实验六:电导法测弱电解质HAc的电离平衡常数知识分享
- 格式:doc
- 大小:149.00 KB
- 文档页数:10
电导法测定弱电解质的电离常数1 电导法测定弱电解质的电离常数姓名:侯芳利班级:化学2班学号:20105051243一、实验目的1.掌握电桥法测量电导的原理和方法;2.测定电解质溶液的当量电导,并计算弱电解质的电离常数。
二、实验原理θAB型(HAc)弱电解质在溶液中电离达到平衡时,电离常数K与浓度c、电离度α有如下关系:θθ2 K= (c/c )* α/(1-α) ( 1)θ在一定温度下K是一个常数,因此可以通过测定醋酸在不同浓度下的电离θ度,代入(1)式计算得到K值。
醋酸溶液的电离度可用电导法来测定。
电导的物理意义是:当导体两端的电势差为1伏特时所通过的电流强度。
亦即电导,电流强度/电势差。
因此电导是电阻的倒数,在电导池中,电导的大小与两极之间的距离l成反比,与电极的面积A成比。
A kG=(,) l2k称为电导率或比电导,即l为1m,A为1m时溶液的电导,因此电导这个值与电导池的结构无关。
电解质溶液的电导率不仅与温度有关,而且还与溶液的浓度有关,因此通常用摩尔电导率这个量值来衡量电解质溶液的导电本领。
摩尔电导率的定义如下:含有1摩尔电解质的溶液,全部置于相距为1m的两个电极之间,这时所具有的电导称为摩尔电导率,摩尔电导率与电导率之间有如下的关系:Λm=k/c-3式中c为溶液中物质的量浓度,单位为mol?m。
c,*m,11c,,,,,2,,K(,)mmm1电桥法是测定电阻的常用方法。
它的原理如图所示。
,是高频(1000Hz)交流电源,,,是均匀且带有刻度的滑线变阻(全长1000)。
G为示波器,R为可,变电阻。
调节电阻R或移动触电D,可使,D两点间点位等于零,因此,,间没, 有电流。
R、R、R均可直接由仪器上读出,由此可计算出R。
12,,RRSX, RR12RRS1R, XR2三、仪器和药品电桥装置、电导电极(1支)、移液管(5 ml 2支)、移液管(10 ml 2支)、移液管(25 ml 2支)、恒温槽(1套)、容量瓶(50ml 5支)、试管(2.2cm*15cm 2支)KCl(化学纯);KCl 0.0100M溶液;HAc(化学纯);HAc 0.01000M溶液;NaCl (化学纯);NaCl 0.0100M溶液;电导水。
溶液电导的测定——测HAc 的电离平衡常数1. 简述电导法测醋酸的电离平衡常数的测量原理。
电解质溶液属于第二类离子导体,它是靠正负离子的定向迁移传递电流,溶液的导电本领可用电导率来表示。
将电解质溶液放入两平行电极之间,两电极距离为l (m ),两电极面积均为A (m 2),这时溶液的电阻、电导、电导率分别为: A l A l R ⋅==κρ1 Al k cell = 1cell k l A R G κκ=== R k cell =κ 电导池常数或电极常数cell k 可用标准溶液(常用氯化钾溶液)标定。
应用同一个电导池,便可通过电阻的测量求其它电解质溶液的电导率。
溶液的摩尔电导率m Λ是指把含有1mol 电解质的溶液置于相距为 1m 的两平行电板电极之间的电导,其单位为S·m 2·mol -1。
摩尔电导率与电导率和浓度的关系为:m κ=Λ无限稀释摩尔电导率∞Λm :溶液在无限稀释时的摩尔电导率。
无论强弱电解质,此时均全部电离,符合离子独立移动定律:∞--∞++∞Λ+Λ=Λ,,m m m νν。
m Λ随浓度变化的规律,对强弱电解质各不相同,对强电解质稀溶液可用科尔劳奇(Kohlrausch )经验公式表示:c A m m -Λ=Λ∞,将m Λ作图,外推可求得∞Λm 。
