多齿鳌合配体双四唑胺合成方法的改进
- 格式:pdf
- 大小:203.59 KB
- 文档页数:3
双四唑类过渡金属含能配合物的合成及性质研究的开题报
告
标题:双四唑类过渡金属含能配合物的合成及性质研究
研究背景和意义:
过渡金属化合物具有很高的能量密度和良好的热稳定性,在能源存储和传输方面有广
泛的应用。
近年来,双四唑类化合物因其独特的环境适应性、生物活性和化学反应性,在药物研究、光电材料、聚合物材料等方面也得到了广泛的关注。
因此,将双四唑类
化合物与过渡金属配位形成含能配合物,不仅有望提高能量密度和热稳定性,而且有
助于探索新型双四唑类材料的应用。
研究内容和方法:
本研究拟采用合成化学、物理化学和表征等多种手段,从双四唑类分子的结构和性质
出发,选择一些重要的过渡金属元素(如Fe、Co、Ni等)和有机配体(如1,2,4,5-四羟基苯、苯-1,2,4,5-四羧酸等)进行配位反应,合成一系列不同结构和性质的双四唑
类过渡金属含能配合物。
通过对样品的红外光谱、核磁共振、元素分析、热重分析、
热爆炸性能等多种表征手段进行分析,探讨样品的结构、热学性质和爆炸性能等方面
的变化规律。
研究预期成果:
本研究旨在合成一系列双四唑类过渡金属含能配合物,系统研究其结构和性质的变化
规律,从而为进一步探索新型能量材料和应用提供一定的理论和实验基础。
同时,本
研究还将为了解双四唑类化合物的结构和性质提供新的视角和思路,为相关领域的研
究提供一定的参考价值。
双四唑肼的结构表征与合成工艺优化孟令桥,杜志明,何春林,赵林双,丛晓民,李 芳(北京理工大学爆炸科学与技术国家重点实验室,北京100081)摘 要:以5,5′-偶氮四唑二钠、镁粉为原料,制得肼双四唑钠盐,再与盐酸反应得目标产物双四唑肼(HBT),利用元素分析、红外分析、核磁共振波谱、扫描电镜和热重-差示扫描量热法等手段对目标产物进行了表征。
研究了反应摩尔比、反应时间、反应温度、盐酸质量分数等条件对收率的影响,得到较好的工艺条件为n(N a2ZT)∶n(M g)=1∶6,反应时间6h,反应温度100℃,盐酸质量分数20%,目标产物最高收率达91.53%。
关键词:有机化学;富氮化合物;双四唑肼;合成;表征中图分类号:T J55;T Q252 文献标志码:A 文章编号:1007-7812(2010)05-0015-04Structural Characterization and Process Optimizationof BistetrazolohydrazineM EN G L ing-qiao,DU Zhi-ming,HE Chun-lin,ZHA O L in-shuang,CO N G Xiao-min,L I fang (State K ey Labo rat or y o f Ex plo sio n Science and T echnolo gy,Beijing Instituteof T echnolog y,Beijing100081,China)Abstract:Diso dium5,5′-hy dr azinotet razolate w as prepar ed w ith the sta rting mater ials,sodium5,5′-azotetr azolate as w ell as mag nesium,and t he fianl pr oduct,bistetr azolohy dr azine(HBT)was sy nthesized thro ugh hydro chlo ric acid and so dium5,5′-hydra zino tetr azolate.T he t arg et pr oduct HBT w as character ized by elemental analy sis,I R,HN M R,SEM and T G-DSC.T he factor s affecting the yield,including r eactio n mo le r atio,reaction time,reactio n tem per ature,HCl mass fraction wer e investig ated.T he optim um r eact ion conditio ns ar e r eactant mole ratio n(Na2ZT)∶n(M g)=1∶6,r eact ion t ime6hour,reactio n tempera ture100℃and HCl mass fr actio n, 20%,the highest yield of t he HBT is91.53%.Key words:or ganic chemistr y;nitr og en-rich co mpo unds;bistetr azolohy dr azine;synthesis;char acterizat ion引 言近年来,人们一直在寻找环境友好型含能材料[1-4]。
新型唑类配体配合物的合成、结构及性能研究的开题报告一、研究背景唑类化合物是一类具有广泛应用前景的有机分子,其特别之处在于唑环中含有氮杂原子,拥有一系列独特的生物活性和物理化学性质,如抗菌、抗病毒、杀虫等。
因此唑类化合物被广泛用于药物、杀虫剂和化学传感器等领域。
同时,配合物化学是无机化学一个重要的分支,多年来受到科学家的广泛关注。
唑类化合物也可用于配合物的制备,形成不同的配合物,具有不同的物理化学性质,拥有广泛的应用前景。
因此,研究新型唑类配体配合物的合成、结构及性能对深入理解唑类化合物的物理化学性质具有重要意义。
二、研究内容本研究旨在合成一系列新型唑类配体,并以此为基础,运用配位化学的理论和方法,设计和合成新型唑类配体配合物,研究其结构和性质。
主要包括以下内容:1. 合成新型唑类配体:选择合适的唑类化合物为起始原料,设计合成新型唑类配体,优化反应条件,提高合成产率。
