变速器由液力变矩器和多挡机械变速箱组成。
2液压机械无级变速器(HMT)及应用分析3静液压无级变速器(HST)及其应用分析静液压无级变速器(HST)依靠液压变量马达实现纯液压无级变速,效率较AT高,但较齿轮变速器低许多,传递功率不大4 金属带式无级变速器为了充分利用发动机大的功率,节约能源以及获得优良的动力性能,最理想的方法是从传统的有级传动发展为无级传动。
目前普遍采用的液力变矩器及其闭锁装置,自动换挡机构等均是为了弥补有级传动的不足而产生的传动模式,但不能实现真正的无级变速。
另外还出现了全液压传动的无级变速器,其操纵方式也由手动液控向电液控制或微电脑控制技术方面发展,并取得了非常好的效果,大大提高了整机的行使平顺性和作业性能,液压传动可以保证车辆具有稳定的行驶速度。
但是在液压传动的车辆中传动效率低也是一个不容忽视的问题,按当代的技术水平,纯液压传动中最高效率在80-85%左右,而在车辆使用中,一般只能达到50-60%。
此外,适用于重型车辆使用的大功率的液压元件难以加工,也使液压传动的车辆增加了制造成本。
另外,这种高油压高转速的变量泵和定量马达的排量越大,即功率越大时,效率和寿命愈难以保证,生产愈困难,在市场上愈难买到。
液压传动的低效率直接影响了整机的生产率和经济性,决定了它在车辆上很难有较大的发展空间。
机械液压双功率流则兼有机械传动的高效率和液压无级传动的双重优点,可在较宽的范围内实现可控的无级变速和所需的车速。
以小功率的液压元件传递大功率特性,高效率特性,为车辆的经济性和动力性问题的解决找到了理想的道路。
液压机械无级传动是一种双功率流传动系统,分为液压功率和机械功率两路传递,分流机构分流后液压马达在正向和反向最大速度之间来回无级变速。
其每一个行程和行星齿轮机构的一种工况相配合,最后两路汇合成由若干无级调速段相衔接并组逐段升高的全程无级输出速度。
液压无级变速器原理液压无级变速器是一种无级变速传动装置,它通过液压系统将引擎输出的动力转换为经济高效的动力输出。
它由泵、液力变矩器和液压控制装置三部分组成,下面将详细介绍液压无级变速器的原理。
液压无级变速器的核心部分是液力变矩器,它是通过液体的流动和转动来实现动力传递和变速功能的。
液力变矩器由泵轮、液力涡轮和导向轮组成。
当发动机工作时,泵轮受发动机输出轴的动力驱动,使泵轮旋转起来,从而产生涡流。
涡轮则受涡流的冲击转动起来,实现动力输出。
导向轮起导向作用,使涡轮流回到泵轮中。
变速器的实质就是改变涡轮和泵轮的相对转速,以实现不同的传动比和输出转矩。
液压无级变速器通过控制液力变矩器内的液体流动,来实现无级变速的目的。
在液压无级变速器中,引入了一根控制轴,它与油压控制装置相连,通过改变控制轴的位置和转动角度,来控制液力变矩器内的液体流动。
当控制轴处于一定的位置和角度时,液体会倾向于流向涡轮,从而使转速提高,实现加速;当控制轴处于另一位置和角度时,液体会倾向于流向泵轮,从而使转速降低,实现减速。
同时,液力变矩器中还设置有转矩变换装置,它通过改变液力变矩器内液体的流通路径,实现输出转矩的调节。
当转矩需求大时,通过转矩变换装置改变流通路径,使更多的液体流向涡轮,从而获得更大的转矩输出;当转矩需求小时,则相反,调整流通路径使液体流向泵轮,从而降低输出转矩。
液力变矩器的液体流动控制是通过液压系统完成的。
液压系统由液压泵、油路系统和控制装置组成。
当驾驶员操作换挡器时,控制装置会接收到相应的指令,然后通过液压泵将液体注入液力变矩器的控制腔室,改变液体流通路径,实现变速和输出转矩的调节。
液压无级变速器的工作原理可以总结如下:当发动机工作时,液压泵受发动机轴的动力驱动,使液体流动并产生涡流;涡流冲击涡轮,使其转动起来,实现动力输出;同时,控制装置通过液压系统调节液体流动的路径和速度,实现变速和输出转矩的调节;最终,液力变矩器将引擎输出的动力转换为经济高效的动力输出。