对弱电解质来说,可以认为它的电离度α等于溶液在浓度为c 时的摩尔电导率m Λ和溶液在无限稀释时的摩尔电导率∞Λm 之比,即:∞ΛΛ=mm α。
AB 型弱电解质在溶液中达电离平衡时,电离平衡常数c K 与浓度c 和电离度α有以下关系:()c c -1c 0 0 c B A -ααα达电离平衡初始+=+AB()())Λ(ΛΛ)(Λc c ααc c K m m m m c -=-=∞∞221θθθ 可改写为直线方程: ()2 ΛK Λ)(ΛK Λc c m c m m c m ∞∞-=θθθ 测出HAc 溶液不同浓度c 的电导率κ,计算出其摩尔电导率m Λ,以()m Λc c θ对m Λ1作图为一直线,从直线斜率和截距可求得∞Λm 和θc K 。
一、实验目的1. 学会用电导法测定醋酸的电离平衡常数;2. 熟悉电导池、电导池常数、溶液电导(或电导率)等相关基本概念;3. 掌握电桥法测量溶液电导的实验方法和技术。
二、实验原理根据Arrhenius(阿累尼乌斯)的电离理论,弱电解质与强电解质不同,它在溶液中仅部分解离,离子和未解离的分子之间存在着动态平衡。
如醋酸水溶液中,设c为醋酸的原始浓度,αc为解离度,其解离平衡为:式中电导率κ的单位是S·m-1,为测量的电导电极两极片间的间距,A为电极片的截面积,对于一个固定的电导池,l和A都是定值,故比值l/A为一常数,称为电池常数Kcell。
所以有κ=Kcell/R(6)根据以上关系,只要我们在指定温度下测得不同浓度下的电导率κ(用电导率仪)或溶液的电阻(用1000Hz交流电下的惠斯通电桥测),就可以计算出摩尔电导率∧m,再根据式(3),即可计算出解离常数K来。
本实验我们采用测溶液电阻的方法,先用已知电导率的KCl标准溶液测出那个条件下的特征电阻值RS,算出Kcell;然后使用同一电导池测定待测乙酸溶液的电阻Rx,最后就可以得到解离常数K因此,实验中必须考虑的是,在增大交流电频率以防极化的同时,还要尽量消除相位差对电桥平衡的影响。
比较好的办法是,选择1000Hz的交流频率,尽可能使电流通过电导池里的溶液电阻而不是寄生电容Cx,从而使电导池上的电压降的相位移动较小,而不至于影响测量精度。
三、仪器和试剂仪器:XD-7型低频信号发生器1台,ZX56型电阻箱1台,SJ8001型示波器1台,恒温水浴1套,260型铂电导电极(镀铂黑)1支,带支管试管4支,25ml移液管1支,容量瓶2只(50ml),小烧杯,洗瓶,导线若干。
试剂:0.01000mol/L KCl溶液,0.1mol/L 左右的HAc溶液(准确浓度c标于瓶签)。
四、实验步骤1. 调节恒温水浴温度为25.00±0.1℃2. c/2和c/4浓度HAc溶液的配制:用移液管移取25.00ml真实浓度为c(标于瓶签上)的HAc溶液,注入50ml容量瓶中,然后加蒸馏水至刻度并摇匀即成,其真实浓度分别为原溶液浓度的1/2。
实验六 电导法测定乙酸电离平衡常数一、 实验目的1、 掌握电导、电导率、摩尔电导率的概念以及他们之间的联系。
2、 掌握由电导法测定弱电解质电离平衡常熟的原理。
二.实验原理:1.电离平衡常数K c 的测定原理在弱电解质溶液中,只有已经电离的部分才能承担传递电量的任务。
在无限稀释的溶液中可以认为弱电解质已全部电离,此时溶液的摩尔电导率为∞∧m ,可以用离子的极限摩尔电导率相加而得。
而一定浓度下电解质的摩尔电导率∧m 与无限稀释的溶液的摩尔电导率∞∧m 是有区别的,这由两个因素造成,一是电解质的不完全离解,二是离子间存在相互作用力。
二者之间有如下近似关系:∞∧∧=mm α(1)式中为弱电解质的电离度。