2. 合成唑类配合物:利用化学合成法,将合成的新型唑类配体与过渡金属离子配位,形成唑类配合物。
3. 获得配合物晶体:对合成的唑类配合物进行结晶处理,获得单晶样品进行X 射线单晶衍射分析,确定其三维结构。
4. 研究配合物性能:利用红外光谱(IR)、元素分析、热重分析(TGA)、差式扫描量热法(DSC)和紫外-可见吸收光谱(UV-Vis)等技术手段,对唑类配体和配合物的物理化学性质进行分析和研究。
三、研究意义本研究的结果将有助于:1. 深入了解唑类化合物的物理化学性质,为其广泛应用提供更多可能。
2. 探索唑类化合物在无机/有机两相界面的配位反应机制,推动配合物化学、配位化学和过渡金属有机化学的发展。
3. 为开发新型唑类配体和配合物提供理论依据和实验基础,运用于药物、杀虫剂和化学传感器等领域。
四、研究方法本研究采用化学合成法,主要实验操作包括有机合成反应、形成配合物晶体、物性测试等。
主要测试设备包括红外光谱仪、元素分析仪、差式扫描量热仪、热重分析仪和紫外-可见吸收光谱仪。
新型多齿螯合配体及其配合物的合成、表征和性能研究新型多齿螯合配体及其配合物的合成、表征和性能研究摘要:螯合配合物在无机化学和材料科学中具有广泛的应用。
本研究合成了一种新型多齿螯合配体,并通过配位反应制备了相应的配合物。
所得化合物的结构及性质经过多种表征方法进行了详细研究。
研究结果表明,新型多齿螯合配体具有良好的配位能力和选择性,其配合物在催化、荧光和磁性等性能方面表现出了良好的性能。
1. 引言螯合配合物是指能够通过配位键与金属离子或金属离子团簇形成稳定的配合物的化合物。
其在催化、传感、分离纯化和材料制备等方面具有广泛的应用。
设计和合成新型多齿螯合配体,并通过配位反应制备相应的配合物,对于拓展螯合配合物的应用领域具有重要的意义。
2. 实验部分2.1 配体的合成与表征合成了一种包含多个齿基的配体,通过选择适当的前体和反应条件,成功合成了目标配体。
合成的配体通过红外光谱(IR)、核磁共振(NMR)和质谱(MS)等手段进行了表征,结果表明所得化合物的结构符合预期。
2.2 配合物的制备与表征将合成得到的配体与不同的金属离子进行配位反应,得到了一系列配合物。
采用X射线衍射(XRD)、扫描电子显微镜(SEM)和能谱分析等手段对所得配合物的晶体结构和形貌进行了表征。
同时,通过元素分析、热重分析(TGA)和磁性测量对所得化合物的成分、热稳定性和磁性进行了分析与研究。
3. 结果与讨论3.1 配体的性能研究通过合成的配体在与金属离子进行配位反应后,其分子结构与构象发生明显改变。
由于配体提供了多个齿基,可以与金属离子形成多个配位键,从而形成稳定的配合物。
此外,根据所得配合物的质谱图,可以确定配位过程中齿基的配位方式。
3.2 配合物的性能研究所得配合物在催化、荧光和磁性等性能方面表现出了良好的性能。
其中,某一种配合物在催化反应中表现出了高效的催化活性,其活性明显优于传统配体和已知的金属催化剂。
另外,某一种配合物在荧光指示剂方面表现出了良好的性能,在特定条件下对目标物质的检测具有高灵敏度和高选择性。
N,N-双四唑胺的合成工艺改进与研究鲁学峰;卫延安【摘要】以双氰胺钠和叠氮化钠为主要原料,加热分子内环化得到N,N-双四唑胺,并采用IR、NMR、MS等方法,对产品结构表征.探讨了N,N-双四唑胺合成反应机理,考察了溶液酸碱性、反应温度及反应时间等关键因素对结果的影响,获得适宜反应条件:摩尔比为n(C2N3Na):n(NaN3):n(HCl)=1:2:1,在T=60℃,调节pH =3后,加热至100℃反应24 h,冷却至10℃左右,调节pH =2,产率达89.5%,纯度可达99%.【期刊名称】《爆破器材》【年(卷),期】2015(044)002【总页数】4页(P14-17)【关键词】含能材料;N,N-双四唑胺;气体发生剂;双四唑;重氮化【作者】鲁学峰;卫延安【作者单位】南京理工大学化工学院江苏南京,210094;南京理工大学化工学院江苏南京,210094;国家民用爆破器材质量监督检验中心江苏南京,210094【正文语种】中文【中图分类】TJ55;O621.3气体发生剂又称产气剂[1],目前非叠氮气体发生剂的研究日趋活跃,包括唑类、嗪类、胍类、偶氮类等可燃剂的气体发生剂[2]。
其中唑类的研究主要集中在三唑酮类、四唑类及它们的盐类为燃料,其中四唑类化合物以其较高的含氮量、较大产气量和较小的毒性[3-4],成为非常热门的研究对象。
四唑化合物含氮量高,分子中含有多个高能NN键、CN 键和更大的环张力,同时不含硝基,感度较低,热稳定性好,且燃烧产物多对环境友好,因此成为含能材料领域中的新宠,而且双四唑类含氮量更高,用途与四唑类类似,而性能却优于四唑[5]。
主要是以叠氮化钠、双氰胺钠为主要原料合成N,N-双四唑胺(BTA)。
其中,Norris等[6]加入三甲基氯化铵作为酸参与反应,由于三甲基氯化铵较为昂贵,加大了成本;Highsmith等[7]加入氯化铵、硼酸等酸性物质,得出更优异的合成路线,但使用硼酸参与反应,其后处理较难,且反应时间长达48 h;Kita等[8]通过加入氯化铵和非质子溶剂N,N-二甲基甲酰胺(DMF),但用DMF作为溶剂,价格较昂贵,且后处理较难;Oga等[9]加入金属氯化物反应,引入了金属离子,不易剔除,增加成本。
几种多齿配体配合物的合成,结构及表征本文主要介绍了几种多齿配体配合物的合成、结构及表征。
多齿配体配合物具有多种形式,主要分为含氮、含硫、含磷三种。
本文将以此为基础,分别介绍几种典型的多齿配体配合物的合成、结构与表征。
首先介绍的是一种含氮的多齿配体配合物,即4-邻氨基-2, 6-二甲基吡啶(HNDA)。
它是将氨基与二甲基吡啶稳定的通过氨基和羰基方式发生反应而合成的。
HNDA配合物具有双重酰胺桥形态,其中氨基和邻羰基可以作为配体的一种配位中心,其他两端为甲基及双硝基芳基,构成了一种官能团阵列结构。