拖拉机液压机械无级变速器特性研究的开题报告一、选题背景:拖拉机作为农业生产机械的主要代表,其性能优良、使用广泛,可以在农耕、开垦、收割等多个方面完成任务。
其中液压机械作为拖拉机操纵控制和制动传动的主要方式,对拖拉机的性能和效率起着至关重要的作用。
而液压变速器又是拖拉机液压机械的核心部件之一,其性能直接关系到拖拉机的工作效率和稳定性。
因此,对拖拉机液压变速器的特性研究有着重要的现实意义。
二、研究目的:本研究旨在探究拖拉机液压机械无级变速器的特性,明确无级变速器在拖拉机中的作用和意义,分析其工作机理、结构特点,深入研究影响无级变速器性能的各种因素,以期提高拖拉机的工作效率和稳定性。
三、研究内容:1.拖拉机液压机械无级变速器的工作机理和结构特点深入分析,明确其作用和意义。
2.分析液压机械无级变速器各个瞬态特性的变化规律,如输入转速和负载变化对液压变速器特性的影响等,并归纳总结其控制原理。
3.探索液压机械无级变速器运转过程中的各种损耗,并寻求有效的抑制和缓解方法。
4.运用数学模型和分析方法,分析无级变速器的传动特性,并通过仿真实验验证该模型的正确性。
四、研究意义:通过对拖拉机液压机械无级变速器的深入研究,我们可以掌握其工作原理、结构特点以及各种变化规律;深入研究和探索无级变速器的传动特性和损耗的缓解方法,可以提高拖拉机的工作效率和稳定性,有利于农业机械的进一步发展。
五、研究方法:本研究将会采用文献资料法、理论研究法和实验研究法相结合的方式进行研究。
通过收集文献资料了解目前无级变速器的研究情况,并以此作为理论基础。
进一步运用理论分析方法,深入研究无级变速器的传动特性、变速规律,最后通过仿真实验来验证所得到的模型和结论的正确性。
六、研究展望:在未来的研究中,我们将进一步完善和深入研究该领域的相关问题,提高拖拉机液压机械无级变速器的性能和效率,在为农业生产的发展提供技术支持的同时,为机械工程领域的发展贡献自己的力量。
液压机械无级变速器的设计及特性研究液压机械无级变速器的设计及特性研究导言液压机械无级变速器是一种能够实现连续无级变速的设备,其设计和研究对于机械工程领域具有重要的意义。
本文将对液压机械无级变速器的设计原理及特性进行深入研究,以期为相关领域的研究者和工程师提供参考和指导。
一、液压机械无级变速器的原理液压机械无级变速器的核心组成部分是液压缸和连杆机构。
通过控制液压缸内的液体压力和流量,实现连杆机构的运动,从而改变输出轴的转速和扭矩。
其工作原理主要基于液压传动的特点,利用流体的不可压缩性和容积不变性实现传动效果。
在设计过程中,可以根据需求确定液压缸的数量、液压泵的流量和压力范围等参数。
通过合理选择这些参数,并根据实际工作环境的特点进行优化,可以获得更好的变速效果。
此外,还需要考虑液压缸和连杆机构的结构设计,确保其能够承受高压力和大负载的工作条件。
二、液压机械无级变速器的特性1. 无级变速性能优异:液压机械无级变速器可以实现连续的无级变速,相比传统的齿轮传动等机械变速器,具有更广泛的变速范围和更精准的调节性能。
2. 反应速度快:由于液压缸内的液体能够很快地传递力和动能,液压机械无级变速器的反应速度非常快,能够迅速适应实际工作情况的需求。
3. 输出轴扭矩大:通过合理设计液压缸和连杆机构,液压机械无级变速器可以实现较大的输出轴扭矩,适用于各种高负载工作情况。
4. 维护成本低:液压机械无级变速器的结构相对简单,在运行过程中很少需要维护和保养,能够降低维护成本和维修时间。
5. 能量损耗小:液压机械无级变速器因其工作原理的特点,在传动过程中能量损耗相对较小,能够提高传动效率。
三、液压机械无级变速器的应用液压机械无级变速器在许多领域都有广泛的应用。
其中,工程机械、汽车工业和航空航天等领域是其主要应用领域。
在工程机械领域,液压机械无级变速器被广泛应用于各类挖掘机、推土机、压路机等设备中,能够提供强大的动力输出和灵活的操作性能。