对AB 型弱电解质,如乙酸(即醋酸),在溶液中电离达到平衡时,其电离平衡常数K c 与浓度c 和电离度α的关系推导如下:CH 3COOH →CH 3COO - + H+起始浓度 c 0 0 平衡浓度 c (1-α) ca ca 则aca K c -=12(2)以式(1)代入上式得:)(Λm m2ΛΛΛc K m m c -=∞∞(3)因此,只要知道∧m ∞和∧m 就可以算得该浓度下醋酸的电离常数K c 。
将式(2)整理后还可得:(4)由上式可知,测定系列浓度下溶液的摩尔电导率∧m,将cΛ对1/mΛm作图可得一条直线,由直线斜率可测出在一定浓度范围内Kc 的平均值。
2.摩尔电导率∧m的测定原理电导是电阻的倒数,用G表示,单位S(西门子)。
电导率则为电阻率的倒数,用k表示,单位为G·m-1。
摩尔电导率的定义为:含有一摩尔电解质的溶液,全部置于相距为1m的两个电极之间,这时所具有的电导称为摩尔电导率。
摩尔电导率与电导率之间有如下的关系。
∧m= κ/c(5)式中c为溶液中物质的量浓度,单位为mol·m-3。
在电导池中,电导的大小与两极之间的距离l成反比,与电极的面积A成正比。
G = κA/ l(6)由(6)式可得κ=K G (7)cell对于固定的电导池,l和A 是定值,故比值l/A为一常数,以K表示,称为电导池常数,单位为m-1。
电导法测定弱电解质的电离平衡常数及数据处理————————————————————————————————作者:————————————————————————————————日期:电导法测定醋酸电离常数一、实验目的1.了解溶液电导、电导率和摩尔电导率的概念;2.测量电解质溶液的摩尔电导率,并计算弱电解质溶液的电离常数。
二、实验原理电解质溶液是靠正、负离子的迁移来传递电流。
而弱电解质溶液中,只有已电离部分才能承担传递电量的任务。
在无限稀释的溶液中可以认为电解质已全部电离,此时溶液的摩尔电导率为Λ∞m,而且可用离子极限摩尔电导率相加而得。
一定浓度下的摩尔电导率Λm与无限稀释的溶液中摩尔电导率Λ∞m是有差别的。
这由两个因素造成,一是电解质溶液的不完全离解,二是离子间存在着相互作用力。
所以,Λm通常称为表观摩尔电导率。
Λm/Λ∞m=α(U++ U-)/(U+∞+ U-∞)若U+= U-,,U+∞=U-∞则Λm/Λ∞m=α式中α为电离度。
AB型弱电解质在溶液中电离达到平衡时,电离平衡常数K aө,起始浓度C0,电离度α有以下关系:AB A+ + B-起始浓度mol/L:C00 0平衡浓度mol/L:C0·(1-α) αC0 αC0K cө=[c(A+)/cө][c(B-)/cө]/[c(AB)/cө]=C0α2/(1-α)=C0Λm2/[cөΛ∞m(Λ∞m-Λm)] 根据离子独立定律,Λ∞m可以从离子的无限稀释的摩尔电导率计算出来。
Λm可以从电导率的测定求得,然后求出K aө。
Λm C0/cө =Λ∞m2K cө/Λm-Λ∞m K cө通过Λm C0/cө~1/Λm作图,由直线斜率=Λ∞m2K cө,可求出K cө。
三、仪器与试剂DDS-11A(T)型电导率仪1台;恒温槽1套;0.1000mol/L醋酸溶液。
四、实验步骤1.调整恒温槽温度为25℃±0.3℃。
2.用洗净、烘干的义形管1支,加入20.00mL的0.1000mol/L醋酸溶液,测其电导率。
实验六:电导法测弱电解质的电离平衡常数一、实验目的:1、掌握惠斯登电桥法测定电导的原理。
2、学会实验测量的操作技术。
3、学会图解法求算解离度,了解电导测定的应用。
二、实验原理:电解质溶液的导电能力由电导G来量度,它是电阻的倒数,即:电导的单位是“西门子”,符号为“S”,。
将电解质溶液放入两平行电极之间,若两电极距离为l,电极面积为A,则溶液的电导为:式中电导率,其物理意义是l=1m,A=1m2时溶液的电导,其单位为S·m-1。