HNDA配合物通常显示出偏光度和荧光度,将HNDA与金属离子发生双硫键配位后电导率显著升高,表明它也可以作为一种有效的电导配合物。
此外,还有一种含磷的多齿配体,即2-(4-甲基苯氧基)-6-三(羟甲基)苯基-三聚磷酸酯(MPPA)。
该配合物结构为三聚拓扑结构,在配体中的三个磷原子都连接有三个苯氧基,而苯氧基的甲基又与磷原子通过羟甲基酰基发生反应,形成了一种官能团阵列结构。
MPPA配合物有较强的双硫键配位能力,与金属离子发生反应后,电导率可以显著升高,表明它可以作为一种有效的电导配合物。
最后,介绍的是一种含硫的多齿配体,即1,3-二(pyridinylthio)propane(APT)。
APT配合物中两个硫原子都连接有含有一个吡啶基的丙烷碳链,当APT与金属离子络合时,它们之间形成双硫键配位,氧化还原零价金属离子便会发生变化,使APT立即发光,可以用于生物检测。
总之,本文介绍了几种多齿配体配合物的合成、结构与表征,包括含氮(HNDA)、含磷(MPPA)、含硫(APT)三种。
各自具有不同的配位特性,可以作为金属离子的有效电导配合物,广泛应用于生物检测、医药、催化反应等领域。
两个四唑配合物的原位合成、多样化配位模式和强荧光性质高继兴;徐庆;谭育慧;刘艺;温和瑞;唐云志【摘要】在路易斯酸ZnCl2或MnSO4·7H2O作用下,通过1-甲基-1-氢-咪唑-4,5-二甲腈与NaN3水热原位合成了2个四唑配合物:{[Zn2(midt)(Hmidt)](N3)·H2O}n(1)和[Mn(midt)2·(H2O)2]· H2O(2)(midt=1-甲基-1-氢-咪唑-4,5-二四唑).X射线单晶衍射表明尽管配合物1和2均结晶于同样的P(1)空间群,但他们有完全不同的结构.配合物1为一个有趣的二维聚合物结构,含有两个不同配位环境的锌原子和多种配位模式的midt配体,而配合物2为一个三维超分子结构,包含一个有趣的水分子链结构.固态下1和2分别在353和382 nm处显示出较强的蓝色荧光.【期刊名称】《无机化学学报》【年(卷),期】2016(032)007【总页数】8页(P1267-1274)【关键词】Sharpless反应;荧光;四唑配合物;晶体结构【作者】高继兴;徐庆;谭育慧;刘艺;温和瑞;唐云志【作者单位】江西理工大学工程研究院,赣州341000;江西理工大学工程研究院,赣州341000;江西理工大学工程研究院,赣州341000;江西理工大学工程研究院,赣州341000;江西理工大学工程研究院,赣州341000;江西理工大学工程研究院,赣州341000【正文语种】中文【中图分类】O614.24+1;O614.7+11The tetrazole functional group has found a wide range of applications in medicinal chemistry as metabolically stable surrogates for a carboxylic acid groups,and in materials science as high densityenergymaterials[1].Especially,tetrazoles have attracted increasing attention in coordination chemistry due to the excellent coordination ability of four nitrogen atoms from the functional group to act as either a multidentate or a bridging building block[2-8].It has inspired that some new progress were made on the in situ synthesis of cycloaddition reactions recently.Our groups discovered the first pair of enantiomers ofmetal tetrazole complex([Cu(Tzmp)]n) from insitu[2+3]cycloaddition reactions of a flexible organic nitrile ligand with sodium azide in the presence of Cu2+as Lewis acid[9].Following from that,we obtained another new pair enantiomers[Mn(4-tzba)(bpy)2·H2O](bpy)·3H2O(4-tzba=4-tetrazolbenzoic acid)from[2+3]cycloaddition reaction ofbpy,4-tzba,sodium azide and manganese acetate[10].These investigations have suggested that different conditions such as different Lewis acids(metal cations),negative ions, temperaturesand pH valueshavea significantinfluence on their coordination modes of tetrazolyl groups and crystal structures[11-15].In our previous work,most reaction substitutes of the in situ metal tetrazole complexes are organic