PLC编程,模拟量的计算、脉冲量的计算方法总结
- 格式:doc
- 大小:16.50 KB
- 文档页数:3
教你⼏步搞定西门⼦PLC模拟量计算(附程序)假设模拟量的标准电信号是 A0—Am(如:4—20mA),A/D转换后数值为D0—Dm(如:6400—32000) ,设模拟量的标准电信号是A,A/D转换后的相应数值为D,由于是线性关系,函数关系A=f(D)可以表⽰为数学⽅程:A=(D-D0)×(Am-A0)/(Dm-D0)+A0。
根据该⽅程式,可以⽅便地根据D值计算出A值。
将该⽅程式逆换,得出函数关系D=f(A)可以表⽰为数学⽅程:D=(A-A0)×(Dm-D0)/(Am-A0)+D0。
具体举⼀个实例,以S7-200和4—20mA为例,经A/D转换后,我们得到的数值是 6400—32000,即A0=4,Am=20,D0=6400,Dm=32000 ,代⼊公式,得出:A=(D-6400)×(20-4)/(32000-6400)+4假设该模拟量与AIW0对应,则当AIW0的值为12800时,相应的模拟电信号是6400×16/25600+4=8mA。
⼜如,某温度传感器,-10—60℃与4—20mA相对应,以T表⽰温度值,AIW0为PLC模拟量采样值,则根据上式直接代⼊得出: T=70×(AIW0-6400)/25600-10 可以⽤T 直接显⽰温度值。
模拟量值和A/D转换值的转换理解起来⽐较困难, 该段多读⼏遍, 结合所举例⼦,就会理解。
为了让您⽅便地理解,我们再举⼀个例⼦:某压⼒变送器,当压⼒达到满量程5MPa时,压⼒变送器的输出电流是20mA,AIW0的数值是32000。
可见,每毫安对应的A/D值为32000/20,测得当压⼒为0.1MPa时,压⼒变送器的电流应为4mA,A/D值为(32000/20)×4=6400。
由此得出,AIW0的数值转换为实际压⼒值(单位为KPa)的计算公式为:VW0的值=(AIW0的值-6400)(5000-100)/(32000-6400)+100 (单位:KPa)编程实例您可以组建⼀个⼩的实例系统演⽰模拟量编程。
PLC中模拟量计算在PLC(可编程逻辑控制器)中,模拟量计算是指对模拟量输入进行处理和转换以产生所需的输出。
在PLC中,模拟量输入通常是电压或电流信号,用来表示一个连续变化的量,例如温度、压力、流量等。
模拟量计算的过程可以分为以下几个步骤:1.信号调整:PLC通常需要对输入信号进行调整以适应其工作范围。
例如,如果输入信号是0-10V的电压信号,而PLC的输入范围是0-5V,那么需要通过电压分压电路将输入信号缩放到PLC的输入范围内。
2.信号采样:PLC需要以固定的时间间隔对输入信号进行采样。
采样频率需要根据所要测量的物理量和控制要求进行选择。
通常情况下,采样频率越高,计算的精度越高,但也会增加计算负荷。
3.信号滤波:由于输入信号可能受到电磁干扰或其他因素的影响,可能会出现噪声。
因此,在计算之前,需要对输入信号进行滤波以去除不必要的噪声。
常见的滤波方法包括低通滤波、高通滤波和带通滤波等。
4.信号线性化:有时,输入信号并不是直接反映所测量的物理量。
例如,传感器输出的电压信号可能与温度呈非线性关系。
在这种情况下,需要通过线性化来转换输入信号。
线性化可以通过查找表、数学计算或其他方法来实现。
5.信号计算:一旦对输入信号进行了调整、采样、滤波和线性化,就可以进行所需的计算。
这些计算可以包括加减乘除、逻辑运算、PID控制等。
根据PLC的功能和编程语言的支持,可以实现各种复杂的计算。
6.输出生成:根据计算的结果,可以生成相应的模拟量输出信号。