定义电导池系数则通常将一个电导率已知的电解质溶液注入电导池中,测其电导,根据上式即可求出K cell。
在研究电解质溶液的导电能力时,经常使用摩尔电导率,其定义为:式中c为电解质溶液的浓度,的单位是:S·m2·mol-1。
对于弱电解质(例如醋酸)来说,由于其电导率很小,所以测得的溶液的电导率应包括水的电导率,即电解质溶液是由正、负离子的迁移来传递电流的,在弱电解质溶液中,只有解离部分的离子才对电导有贡献,而在无限稀释的溶液中,电解质全部解离,其摩尔电导率是正、负离子的极限摩尔电导率之和。
即式中ν+,ν-分别为正、负离子的化学计量数,可查表得到。
与的差别来自两个因素,一是电解质的不完全电离,二是离子间的相互作用。
若溶液中离子浓度很低,彼此相隔较远,相互作用力可以忽略,则与之间的关系可表示为:(推导)式中α为弱电解质的解离度。
醋酸在水溶液中有下列平衡:其解离平衡常数为(推导)将代入上式整理可得此式称为奥斯特瓦尔德(Ostwald)稀释定律。
改写成线性方程为:以对作图得一直线,斜率为,截距为,由此可求得和(推导) :整理可得:电解质溶液的电导通常利用惠斯登(Wheatston)电桥测量,但测量时不能用直流电源,因直流电流通过溶液时,导致电化学反应发生,不但使电极附近溶液的浓度改变引起浓差极化,还会改变两极的本质。
因此必须采用较高频率的交流电,其频率通常选为1000Hz。
实验九电导法测定弱电解质的解离平衡常数一实验目的1. 测定KCl水溶液的电导率,求算它的无限稀释摩尔电导率;2. 用电导法测定醋酸在水溶液中的解离平衡常数;3. 掌握DDS一11A型电导率仪的测量原理和使用方法;二实验原理1. 电解质溶液的导电能力通常用电导G来表示,它的单位是西门子(Siemens),用符号S (西)表示。
若将某.电解质溶液放入两平行电极之间,设电极间距为l,电极面积为A,则电导可表示为:G =к (11一1)(11一1)式中,к为该电解质溶液的电导率,单位为S·m-1,它的数值与温度、溶液组成及电解质种类有关;l/A称为电导池常数;它的单位为m-1。
在讨论电解质溶液的导电能力时,常用摩尔电导率Λm这个物理量,它与电导率к、溶液浓度c之间的关系如下:Λm=к/c(11一2)摩尔电导率的单位为S·m2·mol-1.2. Λm总是随溶液浓度的降低而增大。
对强电解质稀溶液而言,其变化规律用科尔劳施(Kohlrausch)经验公式表示:(11一3)(11一3)式中,Λm∞为无限稀释摩尔电导率。
对特定的电解质和溶剂来说,在一定温度下,A是一个常数。
所以将Λm对作图得到的直线外推,可求得该强电解质溶液无限稀释摩尔电导率Λm∞。
3. 对弱电解质,其Λm∞无法利用(11一3)式通过实验直接测定,而是根据离子独立运动定律,应用强电解质无限稀释摩尔电导率计算出弱电解质无限稀释摩尔电导率,也可以从正、负两种离子的无限稀释摩尔电导率加和求得:(11一4)(11一4)式中,,分别表示正、负离子的无限稀释摩尔电导率。
不同温度下醋酸溶液Λm∞见表11一1。
表11一1不同温度下醋酸溶液的Λm∞在弱电解质的稀薄溶液中,离子的浓度很低,离子间的相互作用可以忽略,可以认为它在浓度为c时的解离度α等于它的摩尔电导率Λm与其无限稀释摩尔电导率之比,即:α=Λm /(11一5)对1一1型弱电解质,例如醋酸,当它在溶液中达到解离平衡时,有:HAc H++Acˉ该反应的标准解离平衡常数Kº与浓度为c时解离度α之间有如下关系:(11一6)(11一6)式中cº为溶质B的标准浓度, cº=1.00mol·dm-3,合并(11一5)和(11一6)两式,即得:(11一7)(11一7)式可改写为:=+(11一8)(11一8)式为奥斯瓦尔德(Ostwald)稀释定律。
