LTE干扰问题
- 格式:pdf
- 大小:220.23 KB
- 文档页数:5
LTE帧偏置设置问题导致高干扰干扰轮询图【原因分析】1)对1、4小区天馈调整网管检测底噪无变化;2)功率由92降为-30,收缩小区覆盖范围,网管检测底噪无变化;3)由于移动D频段与MMDS频段有一部分重叠,可能为MMDS干扰导致,但统计1、4小区PRB轮询图,所有RB干扰基本都为-90dBm左右,底噪整体抬升,与典型MMDS导致的干扰轮询图差异较大;典型MMDS干扰轮询图1典型MMDS干扰轮询图24)联通D频段使用2555~2575M,电信D频段使用2635-2655M,而移动D频段为2575~2635(现网使用D1,D2频段中心频点分别为2585M,频点37900和2604.8M,频点38098),在联通和电信使用频段之间,怀疑为联通和电信D频段小区与移动D频段小区帧时隙不同步导致的干扰;频段使用分布图5)收集干扰日志,使用华为PEAC平台分析干扰结果为系统内失锁干扰或者帧时隙配置问题导致的干扰。
所有符号的时域频域图6)核查帧偏置参数,全网D频段小区的帧偏置参数统一配置为“TL双模SA2+SSP5帧偏置”。
由于现网“T+L”共存,LTE的F频段小区帧偏置与TD同步,为实现LTE网络”F+D”载波聚合,所以D频段小区的帧偏置设置为“TL双模SA2+SSP5帧偏置”,以实现F和D 的帧头对齐。
但由于友商D频段小区帧偏置都为0,与现网的D频段帧头不一致,可能是导致干扰的原因。
【解决措施】目前现网仅开通同频段载波聚合,没有开通异频段的载波聚合。
修改农机校科技楼D 频段6个小区帧偏置为0后,干扰降至-106dBm左右,将全网D频段小区帧偏置全改为0后,干扰降至-117dBm左右,干扰消失。
小区干扰平均值PRB干扰轮询图【总结与建议】新增D频段站点,由于移动使用的频率与友商等运营商系统占用的频段相邻或相近,帧时隙不同步会导致友商D频站点对移动D频段小区造成干扰,优化现场需结合友商设置的帧偏置和移动网络自身需求,如现场存在”F+D”聚合站点,D频段必须与F频段帧对齐,此时需与友商沟通协商,将友商帧偏置修改为与移动帧偏置同步,避免由帧偏置不同步导致的干扰问题。
LTE干扰排查案例
分析后台底噪
取凌晨2:00~凌晨2:1515分钟的数据,按照一定的评判标准,来选取受干扰比较严重的小区。
可以按照如下的判决条件:1,平均值大于-113dBm/RB(仿真在邻区加载条件下上行吞吐量损失5%的门限值,该判决门限可作为高干扰小区的基本判断门限,适用于判断本系统和异系统干扰);
2,最大值大于-110dBm/RB(武汉现场测试判决条件,适用于判断异系统干扰);
按照以上标准我们筛选出了以下25个小区:
干扰筛选结果.csv
本月共处理1个小区的干扰:
选取高干扰小区的底噪进行做图
按照1和2中条件筛选出来的小区,进行100RB上做图,如下所示:
横轴是100个RB,纵轴是RB上的干扰场强;
分析图形,预判干扰类型
阻塞干扰判决条件如下:
1,100个RB上都有提升,干扰最小的RB也超过-117;
2,后50个RB上干扰不平,有一定的抖动及坡度;
GFA436_A52_鹤萝北萝北7号站-DLH-2怀疑为存在阻塞干扰,通过现场勘测发现该站点与电信FDD基站共站,天线隔离度不足,关闭电信站点后干扰消失,具体如下:
调整前
调整后
通过现场勘测及关闭电信FDD站点前后对比可以判定该小区干扰为电信FDD站点产生的阻塞干扰。
LTE 干扰现状、缘由分析及解决方案介绍干扰原理及分类依据干扰产生的起因可以将干扰分为系统内干扰和系统间干扰。
l 系统内干扰:系统内干扰通常为同频干扰。
TD-LTE 系统中,虽然同一个小区内的不同用户不能使用一样频率资源 (多用户 MIMO 除外),但相邻小区可以使用一样的频率资源。
