最全的铁碳相图
- 格式:doc
- 大小:176.85 KB
- 文档页数:6
三、典型铁碳合金的平衡结晶过程铁碳相图上的合金,按成分可分为三类:⑴工业纯铁(<0.0218% C),其显微组织为铁素体晶粒,工业上很少应用。
⑵碳钢(0.0218%~2.11%C),其特点是高温组织为单相A,易于变形,碳钢又分为亚共析钢(0.0218%~0.77%C)、共析钢(0.77%C)和过共析钢(0.77%~2.11%C)。
⑶白口铸铁(2.11%~6.69%C),其特点是铸造性能好,但硬而脆,白口铸铁又分为亚共晶白口铸铁(2.11%~4.3%C)、共晶白口铸铁(4.3%C)和过共晶白口铸铁(4.3—6.69%C)下面结合图3-26,分析典型铁碳合金的结晶过程及其组织变化。
图3-26 七种典型合金在铁碳合金相图中的位置㈠工业纯铁(图3-26中合金①)的结晶过程合金液体在1~2点之间通过匀晶反应转变为δ铁素体。
继续降温时,在2~3点之间,不发生组织转变。
温度降低到3点以后,开始从δ铁素体中析出奥氏体,在3~4点之间,随温度下降,奥氏体的数量不断增多,到达4点以后,δ铁素体全部转变为奥氏体。
在4~5点之间,不发生组织转变。
冷却到5点时,开始从奥氏体中析出铁素体,温度降到6点,奥氏体全部转变为铁素体。
在6-7点之间冷却,不发生组织转变。
温度降到7点,开始沿铁素体晶界析出三次渗碳体Fe3CIII。
7点以下,随温度下降,Fe3CIII量不断增加,室温下Fe3CIII的最大量为:%31.0%1000008.069.60008.00218.03=⨯--=ⅢCFeQ。
图3-27为工业纯铁的冷却曲线及组织转变示意图。
工业纯铁的室温组织为α+Fe3CIII,如图3-28所示,图中个别部位的双晶界内是Fe3CIII。
图3-27 工业纯铁的冷却曲线及组织转变示意图 图3-28 工业纯铁的显微组织 400× ㈡ 共析钢(图3-26中合金②)的结晶过程共析钢的含碳量为0.77%,超过了包晶线上最大的含碳量0.53%,因此冷却时不发生包晶转变,其结晶过程及组织转变示于图3 - 29。
钢的冷却转变钢在室温时的组织与性能,不仅与加热时获得奥氏体的均匀化程度和晶粒大小有关,而且更重要的是与奥氏体在冷却时的组织转变有关。
控制奥氏体在冷却时的转变过程是热处理的关键。
图1 奥氏体转变1 过冷奥氏体等温转变(TTT曲线)1.1过冷奥氏体等温转变过程奥氏体在临界点A1以下是不稳定的,必定要发生转变,但并不是一冷到A1温度以下就立即发生转变,它在转变前需要一定的时间,这段时间称为孕育期。
在A1温度以下暂时存在的处于不稳定状态的奥氏体被称为“过冷奥氏体”。
奥氏体的等温转变,是将加热到奥氏体化的钢件冷至A1以下的某个温度,进行等温,在等温期间奥氏体所发生的相与组织的转变过程。
图2 共析钢过冷奥氏体等温转变图由共析钢的C 曲线孕育期的长短随过冷度而变化。
孕育期的长短反映出过冷奥氏体稳定性的大小。
在孕育期最短处,过冷奥氏体最不稳定,转变最快,这里被称为C -曲线的“鼻子”。
而在靠近A 1点和M s 点的温度,过冷奥氏体比较稳定,因而孕育期较长,转变也很慢。
在“鼻子”以上温度,转变速度要决定于自由能差∆F ,而在“鼻子”以下温度,转变速度主要决定于扩散系数D 。
共析成分奥氏体在A 1点以下会发生三种不同的转变:在C -曲线的“鼻子”以上部分,即A 1~550℃之间,过冷奥氏体发生珠光体转变,转变产物使珠光体,这一温度区称为珠光体区。
在C-曲线的“鼻子”以下部分,大约550℃~M s 点之间,过冷奥氏体发生贝氏体转变,转变产物是贝氏体,这一温度区称为贝氏体区。
在M s 线以下,过冷奥氏体发生马氏体转变,转变产物为马氏体,这一温度区称为马氏体区。