液压机械传动控制系统的特点及应用探析摘要:科学技术在不断进步,再加上研发工作的不断深入,促进了技术设备的逐步提升,机械设计制造业发展越来越快。
在机械设计制造当中液压机械传动系统逐步受到了更加广泛的关注和应用。
本文通过对液压机械传动控制系统基本原理进行阐述,对该系统在机械设计制造中的应用进行简要分析,旨在其发展越来越好。
关键词:液压机械传统;特点;应用1.液压机械传动控制系统原理液压传动控制是工业中经常用到的一种控制方式,它采用液压完成传递能量的过程。
因为液压传动控制方式的灵活性和便捷性,液压控制在工业上受到广泛的重视。
液压传动是研究以有压流体为能源介质,来实现各种机械和自动控制的学科。
从原理上来说,液压传动所基于的最基本的原理就是帕斯卡原理,就是说,液体各处的压强是一致的,这样,在平衡的系统中,比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静止。
所以通过液体的传递,可以得到不同端上的不同的压力,这样就可以达到一个变换的目的。
我们所常见到的液压千斤顶就是利用了这个原理来达到力的传递。
2.液压机械传动的优缺点2.1液压机械传动的优点体积小、重量轻,因此惯性力较小,当突然过载或停车时,不会发生大的冲击;能在给定范围内平稳的自动调节牵引速度,并可实现无极调速;换向容易,在不改变电机旋转方向的情况下,可以较方便地实现工作机构旋转和直线往复运动的转换;液压泵和液压马达之间用油管连接,在空间布置上彼此不受严格限制;由于采用油液为工作介质,元件相对运动表面间能自行润滑,磨损小,使用寿命长;操纵控制简便,自动化程度高;容易实现过载保护。
2.2液压机械传动的缺点使用液压传动对维护的要求高,工作油要始终保持清洁;对液压元件制造精度要求高,工艺复杂,成本较高;液压元件维修较复杂,且需有较高的技术水平;用油做工作介质,在工作面存在火灾隐患;传动效率低。
3.液压机械传动控制系统的应用3.1纯水液压机械传动控制系统纯水液压机械传动控制系统以纯水为媒介转换能量,借以达到控制和传动的目的,现在,这套系统并没有在机械制造行业大量运用,但是发展前景还是不错的。
有齿轮传动优点:传动比和动力传送比较稳定,缺点:传动效率低,且传动距离比较短皮带轮传动优点:可以远距离传动缺点:传动比和动力输出不稳定连轴器传动优点:同时具有以上优点缺点:制造精度高、成本高最佳答案与其它传动方式相比,液压传动具有以下优缺点。
一、液压传动的优点1) 液压传动可以输出大的推力或大转矩,可实现低速大吨位运动,这是其它传动方式所不能比的突出优点。
2) 液压传动能很方便地实现无级调速,调速范围大,且可在系统运行过程中调速。
3) 在相同功率条件下,液压传动装置体积小、重量轻、结构紧凑。
液压元件之间可采用管道连接、或采用集成式连接,其布局、安装有很大的灵活性,可以构成用其它传动方式难以组成的复杂系统。
4) 液压传动能使执行元件的运动十分均匀稳定,可使运动部件换向时无换向冲击。
而且由于其反应速度快,故可实现频繁换向。
5) 操作简单,调整控制方便,易于实现自动化。
特别是和机、电联合使用时,能方便地实现复杂的自动工作循环。
6) 液压系统便于实现过载保护,使用安全、可靠。
由于各液压元件中的运动件均在油液中工作,能自行润滑,故元件的使用寿命长。
7) 液压元件易于实现系列化、标准化和通用化,便于设计、制造、维修和推广使用。
二、液压传动的缺点1) 油的泄漏和液体的可压缩性会影响执行元件运动的准确性,故无法保证严格的传动比。
2) 对油温的变化比较敏感,不宜在很高或很低的温度条件下工作。
3) 能量损失(泄漏损失、溢流损失、节流损失、摩擦损失等)较大,传动效率较低,也不适宜作远距离传动。
4) 系统出现故障时,不易查找原因。
综上所述,液压传动的优点是主要的、突出的,它的缺点随着科学技术的发展会逐步克服的,液压传动技术的发展前景是非常广阔的。