这些在同一系统内使用一样频率资源的设备间将会产生干扰,也称为系统内干扰。
l 系统间干扰:系统间干扰通常为异频干扰。
世上没有完善的无线电放射机和接收机。
科学理论说明抱负滤波器是不行实现的,也就是说无法将信号严格束缚在指定的工作频率内。
因此,放射机在指定信道放射的同时将泄漏局部功率到其他频率,接收机在指定信道接收时也会收到其他频率上的功率,也就产生了系统间干扰。
主要的干扰具体分类如以以下图所示:系统内干扰原理lGPS 失锁干扰:GPS 失锁、星卡故障、GPS 天线故障等缘由导致时钟不同步的A 基站放射信号干扰到了B 基站的上行接收。
l 超远同频干扰:远距离的站点信号经过传播,DwPTS 与被干扰站的UpPTS 对齐,导致干扰站的基站发对被干扰站的基站收的干扰. l 帧失步干扰:帧偏置配置不当、子帧配比不全都等缘由会导致基站间的上下行帧对不齐,导致SiteA 的下行干扰到了SiteB 的上行,形成帧失步干扰。
l 重叠掩盖干扰:A小区和B 小区存在重叠区域(同频邻区必定会存在确定的切换区域),由于两个小区之间的信号不是全都的,不正交,会形成干扰。
l 硬件故障干扰:设备故障是指在设备运行中,设备本身性能下降等造成干扰包括:RRU 故障,RRU 接收链路电路工作特别,产生干扰;天馈系统故障,包括天线通道故障,天线通道RSSI 接收特别等,天馈避雷器老化,质量问题,产生互调信号落入工作带宽内。
系统间干扰原理l 杂散干扰:由于放射机中产生辐射信号重量落入受害系统接收频段内,导致受害接收机的底噪抬升,造成灵敏度损失,称之为杂散干扰。
l 互调/谐波干扰:不同频率的放射信号形成互调/谐波产物。
LTE干扰排查(学习手册)-2014-12-12前言LTE(Long-Term Evolution,长期演进技术)作为第四代移动通信技术,已经广泛应用于全球各地的移动通信网络。
它的高速数据传输和低时延特性,使得它成为许多应用场景的首选。
然而,LTE在实际应用时,也面临着干扰问题。
这些干扰可能会影响LTE的网络性能和用户体验。
因此,对于LTE干扰的排查和分析是很重要的。
本文档旨在介绍如何排查LTE干扰问题,为LTE网络的优化和运维提供帮助。
LTE干扰的分类LTE干扰可以分为以下几类:1.内部干扰:来自于系统内部的干扰,比如同频干扰、邻频干扰等。
2.外部干扰:来自于LTE系统周围环境的干扰,比如天线的近距离干扰、天气等环境因素。
3.人为干扰:来自于用户设备或者干扰设备导致的干扰,比如GPS、WIFI等设备的干扰。
针对这些干扰,我们需要不同的排查方法和工具。
LTE干扰排查流程LTE干扰排查的流程如下:1.获取现场环境参数: 针对外部干扰和人为干扰,我们需要获取一些现场环境参数,包括位置、天气、时间等信息。
这些参数有助于初步确定干扰源。
2.收集周边信号信息: 我们需要使用LTE网络测试仪、频谱分析仪等工具,收集周边信号的参数,包括信道功率、信噪比、发射频率等信息。
3.数据分析: 利用专业的数据分析工具,对收集到的数据进行分析,初步判断干扰源是否为某个特定频段的信号。
4.实地验证: 根据数据分析的结果,到现场进行实地验证,比如检查和测试周边设备,寻找干扰源的具体位置等。
5.排除干扰: 确定干扰源后,尝试消除或者减少干扰。
对于内部干扰,我们可以调整邻区参数、修改功率控制等方式来减少干扰。
对于外部干扰或人为干扰,我们可以寻找天线的合适位置、关闭其他干扰设备等方式来解决问题。
6.追踪监测: 最后,我们需要对解决干扰后的LTE系统进行监测,确保干扰完全被消除。
如果干扰再次出现,需要重新进行排查和处理。