图3 ∆F 和D 对过冷奥氏体转变速度的影响过冷奥氏体等温转变产物的组织与性能,以共析钢奥氏体等温转变为例:1.1.1 珠光体型组织A 1~550℃之间将发生奥氏体向珠光体转变,这一转变称之为高温转变。
形成由层片状渗碳体和铁素体所组成的组织。
过冷奥氏体转变温度越低,珠光体越细。
Iron-Carbon Phase DiagramαγδεΨ1.铁素体:Ferrite ---F存在图中GPQ下方,它是碳溶于α-Fe中的固溶体,碳的溶解量很小,在723℃时达到最大值,其质量分数为0.0218%,常温时的质量分数为:0.006%。
特性:强度和硬度较低,塑性和韧性好。
另:碳溶于δ-Fe形成的固溶体,叫δ固溶体,以δ表示,也是铁素体。
2.奥氏体:Austenite --A存在于图GSEJN区域,它是碳溶于γ-Fe中的固溶体。
碳的溶解量随温度的升高而增多,至1148℃时达到最大值,质量分数为:2.11%。
特性:硬度为170~220HBS,伸长率为40%~50%,即硬度较低塑性较高。
3. 渗碳体:Cementite --Fe3C由垂线DN表示,是含碳质量分数为6.67%的铁碳化合物。
特点:硬度高800HBS,脆性大,塑性极低。
4. 珠光体:Pearlite---PA1线;在铁素体上分布着硬脆的渗碳体,形成的组织为珠光体。
Ferrite+Cementite=Pearlite特点:抗拉强度:δ=750MPa,布氏硬度:240HBS,断面收缩率:Ψ=12%~15%;因而珠光体是一种高硬度、强度和韧性的组织。
依据渗碳体的存在形式,可分为片状珠光体和粒状珠光体,含碳量相同的钢材,粒状珠光体比片状珠光体硬度强度低一些,在相同硬度情况下,粒状珠光体的屈服强度、塑性、韧性都比片状珠光体优越。
5. 贝氏体:Bainite当奥氏体过冷到550℃左右至马氏体点(Ms)温度范围时,其转变成的组织成为贝氏体。
可分为上贝氏体和下贝氏体,上贝氏体是过冷奥氏体大约在550~350℃温度范围转变成的,下贝氏体是过冷奥氏体在350℃左右至马氏体点(Ms)之间的温度范围内转变成的。
上贝氏体强度大,脆性大;下贝氏体强度和韧性都比较高。
6. 马氏体:Martensite当奥氏体以大于临界冷却速度冷却,并过冷到Ms点以下时,可转变为马氏体。
最全的铁碳相图
首先,想要了解铁碳合金、铁碳相图,则需要一些准备知识,比如合金、相、组元成分的概念等,基本如下:
合金:一种金属元素与另外一种或几种元素,通过熔化或其他方法结合而成的具有金属特性的物质。
相:合金中同一化学成分、同一聚集状态,并以界面相互分开的各个均匀组成部分。
固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态金属晶体,固溶体分间隙固溶体和置换固溶体两种。
固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。
金属化合物:合金的组元间以一定比例发生相互作用儿生成的一种新相,通常能以化学式表示其组成。
铁碳合金相图实际上是Fe-Fe3C相图,铁碳合金的基本组元也应该是纯铁和Fe3C。
铁存在着同素异晶转变,即在固态下有不同的结构。
不同结构的铁与碳可以形成不同的固溶体,Fe—Fe3C相图上的固溶体都是间隙固溶体。
由于α-Fe和γ-Fe 晶格中的孔隙特点不同,因而两者的溶碳能力也不同。
在铁碳合金中一共有三个相,即铁素体、奥氏体和渗碳体。
1.铁素体
铁素体是碳在α-Fe中的间隙固溶体,用符号“F”(或α)表示,体心立方晶格;虽然BCC的间隙总体积较大,但单个间隙体积较小,所以它的溶碳量很小,最多只有0.0218%(727℃时),室温时几乎为0,因此铁素体的性能与纯铁相似,硬度低而塑性高,并有铁磁性。
δ=30%~50%,A KU=128~160J,σb=180~280MPa,50~80HBS.