mononitrile[16-19],the metal tetrazole complexes obtained from the in situ syntheses of bisnitriles and multinitriles are relatively spare[20-21]. When the organic bisnitriles were used assubstitute in[2+3]cycloaddition reactions,there are possible two tetrazolyl groups formed from in situ produced ligands, thus,they maybe exhibit diversified coordination modes and form variable structures.As an ongoing effect to explore new type of bistetrazole complexes and analyze the crystal structures and photluminescent properties,we have attempted to construct two new tetrazole complexes,{[Zn2(midt)(Hmidt)](N3)·H2O}n(1)and[Mn(midt)2· (H2O)2]·H2O(2),by using 1-methyl-1H-imidazole-4,5-dicarbonitrile(midn)assubstitute in Sharpless reaction. To our surprise,1 contains four different types of tetrazolyl groups in terms of their coordination modes. Here we detailed their crystal structures,photoluminescent properties and PXRD.1.1 SynthesisAll reagents were purchased from commercial sources and used as received.As shown in Scheme 1, hydrothermal reaction ofmidn(0.026 4 g,0.2 mmol), NaN3(0.039 0 g,0.6mmol)(Caution:Metalazidesmay be explosive),and ZnCl2(0.027 2 g,0.2 mmol)or MnSO4·7H2O(0.055 4g,0.2mmol)in amixed solution of ethanol(0.5 mL)and water(2 mL)for 3 days give colorless block crystals of 1 or yellow block crystals of 2.For1,Yield:0.031 1 g,49.8%based on mind. Anal.Calcd.forC12H11Cl0N23OZn2(%):C,23.09;H, 1.78;N,51.61.Found(%):C,23.12;H,1.75;N, 51.58.IR(KBr,cm-1):3 483(m),3 201(m),2 095(s), 1 648(s),1 583(m),1 492(s),1 449(m),1 380(s),1 278 (w),867(m),760(m),680(m).For 2,Yield:0.035 0 g, 62.3%.Anal.Calcd.for C12H18N20O4Mn(%):C,25.68;H,3.23;N,49.90.Found(%):C,25.71;H,3.19;N, 49.85.IR(KBr,cm-1):3 481(m),3200(m),1 652(s), 1 582(m),1 488(s),1 439(m),1 380(s),1 250(s),967 (m),762(m),680(m).1.2 CrystallographyX-ray single-crystal diffraction data for 1 and 2 were collected on a Bruker P4 diffractometer with Mo Kαradiation(λ=0.071 073 nm)at296K using the θ-2θscan technique and corrected by Lorentz-polarization and absorption corrections[22-23].Both crystal structures were solved by direct method and refined by the full-matrixmethod based on F2bymeans of the SHELXLTL software package[24].Non-H atoms were refined anisotropicallyusingall reflectionswith I>2σ(I). All H atomswere generated geometrically and refined using a“riding”model withUiso=1.2Ueq(C).The asymmetric units and the packing views were drawn with DIAMOND(Brandenburg and Putz,2005).Angles between some planeswere calculated using