制冷技术基础教材
- 格式:ppt
- 大小:4.91 MB
- 文档页数:30
第一章:家用及商用中央空调基础知识一、制冷概述:1、自然界的物质一般都有三种状态:气态、液态、固态。
当物质的状态变化时,一般会伴有能量的传递。
当物质从液态变为气态,要吸收热量;而从气态变为液态,要释放能量;正如,在夏季,当皮肤上擦一些水时,水挥发为气体,从皮肤上带走能量,皮肤会感到凉爽。
2、我们发明一种设备能使一种物质不但能从液态变为气态,同时又能从气态变为液态,并循环往复,就能够实现连续制冷。
这种循环的物质即为制冷剂或制冷工质。
比如我公司的LSRF系列风冷模块式机组正是实现这种能量转换的设备之一;它由压缩机、风换热器、水换热器及膨胀阀四个基本部件组成,所使用的制冷剂为R22。
3、冷时,液态制冷剂在水换热器中气化,吸收水中的热量,使水温降低。
低温低压的气态制冷剂经压缩机压缩,变为高温高压的气体,进入风换热器,由于制冷剂温度高于空气温度,制冷剂向空气传热,制冷剂从气体冷凝为高压液体,高压液态制冷剂经膨胀阀节流后进入水换热器,低压液体制冷剂再次气化,完成一个循环。
在这个循环过程中,随着制冷剂状态的变化,实现了热量从水侧向空气侧的转移。
4、在制热时,液态制冷剂在风换热器中气化,吸收空气中的热量,低温低压的气态制冷剂经压缩机压缩后变为高温高压气体送至水换热器。
由于制冷剂的温度高于水温度,制冷剂向水传热,水温升高。
制冷剂从气体冷却为液体,液体制冷剂经膨胀阀节流后进入风换热器,低压液体制冷剂再次气化,完成一次循环。
在这个循环过程中,随着制冷剂状态的变化,实现了热量从空气侧向水侧的转移。
二、制冷原理1.蒸汽压缩式制冷系统:(1)蒸汽压缩式制冷系统是由制冷压缩机、冷凝器、蒸发器和节流阀四个基本部件组成,它们之间用管道依次连接,形成一个密闭的系统,制冷剂在系统中不断地循环流动,发生状态变化,与外界进行热量交换。
(2)液体制冷剂在蒸发器中吸收被冷却物体的热量之后,汽化成低温低压的蒸汽。
低温低压的蒸汽被压缩机吸入、压缩成高压高温的蒸汽再排人冷凝器,在冷凝器中向冷却介质(水或空气)放热,冷凝为高压液体,经节流阀节流为低压低温的制冷剂,再次进入蒸发器吸热汽化,达到循环制冷的目的。
目录前言第一章制冷技术的热力学理论基础 (1)第一节热力学的基本概念 (1)第二节热力学第一定律及其应用 (3)第三节热力学第二定律及其应用 (6)第四节气液集态变化及蒸气的热力性质 (8)第二章空调器制冷原理 (12)第一节制冷剂、载冷剂与冷冻油 (12)第二节蒸气压缩式制冷 (18)第三节影响致冷系数的主要因素 (21)第四节制冷设备 (23)第五节空调器的性能 (37)第三章房间空调器的结构 (41)第一节空调器的型号 (41)第二节空调器系统的组成 (42)第三节整体式空调器的结构 (52)第四节分体式空调器的结构 (54)第四章空调器的电气控制 (58)第一节电工学基础知识 (58)第二节空调器基本控制电路原理 (62)第三节空调器电路举例与分析 (71)第五章房间空调器的维修 (75)第一节一般故障检测方法、使用故障与安装故障 (75)第二节制冷系统故障的维修 (79)第三节电控系统故障的维修 (85)第四节空调器常见故障与原因分析 (91)第一章制冷技术热力学理论基础工程技术上所谓的制冷,就是使某一系统(即空间或物体)的温度低于周围环境介质的温度,并维持这个低温的过程,这里所说的环境介质是指自然界的空气和水。
制冷与空调设备以流体(气体与液体的总称)作为载能物质,实现热能与其它形式能量(主要为机械能)之间的转换或热能的转移。
本章介绍流体的性质、热能与机械能之间的转换规律和热量的传递规律,这些知识是空调技术必不可少的理论基础。
第一节热力学基本概念工质在制冷系统中,一会儿从气体变为液体,一会儿又从液体变为气体,制冷剂的这种物态变化以及温度的升降、压力的变化、吸热与放热等现象,是具有一定的热力学内在关系的。
现在介绍一些参数、术语和基本概念,为掌握热力学基础知识作准备。
1.温度:是用来度量物体冷、热程度的参数。
温度的指示单位有三种:摄氏温度(℃)华氏温度(°F)绝对温度(K)它们之间的换算关系是:℃=5/9(°F –32)°F=9/5℃+32 K=℃+273.15 2.干球温度:用一般温度计所测得的空气温度,它是该空气的真正温度。
第一章制冷技术基本知识§1-1 概述一、何谓制冷日常生活中常说的“热”或“冷”是人体对温度高低感觉的反应。
在制冷技术中所说的冷,是指某空间内物体的温度低于周围环境介质(如水或空气)温度而言。
因此“制冷”就是使某一空间内物体的温度低于周围环境介质的温度,并连续维持这样一个温度的过程。
二、何谓人工制冷我们都知道,热量传递终是从高温物体传向低温物体,直至二者温度相等。
热量决不可能自发地从低温物体传向高温物体,这是自然界的可观规律。
然而,现代人类的生活与生产经常需要某个物体或空间的温度低于环境温度,甚至低得很多。
例如,储藏食品需要把食品冷却到0℃左右或-15℃左右,甚至更低。
而这种低温要求天然冷却是达不到的,要实现这一要求必须有另外的补偿过程(如消耗一定的功作为补偿过程)进行制冷。
这种借助于一种专门装置,消耗一定的外界能量,迫使热量从温度较低的被冷却物体或空间转移到温度较高的周围环境中去,得到人们所需要的各种低温,称谓人工制冷。
而这种装置就称谓制冷装置或制冷机。
三、人工制冷的方法人工制冷的方法主要有相变制冷、气体绝热膨胀制冷和半导体制冷三种。
1.相变制冷即利用物质相变的吸热效应实现制冷。
如冰融化时要吸取80 kcal/kg的熔解热;氨在1标准大气压下气化时要吸取327kcal/kg的气化潜热;干冰在1标准大气压下升华要吸取137kcal/kg的热量,其升华温度为-78.9℃。
2.气体绝热膨胀制冷:利用气体通过节流阀或膨胀机绝热膨胀时,对外输出膨胀功,同时温度降低,达到制冷的目的。
3.半导体制冷:珀尔帖效应告诉我们:两种不同金属组成的闭合电路中接上一个直流电源时,则一个接合点变冷,另一个接合点变热。
但是纯金属的珀尔帖效应很弱,且热量通过导线对冷热端有相互干扰,而用两种半导体(N型和P型)组成的直流闭合电路,则有明显的珀尔帖效应且冷热端无相互干扰。
因此,半导体制冷就是利用半导体的温差电效应实现制冷地。