这通常需要将计算结果转换为电压或电流信号,并通过数字模拟转换器(DAC)或其他方法进行输出。
7.输出调整:与输入信号调整类似,有时需要对输出信号进行调整,以适应所需的工作范围。
例如,如果PLC的输出范围是0-10V,而实际应用需要0-5V范围的输出,可以通过电阻分压电路进行调整。
以上是PLC中模拟量计算的基本过程。
在实际应用中,可能还需要考虑安全性、精度、响应时间等因素,并根据具体需求选择适当的传感器、输入输出模块和计算方法。
plc模拟量计算公式LAD方法实现(1)计算公式说明[(IN0-IN1)/(IN2-IN1)]*(IN4-IN3)+IN3•IN0:模拟量输入信号,数据类型为整数•IN1:模拟量信号下限,数据类型为整数•IN2:模拟量信号上限,数据类型为整数•IN3:工程量数值下限,数据类型为实数•IN4:工程量数值上限,数据类型为实数(2)程序编写说明02SCL方法实现(1)计算公式说明[(Raw-Dmin)/(Dmax-Dmin)]*(Emax-Emin)+Emin •Raw:模拟量输入信号,数据类型为整数•Dmin:模拟量信号下限,数据类型为整数•Dmax:模拟量信号上限,数据类型为整数•Emin:工程量数值下限,数据类型为实数•Emax:工程量数值上限,数据类型为实数(二)程序编写说明FUNCTION FC1 : VOID //函数定义VAR_INPUT //输入变量定义Raw,Dmin,Dmax: INT;Emin,Emax: REAL;END_VARVAR_OUTPUT //输出变量定义OutReal: REAL;OutPercentage:REAL;END_VARVAR_TEMP //临时变量定义RawTemp: INT;END_VARBEGINIF (Emin < Emax) AND (Dmin < Dmax) THEN//判断上下限值是否设置合理IF Raw < Dmin THEN RawTemp := Dmin;//输入值超下限直接取下限END_IF;IF Raw > Dmax THEN RawTemp := Dmax;//输出值超上限直接取上限END_IF;IF (Raw >= Dmin) AND (Raw <= Dmax) THEN RawTemp := Raw;//输入正常直接读取输入值END_IF;OutReal := (INT_TO_REAL(RawTemp-Dmin)/INT_TO_REAL(Dmax-Dmin))*(Emax-Emin)+Emin;//数量类型转换和计算公式OutPercentage := (OutReal/(Emax-Emin))*100.0;ELSE //上下限值设置不合理直接输出零OutReal := 0.0;OutPercentage := 0.0;END_IF;END_FUNCTION。
plc模拟量输出公式PLC(可编程逻辑控制器)在工业控制领域可是个相当重要的角色,而模拟量输出公式更是其中的关键一环。
咱们先来说说啥是模拟量。
想象一下,你家里的水龙头,开大一点水就流得多,关小一点水就流得少,这水流的大小变化就是一种模拟量。
在 PLC 的世界里,模拟量也是类似的概念,比如温度、压力、速度等等这些连续变化的量。
而 PLC 要控制这些模拟量的输出,就得依靠特定的公式啦。
一般来说,常见的模拟量输出公式是这样的:输出值 = (输入值 - 输入下限)×(输出上限 - 输出下限)/(输入上限 - 输入下限) + 输出下限这公式看起来有点复杂,咱们来举个例子。
比如说,有一个温度传感器,它的测量范围是 0 - 100 摄氏度,对应的 PLC 模拟量输入值是 0 - 10000。