铁素体的显微组织与纯铁相同,用4%硝酸酒精溶液浸蚀后,在显微镜下呈现明亮的多边形等轴晶粒,在亚共析钢中铁素体呈白色块状分布,但当含碳量接近共析成分时,铁素体因量少而呈断续的网状分布在珠光体的周围。
2.奥氏体
奥氏体是碳在γ-Fe中的间隙固溶体,用符号“A”(或γ)表示,面心立方晶格;虽然FCC的间隙总体积较小,但单个间隙体积较大,所以它的溶碳量较大,最多有2.11%(1148℃时),727℃时为0.77%。
在一般情况下,奥氏体是一种高温组织,稳定存在的温度范围为727~1394℃,故奥氏体的硬度低,塑性较高,通常在对钢铁材料进行热变形加工,如锻造,热轧等时,都应将其加热成奥氏体状态,所谓“趁热打铁”正是这个意思。
σb=400MPa,
170~220HBS,δ=40%~50%.
另外,奥氏体还有一个重要的性能,就是它具有顺磁性,可用于要求不受磁场的零件或部件。
奥氏体的组织与铁素体相似,但晶界较为平直,且常有孪晶存在。
3.渗碳体
渗碳体是铁和碳形成的具有复杂结构的金属化合物,用化学分子式“Fe3C”表示。
它的碳质量分数Wc=6.69%,熔点为1227℃,质硬而脆,耐腐蚀。
用4%硝酸酒精溶液浸蚀后,在显微镜下呈白色,如果用4%苦味酸溶液浸蚀,渗碳体呈暗黑色。
渗碳体是钢中的强化相,根据生成条件不同渗碳体有条状、网状、片状、粒状等形态,它们的大小、数量、分布对铁碳合金性能有很大影响.
总结:
在铁碳合金中一共有三个相,即铁素体、奥氏体和渗碳体。
但奥氏体一般仅存在于高温下,所以室温下所有的铁碳合金中只有两个相,就是铁素体和渗碳体。
由于铁素体中的含碳量非常少,所以可以认为铁碳合金中的碳绝大部分存在于渗碳体中。
这一点是十分重要的.