DIAMOND, and other calculations were carried out using SHELXLTL.Crystal data and structures refinement for1 and 2 are listed in Table1.CCDC:1451129,1;1451130,2.1.3 Physical techniquesPL emission spectra were measured at room temperature using a spectra fluorophotometer(JASCO, FP-6500)with a xenon lamp(150W)asa lightsource. Powder X-ray diffraction(PXRD)data were recorded on a Rigaku D/MAX 2000 PC X-ray diffraction instrumentwith CuKαradiation(λα1=0.015 405 98 nm,λα2=0.015 444 26 nm)under the generator voltage of 40 kV and tube current of 40 mA,by using continuousscan type from 5.0°to 80.0°at room temperature.2.1 Synthesis and crystal structures of complexes 1 and 2Compared by IR spectra of complex 1 andmidn,a serial of new strong peaks ranges from 1 652 to 1 439 cm-1appear while the absorption of cyano group at 2 355 cm-1νas(C≡N)andνs(C≡N)disappear in 1 and2,indicating that the[2+3]Sharpless reaction between cyano groups and azide anions have finished[16-19]. Especially,a sharp peak at 2 095 cm-1existing in 1 without in 2 suggest that there are possible azide anions in complex 1.Single crystal X-ray diffraction analyses reveal that1 belongs to triclinic crystal system with P1 space group.The fundamental building unit of 1 consists of two crystallgraphi cally Zn(Ⅱ)ions,one midt ligand, one protonated Hmidt ligands(one of the tetrazole groups is protonated),one N3-anions,and one H2O molecule.As depicted in Fig.1,Zn1 and Zn2 have totally different coordinated environment.Zn1 adopts a slightly distorted hexa-coordinated octahedral geometry in which twoβN atoms(N11 andN14ii) from different tetrazolyl groups occupy the axial vertexposition with an angle of 175.01(10)°(N(14)ii-Zn(1)-N(11)),while the basic planar is constituted by four N atoms(N1,N10,N9iand N20)from two chelating midt ligands via theαN atoms of tetrazolyl group and exposed N atoms of imidazole ring.Zn2 has a distorted tetrahedral geometry which connects four independent αN(N16,N17,N6iiiand N7iii)atoms from different tetrazolyl groups.Interestingly,we can clearly discover that all the Zn1-N distances(ranging from 0.211 1(2) to 0.222 4(2)nm)are obviously longerthan those of Zn2-N distances(0.197 5(2)~0.199 0(2)nm).As can be seen in Fig.2a,there also exist two crystallgraphically different midt ligands in 1.One midt ligand(named as midt1)acts as a 3-connected bridging spacer through N17,N16,N14,N11 and N20 linking three different zinc atoms such as Zn1,Zn2 and Zn1viii,while the otherone(correspondingly called