1.优点(1)使装载机有自动适应性即当外载荷突然增大,它能自动降低输出转速,增大扭矩即增大牵引力,以克服增大的外载荷。
反之,当外载荷减小时,自动提高车速,减小牵引力。
(2)提高了车辆的使用寿命液力传动利用液体作为工作介质,传动非常柔和平稳,能吸收振动和冲击,不但使整个传动系统寿命提高,也延长了发动机的使用期限。
液压机械无级变速器传动特性分析液压机械无级变速器简称液压变速器,是一种利用液力作为变速传动介质的力量变速传动装置。
该装置由液力变矩器、离合器、调速系统和机械无级变速器四部分组成,可以实现近似无级的变速调整功率,适用于需要连续调节功率、变速范围大的设备。
液压变速器的结构液压变速器的结构通常包括液力变矩器、离合器、调速阀、液压控制系统及机械齿轮组。
•液力变矩器:用于传递动力以及起到缓冲作用,有助于起步和刹车。
•离合器:用于实现变速器的换挡和断开动力传递。
•调速阀:主要是通过控制液压油的压力来控制传动比,实现无级变速调整。
•机械齿轮组:提供单一传动比和反转功能。
液压变速器的工作原理液压变速器通过利用流体静压和动压的原理,将动力传递到输出轴。
当输入轴转动时,流体通过液力变矩器的涡轮和泵轮,形成液力耦合,输送动力到输出轴。
当输入轴转速变化时,通过调节液压油的压力和流量,实现输出轴速度的调整,从而实现无级变速。
在液压变速器工作时,离合器控制系统会根据车速或者发动机转速的变化,选择相应的离合器构型,实现换挡、启动、停车等操作。
液压变速器的特点由于液压变速器采用了液力传递动力,具有以下特点:•可以实现近似无级的变速调整,变速范围宽。
•变速平稳,没有断电感。
液力变矩器起到缓冲作用,不易破坏机械结构。
•油液传递功率大,在吸收冲击和减少振动方面更优。
•油液传递功率能有效避免过载和烧毁、防止机械阻塞。
液压变速器的传动特性分析在液压变速器的传动过程中,其特性主要受到以下因素的影响:1. 液力变矩器的作用液力变矩器是液压变速器内的重要组成部分,其主要作用是将动力传输到输出轴上,同时起到缓冲作用。
当动力传递过程中输入和输出轴转速有所差异时,利用液力变矩器可以有效缓冲、减小机械结构的振动,提高传动效率。
因此,液力变矩器的状态对于液压变速器的传动特性具有重要影响。
2. 调节系统的控制特性液压变速器中通过调节油压和流量控制输出转速,从而实现变速转矩传递。
仅供参考[整理] 安全管理文书
液压机械无级变速器传动特性分析
日期:__________________
单位:__________________
第1 页共6 页
液压机械无级变速器传动特性分析
液压机械无级变速器对车辆实现无级变速具有重要的作用。
本文先对液压机械无级变速器进行了简单的介绍,再重点分析了液压机械无级传动变速器的传动特性。
在车辆动力系统发展的过程中,从有级变速发展到无级变速成为了一种趋势。
安装有级变速器的车辆在行驶过程中,发动机不能够一直处于最佳状态。
这不仅降低了驾驶的舒适性,而且降低了发动机的使用效率,造成了一定能源的浪费。
在改进的过程中,人们发明了液力变矩器及其闭锁装置、自动换挡机构等。
这些改进虽然在一定程度上弥补了有级传动的不足,但是还不能够实现真正的无级变速。
液压传动技术的发展为无级变速提供了新的技术支持,纯液压传动能够实现无级变速,保证汽车行驶的稳定性能。
但是纯液压传动的传动效率偏低,能源利用率不高。
为此可以将液压和机械进行结合,将机械的高传动效率和液压的无级控制结合在一起,从而实现液压机械无级传动。
液压机械无级传动变速器工作时,具有无级调速、传动功率比值高以及高效率等传动特性。
本文先对液压机械无级传动变速器的工作原理和特点进行介绍,再着重探讨和分析液压机械无级传动变速器的传动特性。
液压机械无级变速器概述
在液压机械无级传动器中,存在着两个功率流的传动,属于双功率流传动范畴。
