用解析法进行四连杆机构的运动学分析
- 格式:pdf
- 大小:145.13 KB
- 文档页数:3
液压支架四连杆机构运动学分析周保卫【摘要】根据液压支架四连杆机构的几何关系和尺寸参数,建立了以前连杆水平倾角为自变量的液压支架四连杆机构运动分析通用数学模型.利用牛顿-辛普森算法确定各连杆的角度.通过编制MATLAB程序求解得到掩护梁与顶梁铰接点运动轨迹,以及各连杆运动参数随前连杆角度的变化规律,为液压支架的优化设计奠定了基础.【期刊名称】《煤矿机电》【年(卷),期】2018(000)004【总页数】4页(P78-80,83)【关键词】液压支架;四连杆机构;运动学【作者】周保卫【作者单位】阳泉煤业集团有限责任公司,山西阳泉045000【正文语种】中文【中图分类】TD355.410 引言液压支架是综合机械化采煤的重要设备,它可有效支撑和控制采煤工作面的顶板,并可隔离采空区,以防止矸石进入工作区域和输送机内,其性能和可靠性对综采成败影响重大。
液压支架四连杆机构是液压支架整体设计的重要环节,如图1中的虚线框所示,它主要由前连杆、后连杆、底座和掩护梁构成,其主要作用是保证支架在支撑顶板恒阻状态时纵向和横向的稳定性,作为主要承受和传递外载荷的部件,也保证了液压支架整体的刚度要求[1]。
因此,对液压支架四连杆机构的分析和研究很有必要。
液压支架的设计要求顶梁前端点的运动轨迹呈双摆线或近似直线,同时要求支架在整个伸缩范围内顶梁前端点运动轨迹的最大宽度尽可能小[2]。
由图1可知,四连杆机构设计的好坏决定了顶梁运动的轨迹,也决定了支架轮廓尺寸的变化。
因此,需要对液压支架四连杆机构进行运动学分析,计算顶梁与掩护梁铰接点的运动轨迹,进而为整体结构的优化设计奠定基础[3]。
对于液压支架四连杆机构的运动学分析,目前主要采用作图法或基于虚拟技术的仿真法[4]。
本文给出了一种求解液压支架四连杆机构运动学分析的解析法,以液压支架前连杆的水平倾角为自变量,推导出支架升降过程中顶梁与掩护梁铰接点坐标计算模型,同时可得到各连杆运动参数随前连杆倾角的变化规律。
四连杆机构运动分析
1、组装零件:
---放置第一个零件常采用缺省;
---连接零件可采用销钉连接方式(机构能运动);
2、进入机构运动环境
---应用程序|机构---
---编辑|重新连接--- /检查装配情况
---运行(连接组件)---是(确认)---
3、观察机构中的体
---视图|加亮主体--- /绿色表示为地体
4、拖动模型
---单击‘拖动’按钮---
---任选四连杆上一点,拖动鼠标进行拖动---
---单击中建,结束拖动---
5、建立伺服电机
---选择‘伺服电动机’按钮---
---定义电机名称,运动轴--- /若装配正确,运动处都会出现
运动轴
---定义电机速度、加速度--- /可单击图像查看
6、仿真运动过程
---单击‘机构分析’按钮---
---选择‘运动学’分析类型,单击‘运行’观察运动情况---
7、回放并保存结果
单击‘回放’按钮可以进行回放;
8、产生分析测量结果
---分析|测量,打开‘测量结果’---
---单击‘新建’按钮(在测量栏中),打开‘测量定义’--- ---选择测量点,测量分量,坐标系---确定---
/测量点可以是零件端点,基准点,几何点
---单击画图,可以绘制结果图形---
9、产生轨迹曲线
---插入|轨迹曲线---
---选择点---确定---
/零件顶点,几何点可以产生轨迹,基准点不能产生轨迹,可以在模型树种中右键零件‘打开’|草绘,绘制几何点;。
四杆机构运动分析四杆机构是一种常见的机械结构,由四根杆件组成,通过铰链连接。
四杆机构的运动分析是机械工程中重要的一环,可以帮助我们理解机构的运动特性和用途。
四杆机构有多种形式,如平行四连杆机构、交叉四连杆机构等。
在运动分析过程中,我们通常关注机构的连杆长度、铰链位置和运动轨迹等方面。
首先,我们可以通过连杆长度关系来确定机构的运动特性。
根据连杆长度的不同,四杆机构可以实现直线运动、旋转运动、摇杆运动等。
连杆长度决定了机构的运动范围和速度,可以通过运动学分析方法进行计算和模拟。
其次,铰链位置对机构运动有很大的影响。
铰链的位置决定了杆件之间的相对运动方式,如平行四连杆机构中的对外运动、交叉四连杆机构中的对内运动。