as midt2)acts as a 3-connected bridging spacer via N1,N10,N9,N7 and N6 connecting the other three zinc atoms such as Zn1,Zn1viand Zn2vii.Remarkably, we can clearly observe that the plane of midt1 is nearly perpendicular to that of midt2,the dihedral angle between them is 89.14°calculated by dia mond software.As shown in Fig.2b,firstly all the midt1 ligands link different zinc atoms with“end to end”modes to produce an infinite linear structure along the a axis;meanwhile,all themidt2 ligands connect the other zinc atoms to form another linear structure along the c axis,then they cross-link to extend to a 2D sheet which parallel to the ac plane;lastly the neighboring 2D sheets are further packed by the strong supramolecular interactions such as intermolecular hydrogen bonds,π-πstacking of tetrazolyl rings and O-H…πinteractions,which extend the structure into a 3D network.It should be emphasized that there exist four totally different coordination modes of tetrazolyl groups inmidt1 and midt2 ligands.In midt1 (Fig.2a,left),one tetrazolyl group adoptsμ3coordination mode and the otherusesμ1coordination mode by one ofαN atoms.In midt2(Fig.2a,right),both tetrazolyl groups adoptμ2coordination mode,but one of them uses twoαN atoms of tetrazolyl ring and the other employs oneαN atom and oneβNatom of tetrazolyl ring.According to the summary oncoordinationmodesof tetrazolylgroupsby Xiong etal[1], the above coordination modes belong to modeⅦ, modeⅠ,modeⅢand modeⅤrespectively.To our knowledge,few literatures reported that so many coordination modes of tetrazolyl groups are coexistent in the same complex before.Although 2 also crystallizes in P1 space group,it has completely different structure from 1.The asymmetric unit of 2 is composed of halfMn(Ⅱ)cation and halfmidt ligand,one coordinated watermolecule and one lattice water molecule.As shown in Fig.3a, the coordination geometry around Mn(Ⅱ)center can be viewed as a slightly distorted octahedron which is surrounded by two coordinated water molecules and four N atoms of two chelating midt ligands.To our surprise,only half of the tetrazolyl groups in midt ligands of 2 participate in coordination.Because of the steric hindrance effect of the uncoordinated tetrazolyl groups,it prevent forming an infinite high dimensionalmetal organic framework.Nevertheless,it become an important factor to assembly themolecules into a three dimensional supramolecular structure, since there exist a lot of strong intermolecular hydrogen bonds between the