LTE干扰排查工具在LTE干扰排查的过程中,我们需要使用一些专业的工具和仪器。
LTE多系统互调干扰解决方案随着移动通信技术的发展,LTE多系统互调干扰问题成为运营商面临的一个重要挑战。
在现有的网络中,由于LTE与其他无线通信系统共用频段,可能会导致互调干扰,进而降低用户通信质量。
为了解决这一问题,需要采取一系列的技术手段和规范措施。
本文将介绍LTE多系统互调干扰的解决方案。
1.频域资源规划在LTE系统中,通过对频谱进行动态管理和分配,可以减少与其他系统之间的互调干扰。
首先,需要对不同系统的频段进行合理划分,避免频段交叠。
其次,可以采用跳频技术,即在一定时间间隔内,动态改变频率使用情况,从而降低互调干扰的可能性。
2.功率控制合理的功率控制策略可以减少互调干扰的发生。
LTE系统中可以根据实际情况,动态调整功率水平,使得发射功率不超过允许的最大值。
同时,可以通过设备间的协调,控制系统之间的功率差异,从而降低互调干扰。
3.空域资源规划通过合理的空域资源规划,可以将相邻系统之间的载波分配得更加均匀,从而减少互调干扰的概率。
可以利用网络规划工具进行仿真分析,确定不同站点的位置和天线方向,使得站点之间的干扰最小化。
4.前向误差校正(FEIC)前向误差校正是一种通过提前对LTE信号进行处理的技术手段,从而降低与其他系统之间的互调干扰。
通过对信号进行数字预处理,可以有效地降低互调干扰带来的负面影响。
5.信号过滤通过在LTE系统中增加过滤器,可以实现对其他系统产生的互调干扰信号的滤波。
这样可以阻止互调干扰信号进入LTE系统,从而提高系统的抗干扰能力。
6.接收端敏感度控制在LTE系统中合理控制接收机的灵敏度,可以减少来自其他系统的信号带来的互调干扰。
通过动态调整接收机的灵敏度级别,可以使其能够更好地抵抗互调干扰带来的影响。
总结起来,LTE多系统互调干扰问题的解决方案包括频域资源规划、功率控制、空域资源规划、前向误差校正、信号过滤和接收端敏感度控制等。
通过采取这些措施,可以有效地降低多系统互调干扰的概率,提高用户通信质量。
lte干扰极限值随着移动通信技术的快速发展,LTE(Long Term Evolution,长期演进技术)已经成为当前移动通信网络的主流技术。
在LTE网络运营过程中,干扰问题日益凸显,影响着网络的性能和用户体验。
因此,了解LTE干扰极限值对于优化网络质量和提高用户满意度具有重要意义。
一、LTE干扰极限值的概念与意义LTE干扰极限值是指在保证LTE网络正常运行的前提下,所能承受的最大干扰水平。
干扰极限值的大小直接关系到网络的稳定性和服务质量。
掌握LTE 干扰极限值,有助于网络运营商合理规划网络资源,提高网络性能,降低运营成本。
二、LTE干扰极限值的影响因素1.频段分配:频段分配对LTE干扰极限值有直接影响。
频段越靠近,干扰越大;频段越远离,干扰越小。
2.信号传输特性:信号传输特性包括信号强度、信号传播方式和多径衰落等。
这些因素会影响LTE干扰极限值的大小。
3.抗干扰技术:网络设备和终端采用的抗干扰技术会影响LTE干扰极限值。
例如,小区间干扰协调技术、功率控制技术等。
4.网络拓扑结构:网络拓扑结构包括基站布局、小区覆盖范围等。
合理的网络拓扑结构有助于降低干扰,提高LTE干扰极限值。
三、测量LTE干扰极限值的方法1.实验室测量:通过专业的实验室设备,模拟实际网络环境,对LTE干扰极限值进行测量。
2.现场测量:在实际网络环境中,利用测试设备采集数据,分析得出LTE 干扰极限值。
3.仿真计算:基于网络规划参数和信号传播模型,运用计算机仿真技术计算LTE干扰极限值。
四、提高LTE干扰极限值的策略1.优化频段分配:合理规划频段资源,降低邻区干扰,提高LTE干扰极限值。