液压机械无级传动器主要由液压和机械两个部分组成。
液压部分是由一些液压元件组成,包括变排量和定排量元件,主要负责传递液压路功率。
机械部分是由行星排或齿轮构成,主要负责传递机械路功率。
液压部分传递的功率可以通过液压元件调节实现连续可调,机械部分传递的功率则是跳跃式的。
这两者进行结合,便可以实现变速器的
第 2 页共 6 页
无级调速功能。
液压机械无级变速器借助液压传动的无级调节和机械传动的高效率,实现了变速器的无级调速。
跟传统有级变速器相比,液压机械无级变速器具有以下优点。
第一,能够根据行驶过程中的阻力变化进行无级调速,保证发动机发挥出最佳性能,延长了发动机的使用寿命,提高了汽车的燃油经济性。
第二,以液体作为传动介质,有效的降低了车辆的震动性,在提高零件寿命的同时,也使汽车行驶更加的平稳,这对工作条件恶劣的工程机械具有重要意义。
第三,操作更加简便,自动换挡功能大大降低了驾驶员的劳动强度,设计更加人性化。
与纯机械传动相比,液压机械无级变速器也存在着一些缺点。
比如,传动的效率没有纯机械传动的高;液压系统的要求较高,制造使用以及维修的成本都比较高。
但总的来说,液压机械无级变速器有效的利用了液压传动和机械传动的主要优点,在汽车以及工程机械中都有广泛的应用。
液压机械无级变速器传动特性分析
液压机械无级传动变速器在工作的时候,具有无级调速、传动功率比值高、功率分流以及高效率等传动特性。
可控的无级调速特性
在无级传动变速器工作时,可以通过操作拉杆来调节变排量和定排量液压元件,从而控制系统输出转速的大小,实现无级调速。
无级调速特性是指构件的输出与输入转速比随变排量液压元件与定排量液压元
件排量比的变化特性。
通过纯液压、液压机械各段的速度特性分析可以得知,当排量比在-1到1的范围内变化时,无级传动变速器的速比可以进行无级变化。
通过操纵拉杆位移与输出转速以及定排量液压元件转速
第 3 页共 6 页
的分析可以得知,在车辆前进时,随着操纵拉杆位移的增大,输出转速是不断变大的,而定排量液压元件的转速呈现一个倒V字形。
以小功率的液压元件传递大功率特性
液压机械无级传动器具有以小功率液压元件传递大功率的传动特性。
所谓的功率放大倍数,是指系统所能传递的最大功率与变速器中液压元件所能传递的最大功率之比。
根据传动方案的不同,所用无级变速器的连续段数不同,则功率放大倍数也不一样。
一般二段式液压机械无级传动变速器的功率放大倍数为3。
段数越高,则功率放大倍数越高,但是结构和操作也就越复杂。
功率分流特性
功率分流比是指无级变速器中液压路的输出功率与无级变速器总
输出功率的比值,其中液压路的输出功率就是指经液压路传递到行星排的输入功率。
功率分流比越小,即液压路的输出功率越小,则机械功率越大。
液压流功率损失也就越小,从而提高了整个变速器的总效率。
一般在车辆刚刚起步的时候,因为速度很低,所以功率分流比比较大;当速度逐渐增加后,功率分流比随之降低。
高效率特性
液压机械无级变速器的整体传动效率,随着速比和工况的变化也会在一定的范围内变化。
通过对比纯液压变速器传动效率和液压机械变速器传动效率,可以发现将高传动效率的机械和无级控制的液压进行结合的液压机械变速器具有更高的传动效率。
在车辆变速领域中,液压机械无级变速器通过液压和机械的结合,巧妙的将两者的优势进行了融合。
在保证高效率特性的同时,也实现了可控的无级调速特性。
此外,液压机械无级变速器还具有功率分流特性,
第 4 页共 6 页
以及以小功率液压元件传递大功率的传动特性。
液压机械无级变速器也存在着制造、维修困难等问题,如何进一步提升液压机械无级变速器的传动性能有待进一步研究。
第 5 页共 6 页
仅供参考[整理] 安全管理文书
整理范文,仅供参考!
日期:__________________
单位:__________________
第6 页共6 页。