现在传感器测到的温度是 50 摄氏度,那输入值就是 5000。
如果我们要把这个温度值通过 PLC 输出到一个控制器,这个控制器的接收范围是 4 - 20mA,那按照公式来算:首先,(5000 - 0)×(20 - 4)/(10000 - 0) + 4 ,算出来就是12mA ,这就是 PLC 应该输出的模拟量电流值。
我之前在一个工厂里就碰到过这么个事儿。
厂里的一台设备出了故障,老是温度控制不稳定。
我就去排查问题,发现就是 PLC 模拟量输出这里出了岔子。
按照上面说的公式仔细一核对,原来是输入上限和下限设置错了,导致输出的模拟量电流不对,温度控制自然就乱套啦。
咱们再深入一点说说这个公式里的几个要素。
输入下限和上限,就好比是一个尺子的两端,确定了测量的范围。
输出下限和上限呢,就是 PLC 要控制的目标范围。
这就像是你要把一堆大小不同的苹果按照一定的规则放进不同的篮子里,得先清楚每个篮子能装多大的苹果,然后再根据苹果的大小来分配。
总之,PLC 模拟量输出公式虽然看起来有点头疼,但只要搞清楚每个部分的含义,多做几次计算,再结合实际情况去调试,就能让 PLC乖乖地按照我们的想法来控制那些模拟量啦。
PLC 模拟量的原理以及编程方法摘要: 模拟量在PLC 系统中有着非常广泛的应用,特别是在过程控制系统中。
模拟量是一种连续变化的量,因此,它的使用对象也是各种连续变化的量,比如温度,压力,湿度,流量,转速,电流,电压,扭矩等等等等。
图一温度表...模拟量在plc 系统中有着非常广泛的应用,特别是在过程控制系统中。
模拟量是一种连续变化的量,因此,它的使用对象也是各种连续变化的量,比如温度,压力,湿度,流量,转速,电流,电压,扭矩等等等等。
图一温度表如图一所示的温度表,它测量的温度是连续的,对应温度表上的刻度。
比如从40 度升到50 度,它不是直接跳跃的,而是连续上去的,也就是41,42,43 这样连续的变化。
那幺PLC 是如何识别并控制这些变化,它和模拟量又是如何转换的呢?本文将为初学者解惑。
PLC 系统中使用的模拟量有两种,一种是模拟电压,一种是模拟电流,模拟电压最常见,用的也最多。
模拟电压一般是0~10V,并联相等,长距离传输时容易受干扰,一般用在OEM 设备中。
模拟电流一般是4~20mA,串联相等,抗干扰能力强,dcs 系统中一般都使用模拟电流。
首先,我们先要用传感器测量我们所需要的参数,通过变送器将此参数变换成0~10V 或者4~20mA ,现在很多传感器都是自带变送器的,直接就输出模拟量,建议大家在项目中选用此种类型的传感器图二某压力传感器手册如图二所示,是某压力开关的选型手册,红色圆圈部分是它的量程0~250 公斤,再看黄色荧光笔部分,此型号的传感器是模拟电流输出,也就是此款传感器将0~250 公斤的压力线性转换成了4~20mA 的电流,当我们检测到12mA 的电流时,就表示压力是125 公斤,依此类推。
当我们读取到模拟量之后,就要交给PLC 去处理了,由于PLC 的实质是电子计算机,而计算机只能识别数字量,因此要进行转换,也就是模拟量到数字量的转换,模拟电子技术中称之为A/D 转换,作为PLC 的使用者,而A/D 转换的是一个线性变化,也就是把0~10V 或者4~20mA 转换成一个数字N,再在PLC 中去处理这个转换后的数字。
对输入、输出模拟量的PLC编程的探讨及编程实例解析对于初学PLC编程的人来说,模拟量输入、输出模块的编程要比用位变量进行一般的程序控制难的多,因为它不仅仅是程序编程,而且还涉及到模拟量的转换公式推导与使用的问题。