通过确定铰链位置,我们可以进一步分析机构的运动规律和应用。
另外,机构的运动轨迹也是运动分析的重点之一、运动轨迹描述了机构任意一点在运动过程中的位置变化。
通过分析运动轨迹,我们可以得出机构的最大行程、最大速度、加速度等参数,并且可以根据运动轨迹来优化机构的设计,满足特定的工程要求。
在进行四杆机构运动分析时,我们可以利用运动学分析方法,如广义坐标法、矢量法、逆运动学法等。
通过建立运动方程和约束方程,可以得出机构的运动规律和参数。
此外,计算机辅助设计软件和仿真系统也可以帮助我们进行四杆机构的运动分析。
通过输入机构的参数和初始条件,可以模拟机构的运动过程,观察各个杆件的位置、速度和加速度等变化情况。
四杆机构的运动分析对于机械设计和工程实践都具有重要的意义。
它可以帮助我们了解机构的运动特性,优化机构的设计,提高机械系统的性能和效率。
同时,运动分析也是机械工程师在机构设计和动力传动中常用的工具,通过运动分析可以得到有效的设计参数和工作条件。
四杆机构的运动分析是机械工程师必备的技术之一,也是机械工程教育中的重要内容。
平行四连杆机构的原理
一、机构组成
1.固定杆件:用于固定机构的位置,并提供支撑和稳定的作用。
2.连接杆件:主要包括连杆和摇杆两种杆件,用于连接其他杆件并传
递力和运动。
3.节点:杆件连接的交叉点,是机构运动的核心部分。
4.关节:由节点连接的连接方式,常见的有铰链连接和滑动连接。
二、运动分析
1.静态分析:
静态分析主要考虑机构在静止状态下,杆件间的几何关系和力学平衡。
根据杆件的长度和角度,可以得到机构的拉伸和挤压力,从而确定机构在
静止时的结构稳定性。
2.动态分析:
动态分析主要研究机构在运动过程中的速度、加速度等动力学特性。
通过运动学方法,可以推导出连杆的角速度和角加速度,并进一步得到节
点的速度和加速度。
经过大量计算和分析,可以获得机构在不同工况下的
运动轨迹和力学性能。
三、应用领域
1.工业机械领域:
2.机器人领域:
3.汽车工程领域:
平行四连杆机构被应用于汽车悬挂系统和发动机机构中。
汽车悬挂系统使用平行四连杆机构可以实现悬挂装置的平稳运动和减震效果,提高汽车的行驶舒适性和稳定性。
发动机机构通过平行四连杆机构的运动,实现节气门的打开和关闭,控制发动机的进气和排气过程。
四、总结
平行四连杆机构是一种常见的机动装置,通过杆件的相对运动实现机构的工作。
它的原理是通过静态和动态分析来研究机构的运动特性,并应用于工业、机器人和汽车工程等多个领域。
平行四连杆机构的运动稳定性和精度高,具有较广泛的应用前景。
1,定义两个固定夹板-"刚性接合"
2,定义两块连接板-"刚性接合"
3,定义连接板与手柄-"刚性接合"
4,定义连接板-"刚性接合"
5,定义连接板与夹板旋转轴-"螺钉接合",选择驱动角度,点击确定
6,定义夹板与压臂旋转轴-"螺钉接合",不选择驱动角度,点击确定
7,定义两种连接板旋转轴-"螺钉接合",不选择驱动角度,点击确定
8,定义压臂与内连接板旋转轴-"螺钉接合",不选择驱动角度,点击确定
8,固定夹板-选择"固定",点击夹板实体即可跳出可运动模拟的对话窗
9,点击"使用命令进行模拟"-方框内图标,跳出如图对话框.。
分析机械原理四连杆机构的图解法与解析法的优缺点摘要:铰链四杆机构是机械设备中最基本的机构类型之一,文中以它为研究对象建立数学模型,应用MATLAB编程与ADMAS建模分别
对四杆机构进行仿真分析,获得各点的运动曲线,进行对比,两种方法各有所长,分析结果显示直观。
平面四杆机构是连杆机构中最常见的机构组成,由于其结构简单,可承受载荷大,连杆曲线具有多样性等优点,它在工程中得到广泛的运用,设计四杆机构的方法有很多,比如解析法、作图法、实验法,但这些方法都存在一定的缺点,图解法精度差,解析法的计算工作量大,不直观使其在工程运用中受到约束,如果设计平面四杆机构时能显示其运动轨迹从而将图示结果与设计要求进行对比,可以使设计显得更加直观,提高工作效率。
本文以MATLAB、ADMAS为平台,开发了一个平面四杆机构运动轨迹仿真系统,模拟四杆机构的运动仿真,并获得各点的运动轨迹坐标,使设计显得直观,更好的帮助了工程技术人员在机构分析与设计过程中进行优化,提高了工作效率,降低产品开发成本。