2.采用抗干扰技术:在网络设备和终端上应用抗干扰技术,提高抗干扰能力。
3.优化网络拓扑结构:合理布局基站,减小小区间干扰,提高LTE干扰极限值。
4.网络优化与调整:根据实际网络运行状况,及时进行网络优化和调整,提高LTE干扰极限值。
五、总结与展望LTE干扰极限值对于网络性能和用户体验具有重要影响。
eNodeB 可以通过UE 发送的CQI 得到下行信道干扰情况,也可以通过测量SRS 或是 DM-RS 的SINR,还有IOT 测算得到上行信道干扰的综合情况。
eNodeB 通过X2 接口互相合作完成小区间资源分配和调度以及相应的功控,最终的目的是提升了LTE 的系统性能。
ICIC 分类如下: n (1)静态ICIC Ø 边缘频带和中心频带分配固定,频带划分好后不需要调整边缘频带n
(2)半静态ICIC Ø 有边缘频带和中心频带初始划分,后续可以根据服务小区和邻区实际的边缘负荷动态调整边缘频带。
n
(3)动态ICIC Ø 没有边缘频带和中心频带初始划分,完全根据服务小区和邻区实际的边缘负荷动态调整边缘频带。
在3GPP 规范的 R10 版本中,增加了COMP 的功能,这样小区间的干扰协调机制将会大大地得到加强。
其特点如下:
(1)相邻的几个基站对小区边缘的用户同时提供服务,可以大大提高小区边缘用户的性能, 提高其吞吐量;
(2)变临区干扰为有用信号,消除小区中心和边缘的差别。
邻小区干扰来自不同基站和用户的信号的子载波间没有正交性。
在频率复用系数为1 的组网情况下, 位于小区边缘的终端用户会明显的受到来自于相邻小区的干扰。
因此,小区间的干扰余量必须基于链路预算的计算确定
2、
1. 系统内干扰
TD-LTE的组网包括同频和异频两种方式,对于同频组网,整个系统覆盖范围内的所有小区可以使用相同的频带为本小区内的用户提供服务,因此频谱效率高。
但是对各子信道之间的正交性有严格的要求,否则会导致干扰。
对于异频组网,由于频率的不同产生了一定的隔离度,但是仍然需要进行合理的频率规划,确保网络干扰最小,同时由于受限于频带资源,所以存在着干扰控制与频带使用的平衡问题。
1.1.同频组网
1.1.1. 小区内干扰
由于OFDM的各子信道之间是正交的,这种特点决定了小区内干扰可以通过正交性加以克服。
如果由于载波频率和相位的偏移等因素造成子信道间的干扰,可以在物理层通过采用先进的无线信号处理算法使这种干扰降到最低。
因此,一般认为OFDMA系统中的小区内干扰很小。
1.1.
2. 小区间干扰
对于小区间的同频干扰,可以采用干扰抑制技术,主要包括干扰随机化、干扰消除和干扰协调。
干扰随机化和干扰消除是一种被动的干扰抑制技术,对网络的载干比并无影响。
干扰随机化通过比如加扰、交织,跳频、扩频、动态调度等方式,使系统在时间和频率两个维度的干扰平均化。
干扰消除利用干扰的有色特性,对干扰进行一定程度的抑制,即:通过UE的多个天线对空间有色干扰进行抑制。
波束成形在空间维度,通过估计干扰的空间谱特性,进行多天线抗干扰合并;在频率维度,通过估计干扰的频谱特性,优化均衡参数,进行单天线抑制,如IRC。
干扰协调对小区边缘可用的时频资源作一定的限制,正交化或半正交化,是一种主动的控制干扰技术,理想的协调是分配正交的资源,但这种资源通常有限;非理想的协调可以通过控制干扰的功率,降低干扰。
干扰协调主要分为静态ICIC、半静态ICIC以及动态ICIC。
静态ICIC的核心是各小区的无线资源按照一定规则分配后固化使用。
小区边缘用户使用整个可用频段的一部分,并且邻小区相互正交,用户全功率发送;小区中心用户可以使用整个可用频段,但降功率发送;
动态ICIC是在静态ICIC的基础上通过eNodeB进行实时调度,在相邻小区间协调频率资源的使用,以达到抑制干扰目的,适应小区间负载不均匀的场景;小区边缘频带扩展时需要综合考虑邻区边缘频带的情况,防止发生冲突;