不同的传感变送器,通过不同的模拟量输入输出模块进行转换,其转换公式是不一样的,如果选用的转换公式不对,编出的程序肯定是错误的。
比如有3个温度传感变送器:(1)、测温范围为 0~200,变送器输出信号为4~20ma(2)、测温范围为 0~200,变送器输出信号为0~5V(3)、测温范围为-100~500,变送器输出信号为4~20ma(1)和(2)二个温度传感变送器,测温范围一样,但输出信号不同,(1)和(3)传感变送器输出信号一样,但测温范围不同,这3个传感变送器既使选用相同的模拟量输入模块,其转换公式也是各不相同。
一、转换公式的推导下面选用S7-200的模拟量输入输出模块EM235的参数为依据对上述的3个温度传感器进行转换公式的推导:对于(1)和(3)传感变送器所用的模块,其模拟量输入设置为0~20ma电流信号 ,20ma对应数子量=32000,4 ma对应数字量=6400;对于(2)传感变送器用的模块,其模拟量输入设置为0~5V电压信号,5V 对应数字量=32000,0V对应数字量=0;这3种传感変送器的转换公式该如何推导的呢?这要借助与数学知识帮助,请见下图:上面推导出的(2-1)、(2-2)、(2-3)三式就是对应(1)、(2)、(3)三种温度传感变送器经过模块转换成数字量后再换算为被测量的转换公式。
编程者依据正确的转换公式进行编程,就会获得满意的效果。
二、变送器与模块的连接通常输出4~20ma电流信号的传感变送器,对外输出只有 +、- 二根连线,它需要外接24V电源电压才能工作,如将它的+、- 二根连线分别与24V电源的正负极相连,在被测量正常变化范围内,此回路将产生4~20ma电流,见下左图。
《plc经验设计法编程技巧探讨【浅析流量计算在PLC中的编程技巧】》摘要:关键词:PLC(可编程控制器);流量显示;计算编程引言目前,由于PLC(可编程逻辑控制器)的高可靠性及灵活性,广泛应用于电力、钢铁、机械制造等各行各业,特别是应用于各种复杂的自动化控制系统中,它可以进行各种运算,在用于流量累积时又有其编程的独特之处,在正常应用中,我们一般需要流量的总量(即累积值),但是流量计输出的信号一般是4-20mA电流信号,这种信号输出的是瞬时流量,我们必须按照严格的时间间隔计算才能保证瞬时流量的准确性,而累积流量就是将每个时间段内的累积流量累加起来,在实际使用PLC编程的过程中必须注意以下几个问题: (1) 如何选用时间脉冲进行瞬时流量计算; (2) 如何避免计算累积量的误差; (3) 如何复位累积量,解决方法是采用多个流量累积器,只允许同数量级的数值相加,从而避免数值有效位数损失,实际编程中可采用了几个累积器,当第一个累积器的达到上限后,将这个累积器的值累加到第2个累积器中,并把第一个累积器清零,对于第三个累积器也同样处理等等,再用一个累积器用于保存累积量小数部分数值,用另一个累积器用于保存累积量整数部分数值,这样在显示总累积量时只需显示整数部分和小数部分就可以了,整个过程充分避免了累积过程中大数与小数相加的情况出现摘要:根据PLC工作的基本原理,分析研究了流量累积计算的方法,并进行了分析,指出流量计算在PLC中编程中的独特性。
关键词:PLC(可编程控制器);流量显示;计算编程引言目前,由于PLC(可编程逻辑控制器)的高可靠性及灵活性,广泛应用于电力、钢铁、机械制造等各行各业,特别是应用于各种复杂的自动化控制系统中,它可以进行各种运算,在用于流量累积时又有其编程的独特之处。
下面就流量累积编程进行详细的分析和论述(以西门子S7-300为例)。