uncoordinated tetrazolyl groups and watermolecules such as O(2W)-H(2WA)…N(5)iv(0.282 1(3)nm)and O(1W)-H(1WB)…N(4)v(0.280 8(3)nm).In additional,other interesting supramolecular interactions includingπ-πstacking interac-tionsbetween the neighboring tetrazolyl planes(0.345 4 nm)and imidazolyl planes(0.345 4 nm)also contribute to stabling the whole structure(Fig.3b).One of themost striking features is that there lies a one dimensionalwater cluster in 2.As shown in Fig. 4,the basic building block can be regarded as a tetrameric water cluster which is constituted by two equivalents coordinated watermolecules(O1Wvi,O1W) and two equivalents lattice water molecules(O2Wvi, O2W).The short contacts and the reasonable angles between them indicate the existence of strong hydrogenbonds(Table2),which favors the construction of a tetrameric water cluster.Then,these building blocks are further extended by strong intermolecular hydrogen bonds between lattice water molecules(O(2W)-H(2WB)…O(2W)v0.287 0(5)nm),resulting in the formation of an infinite one dimensionalwater chain.2.2 Fluorescence properties and powder X-ray diffraction analysisWe studied the solid-state luminescent emissionspectra of 1 and 2 at room temperature(Fig.5). Complex 1 display a very strong emission at353.4 nm. In comparison with 1,complex 2 appears a distinct“Einstein”shift,the maximum emissive peak occurs at382.0 nm,meanwhile the relative intensity decreases. According to previous research and our investigation on tetrazolate complexes,the emission peak ranging from 350 to 380 nm is attributed to the ligand to ligand change transition[11-19],since the luminescent emission from d-d charge transition of Zn(Ⅱ)andMn(Ⅱ)mainly occurs in 450 and 650 nm respectively.Besides, in comparison with 2 the significant improvement of 1 at intensity is tentatively attributed to the weak Zn…Zn(3d-4s)with d10cluster-centered(CC)excited states. There may exist CC excited states because ofthe vibronic progression in the spectra and the short Zn…Zn distances in the structures which favor the formation of metal-metal bond in light of Cotton′s work through DF T calculations.To confirm the phase purity of 1 and 2,the powder X-ray diffraction weremeasured[25-27].As shown in Fig.6,the powder XRD of complexes 1 and 2 show that their products are very highly crystalline.The results also revealed that the reaction was quantitative because no starting materials were detected.Their stimulated powder XRD patterns based on crystal structure