1.2.异频组网
根据上面的分析,TD-LTE系统在本小区内不存在同频干扰,干扰主要来自于使用相同频率的邻小区。
如果在服务小区与最相邻的小区之间保持异频,通过空间传播距离隔离同频小区,这样就能够
尽可能的降低同频干扰。
异频组网中相邻小区为了降低干扰,使用不同的频率,频谱效率相对于同频要差一些,但RRM 算法简单,边缘速率相对于同频组网会高一些。
因此,如果采用异频组网,需要进行合理的频率规划,确保网络干扰最小。
同时,由于受限于频带资源,所以存在着干扰控制与频带使用的平衡问题。
仿真结果也表明:相比于同频组网,异频组网对小区载干比C/I能力得到了很大提高。
这意味着同样覆盖的面积下,在获得同样频率资源单位的情况下,用户有更高的传输速率。
同时,覆盖区域的边缘用户的峰值速率可获得提高。
图1同频与异频组网C/I对比仿真
以OFDMA技术为基础的TD-LTE系统的空中接口没有使用扩频技术,由此,信道编码技术所产生的处理增益相对较小,降低了小区边缘的干扰消除能力。
为了提高LTE系统容量而必须要采取的有效的频率复用技术,一种好的频率复用方式可以极大降低TD-LTE的干扰,使系统达到最佳性能。
目前业界采用比较多的是“软频率复用”或“部分频率复用”方式。
即将频率资源分为若干个复用集。
如
图2所示,小区中心的用户可以采用较低的功率发射和接收,即使占用相同的频率也不会造成较强的ICI,因此被分配在复用系数为1的复用集。
小区边缘的用户需要采用较高的功率发送和接收,有可能造成较强的ICI,因此被分配在频率复用系数为1/N的复用集。
这样可以通过异频的方式降低小区间的干扰。
图2 TD-LTE系统的多小区软频率复用
2. 系统间干扰
目前,TD-LTE可以使用的频段包括1880~1920MHz(F频段)、2320~2370MHz(E频段)以及2570~2620MHz(D频段)。
根据中国移动的规划,考虑到与TD-SCDMA网络共用的情况,F和D频段将用在室外,E频段将用在室内。
因此在F/E频段存在与TD-SCDMA的干扰,本文所要重点分析的正是这两种场景。
至于在F频段与DCS1800、CDMA2000的干扰则只需要保证一定的空间隔离度可以加以抑制,相关的文献资料比较多,本文也就不再累述。
在展开分析前,我们先来了解一下系统间干扰分析的几个概念:
1. 邻频干扰:如果不同的系统工作在相邻的频率,由于发射机的邻道泄漏和接收机邻道选择性的性能的限制,就会发生邻道干扰。
2. 杂散辐射:由于发射机中的功放、混频器和滤波器等器件的非线性,会在工作频带以外很宽的范围内产生辐射信号分量, 包括热噪声、谐波、寄生辐射、频率转换产物和互调产物等。
当这些发射机产生的干扰信号落在被干扰系统接收机的工作带内时,抬高了接收机的噪底,从而减低了收灵敏度。
3. 互调干扰:主要是由接收机的非线性引起的,后果也是抬高底噪,降低接收灵敏度。
种类包括多干扰源形成的互调、发射分量与干扰源形成的互调和交调干扰。
4. 阻塞干扰:阻塞干扰并不是落在被干扰系统接收带内的,但由于干扰信号过强,超出了接收
机的线性范围,导致接收机饱和而无法工作。
为了防止接收机过载,收信号的功率一定要低于它的1dB压缩点。
TD-LTE与TD-SCDMA都是TDD系统,上下行链路共用同一频带,发射和接收在不同时刻交替进行。
当两个系统不同步时(即上下行切换点不对齐),一方在发射,另一方在接收,这种情况就会产生严重干扰的可能性,干扰强度取决于基站设备指标及其空间隔离度。
另外,随着站址选择的愈加困难,两个系统共站址的场景会越来越多,如果此时两系统邻频,那么干扰问题将会愈加突出。