计算流量累积量在正常应用中,我们一般需要流量的总量(即累积值),但是流量计输出的信号一般是4-20mA电流信号,这种信号输出的是瞬时流量,我们必须按照严格的时间间隔计算才能保证瞬时流量的准确性,而累积流量就是将每个时间段内的累积流量累加起来,在实际使用PLC编程的过程中必须注意以下几个问题: (1) 如何选用时间脉冲进行瞬时流量计算; (2) 如何避免计算累积量的误差; (3) 如何复位累积量。
1、模拟量:在时间上或数值上都是连续的物理量称为模拟量(模拟量是连续的电压,电流等信号量,其经过抽样和量化后就是数字量。
反映的是电量测量数值(如电流、电压))。
把表示模拟量的信号叫模拟信号。
把工作在模拟信号下的电子电路叫模拟电路。
2、数字量:在时间上和数值上都是离散的物理量称为数字量(有0和1组成的信号类型,通常是经过编码后的有规律的信号。
可以看做由多个开关量组成,或者量化后的模拟量。
)。
把表示数字量的信号叫数字信号。
把工作在数字信号下的电子电路叫数字电路。
(1)开关量:开关量只有两种状态:0、1,包括开入量和开出量(具体来说就是输入到PLC控制单元的开关量就是开入量,而PLC控制单元发出指令时,继电器闭合或断开输出到设备上的就是开出量),反映的是状态信号(如开关开、合)。
开关量是无源的,即它需要装置输出电源对它进行检测(这也就是装置的开入量,如综保装置的非电量输入即是一个外部提供的开入量);也可以用0和1进行编码,编成各种通讯码。
(2)脉冲量:在瞬间电压或电流由某一值跃变到另一值的信号量。
脉冲量一般是积分量(如电度量),不能直接测量到,需要经过测量仪表进行运算得到。
在量化后,其连续规律的变化就是数字量,如果其由0变成某一固定值并保持不变,其就是开关量。
注意:能直接测量到的是开关量、模拟量。
PLC编程,模拟量的计算、脉冲量的计算方法总结
一、简述1、开关量也称逻辑量,指仅有两个取值,0或1、ON或OFF。
它是最常用的控制,对它进行控制是PLC的优势,也是PLC最基本的应用。
开关量控制的目的是,根据开关量的当前输入组合与历史的输入顺序,使PLC产生相应的开关量输出,以使系统能按一定的顺序工作。
所以,有时也称其为顺序控制。
而顺序控制又分为手动、半自动或自动。
而采用的控制原则有分散、集中与混合控制三种。
2、模拟量是指一些连续变化的物理量,如电压、电流、压力、速度、流量等。
PLC是由继电控制引入微处理技术后发展而来的,可方便及可靠地用于开关量控制。
由于模拟量可转换成数字量,数字量只是多位的开关量,故经转换后的模拟量,PLC也完全可以可靠的进行处理控制。
由于连续的生产过程常有模拟量,所以模拟量控制有时也称过程控制。
模拟量多是非电量,而PLC只能处理数字量、电量。
所有要实现它们之间的转换要有传感器,把模拟量转换成数电量。
如果这一电量不是标准的,还要经过变送器,把非标准的电量变成标准的电信号,如420mA、15V、010V等等。
同时还要有模拟量输入单元(A/D),把这些标准的电信号变换成数字信号;模拟量输出单元(D/A),以把PLC处理后的数字量变换成模拟量标准的电信号。
所以标准电信号、数字量之间的转换就要用到各种运算。
这就需要搞清楚模拟量单元的分辨率以及标准的电信号。
例如:
PLC模拟单元的分辨率是1/32767,对应的标准电量是010V,所要检测的是温度值0100℃。
那么032767对应0100℃的温度值。
然后计算出1℃所对应的数字量是327.67。
如果想把温度值精确到0.1℃,把327.67/10即可。
模拟量控制包括:反馈控制、前馈控制、比例控制、模糊控制等。
这些都是PLC内部数字量的计算过程。
3、脉冲量是其取值总是不断的在0(低电平)和1(高电平)之间交替变化的数字量。
每秒钟脉冲交替变化的次数称为频率。