铁和碳可以形成一系列化合物,如Fe3C,Fe2C,FeC等,有实用意义并被深入研究的只是Fe-Fe3C部分,通常称其为Fe-Fe3C相图,此时相图的组元为Fe和Fe3C。
由于实际使用的铁碳合金其含碳量多在5%以下,因此成分轴从0~6.69%。
所谓的铁碳合金相图实际上就是Fe—Fe3C相图。
铁碳相图上的合金,按成分可分为三类:
(1)工业纯铁(<0.0218% C),其显微组织为铁素体晶粒,工业上很少应用。
(2)碳钢(0.0218%-2.11%C),其特点是高温组织为单相A,易于变形,碳钢又分为亚共析钢(0.0218%-0.77%C)、共析钢(0.77%C)和过共析钢
(0.77%-2.11%C)。
(3)白口铸铁(2.11%-6.69%C),其特点是铸造性能好,但硬而脆,白口铸铁又分为亚共晶白口铸铁(2.11%-4.3%C)、共晶白口铸铁(4.3%C)和过共晶白口铸铁(4.3%—6.69%C)
相图分析
Fe—Fe3C相图看起来比较复杂,但它仍然是由一些基本相图组成的,我们可以将Fe—Fe3C相图分成上下两个部分来分析
共晶转变
在1148℃、4.3%C的液相发生共晶转变:Lc(AE+Fe3C),转变的产物称为莱氏体,用符号Ld表示。
存在于1148℃~727℃之间的莱氏体称为高温莱氏体,用符号Ld表示,组织由奥氏体和渗碳体组成;存在于727℃以下的莱氏体称为变态莱氏体或称低温莱氏体,用符号Ldˊ表示,组织由渗碳体和珠光体组成。
低温莱氏体是由珠光体,Fe3CⅡ和共晶Fe3C组成的机械混合物。
经4%硝酸酒精溶液浸蚀后在显微镜下观察,其中珠光体呈黑色颗粒状或短棒状分布在Fe3C 基体上,Fe3CⅡ和共晶Fe3C交织在一起,一般无法分辨。
共析转变
在727℃、0.77%的奥氏体发生共析转变:AS(F+Fe3C),转变的产物称为珠光体。
共析转变与共晶转变的区别是转变物是固体而非液体。
特征点
相图中应该掌握的特征点有:A、D、E、C、G(A3点)、S(A1点),它们的含义一定要搞清楚。
根据相图分析如下点:
相图中重要的点(14个):
1.组元的熔点: A (0,1538) 铁的熔点;D (6.69,1227) Fe3C的熔点
2.同素异构转变点:N(0, 1394) δ-Fe γ-Fe;G(0, 912)γ-Fe α-Fe
3.碳在铁中最大溶解度点:
P(0.0218,727),碳在α-Fe 中的最大溶解度
E(2.11,1148),碳在γ-Fe 中的最大溶解度
H (0.09,1495),碳在δ-Fe中的最大溶解度
Q(0.0008,RT),室温下碳在α-Fe 中的溶解度
三相共存点:
S(共析点,0.77,727),(A+F +Fe3C)
C(共晶点,4.3,1148),( A+L +Fe3C)
J(包晶点,0.17,1495),(δ+ A+L )
其它点
B(0.53,1495),发生包晶反应时液相的成分
F(6.69,1148 ), 渗碳体
K(6.69,727 ), 渗碳体
特性线
相图中的一些线应该掌握的线有:ECF线,PSK线(A1线),GS线(A3线),ES 线(ACM线)。
水平线ECF为共晶反应线
碳质量分数在2.11%~6.69%之间的铁碳合金, 在平衡结晶过程中均发生共晶反应。
水平线PSK为共析反应线
碳质量分数为0.0218%~6.69%的铁碳合金, 在平衡结晶过程中均发生共析反应。
PSK线亦称A1线
GS线是合金冷却时自A中开始析出F的临界温度线, 通常称A3线。
ES线是碳在A中的固溶线, 通常叫做Acm线.由于在1148℃时A中溶碳量最大可达2.11%, 而在727℃时仅为0.77%, 因此碳质量分数大于0.77%的铁碳合金自1148℃冷至727℃的过程中, 将从A中析出Fe3C.析出的渗碳体称为二次渗碳体(Fe3CII)。
A cm线亦为从A中开始析出Fe3CII的临界温度线.
PQ线是碳在F中固溶线
在727℃时F中溶碳量最大可达0.0218%, 室温时仅为0.0008%, 因此碳质量分数大于0.0008%的铁碳合金自727℃冷至室温的过程中,将从F中析出Fe3C。
析出的渗碳体称为三次渗碳体(Fe3CIII)。
PQ线亦为从F中开始析出Fe3CIII的临界温度线。
Fe3CIII数量极少,往往予以忽略。
相图相区
1.单相区(4个+1个): L,δ,A,F ,(+ Fe3C)。
2.两相区(7个):L + δ,L + Fe3C,L + A, δ+ A ,A + F ,A + Fe3C ,F + Fe3C。