analysis allowed unambiguous identification via comparison of the experimental and computed powder XRD patterns.We have synthesized two tetrazole complexes by using bisnitriles compoundmidtas[2+3]cycloaddition reaction substrate.The investigation on 1 and 2 suggest that they have totally different structures and 1 display a strong blue emission.References:[1]Zhao H,Qu Z R,Ye H Y,et al.Chem.Soc.Rev.,2008,37: 84-100[2]Li Y W,Ma H,Chen Y Q,et al.Cryst.Growth Des.,2012, 12:189-196[3]Tian D,Chen Q,Li Y,etal.Angew.Chem.Int.Ed.,2014,53: 837-841[4]He K H,SongW C,LiY W,et al.Cryst.Growth Des.,2012, 12:1064-1068[5]He K H,Li YW,Chen Y Q,etal.Cryst.Growth Des.,2012, 12:2730-2735[6]Li L,Zhang S,Han L,et al.Cryst.Growth Des.,2013,13: 106-110[7]Wang H,Yang W,Sun ZM,et n J.,2013,8:982-989[8]Kusaka S,Sakamoto R,Kitagawa Y,et n J., 2012,7:907-910[9]Tang Y Z,Xiong JB,Gao JX,etal.Inorg.Chem.,2015,54: 5462-5466[10]Gao JX,Xiong JB,Xu Q,et al.Cryst.Growth Des.,2016, 16:1559-1564[11]Li L,Zhang S,Han L,et al.Cryst.Growth Des.,2013,13: 106-110[12]Wang C,Zhang T,Lin W.Chem.Rev.,2012,112:1084-1104[13]Zhao S,Zhang J,Zhang S,et al.Inorg.Chem.,2014,53: 2521-2527[14]Zhao S,Gong P,Luo S,et al.J.Am.Chem.Soc.,2014,136: 8560-8563[15]Li L,Ma J,Song C,et al.Inorg.Chem.,2012,51:2438-2442[16]Tang Y Z,Zhou M,Huang J,et al.Inorg.Chem.,2013,52: 1679-1681[17]Tang Y Z,Wang G X,Ye Q,etal.Cryst.Growth Des.,2007, 7:2382-2386[18]TAN Yu-Hui(谭育慧),XIONG Jian-Bo(熊剑波),HUANG Jun(黄珺),etal.Chinese J.Inorg.Chem.(无机化学学报), 2014,30(7):1621-1628[19]Zhong D C,Wen Y Q,Deng JH,et al.Angew.Chem.Int. Ed.,2015,54:11795-11799[20]Tong X L,Wang D Z,Hu T L,et al.Cryst.Growth Des., 2009,9:2280-2286[21]Wang D Z.Polyhedron,2012,35:142-148[22]Sheldrick G M.SHELXS-97,Program for X-ray Crystal Structure Determination,University of Göttingen,Germany, 1997.[23]Sheldrick G M.SHELXS-97,Program for Crystal StructureSolutio n,University of Göttingen,Germany,1997.[24]Flack H D.Acta Crystallogr.Sect.A,1983,A 39:876-881[25]Zhang Y,Liao W Q,Fu D W,et al.J.Am.Chem.Soc., 2015,137:4928-4931[26]Ye H Y,Zhou Q H,Niu X H,et al.J.Am.Chem.Soc., 2015,137:13148-13154[27]Tang Y Z,Yu Y M,Xiong J B,et al.J.Am.Chem.Soc., 2015,137:13345-13351。
专利名称:用于合成四唑的新的试剂和使用该试剂合成四唑的方法
专利类型:发明专利
发明人:德原吟朗,山口正,岩崎哲也
申请号:CN96195084.6
申请日:19960527
公开号:CN1189158A
公开日:
19980729
专利内容由知识产权出版社提供
摘要:碱金属叠氮化物和氯化锌结合起来用作为由式(Ⅰ)的腈: (其中R为任何取代基)合成式(Ⅱ)的1H-四唑:(其中R定义如Ⅱ式)的四唑形成剂。
该四唑形成剂允许使用很多种类的溶剂,原则上可用于任何腈。
另外,使用廉价的氯化锌使费用降低。
申请人:中国化药株式会社,湧永制药株式会社
地址:日本广岛
国籍:JP
代理机构:中国国际贸易促进委员会专利商标事务所
代理人:隗永良
更多信息请下载全文后查看。