电导法测定乙酸解离常数一、实验目的 1.了解溶液电导的基本概念,通过实验了解溶液的电导(L) ,摩尔电导率(λ) ,弱电解质 的电离度(α) ,电离常数(K)等概念及它们相互之间的关系。
2.学会 DDS—11D 型电导率仪的使用方法。
3.掌握溶液电导的测定及应用。
二、实验原理 乙酸(HAc)是一弱电解质,在水溶液中存在下列电离平衡:HAc === H+ +Ac起始浓度(mol·L-1) c 0 cα 0 cα 平衡浓度(mol·L-1) c—cαα是 HAc 溶液的浓度为 c 时的电离度。
在溶液中电离达到平衡时,乙酸电离平衡常数 KC 与原始浓度 C 和电离度 α 有以下关系:KC c 2 1(1)在一定温度下 KC 是常数, 因此可以通过测定 HAc 在不同浓度时的 α 代入(1)式求出 KC。
醋酸溶液的电离度可用电导法来测定,图 1 是用来测定溶液电导的电导池。
电解质溶液的电导,指的是在电解质溶液中正、负离子迁移传递电流的能力。
它与离子 的运动速度有关,它是由溶液的电阻 R 的倒数来进行度量的, 以 G 表示。
将电解质溶液放入电导池内,溶液电导(G)的大小与两电极之间的距离(l)成反比,与电 极的面积(A)成正比:G 式中,A l( 2)为电导池常数,以 Kcell 表示;κ 为电导率,也可称为比电导。
其物理意义:在两平行而 相距 1m,面积均为 1m2 的两电极间,电解质溶液 的电导称为该溶液的电导率,其单位以 SI 制表示 为 S·m-1(c·g·s 制表示为 S·cm-1)。
图1 电导池由于电极的 l 和 A 不易精确测量,因此在实验中是用一种已知电导率值的溶液先求出电导池常数 Kcell, 然后把欲测溶液放入 该电导池测出其电导值,再根据(2)式求出其电导率。
溶液的摩尔电导率是指把含有 1mol 电解质的溶液置于相距为 1m 的两平行板电极 之间的电导。
五、实验数据记录与处理1、作图法求K ΘHAc 。
(1)根据公式:如果以1/Λm 对cΛm 作图,截距即为1/Λ∞m ,由直线的斜率和截距即可求得K ΘHAc 。
表一 摩尔电导率以及各溶液的浓度 (3)以1/Λm 对cΛm 作图(见图一)。
1/ΛmcΛm图一 以1/Λm 对cΛm 作图求K ΘHAc 图二 以1/Λm 对cΛm 作图拟合结果 根据拟合结果:直线的斜率为:42664.10717;直线的截距为:28.1034 根据公式: K ΘHAc =(截距)2*10-3/斜率 =1.85*10-5通过查阅《普通化学原理》附表,知:25℃时,醋酸的K ΘHAc =1.75*10-5相对误差:5.71%2、求醋酸的电离度α。
根据弱电解质的电离度与摩尔电导率的关系: 求出五组不同浓度的醋酸溶液的电离度,见表二。
其中25℃下的Λ∞由表三得到。
表二 醋酸溶液的电离度 表三 不同温度下无限稀释的醋酸溶液的摩尔电导率(10S ·m /mol )3、计算法求K ΘHAc根据公式:通过计算的方法求得K Θ,与作图法以及标准值比较,相关数据见表四。
表四 计算的方法求得K HAc根据计算的结果,只有c/16的K ΘHAc 与其他数据相差较大,这与通过作图拟合时的数据一致,通过图一中对无根数据的拟合,可以看出也是c/16的数据点偏离拟合直线比较多,应该是实验误差所致。
4、对第一次实验数据的处理以及处理结果。
注:本次实验我们小组测量了两次,原因是第一次实验测量的数据通过拟合直线虽然斜率是可靠的,但是其截距是负值,这与直线方程的截距物理意义不符合,通过询问前面几组的数据,我们发现用右侧仪器的小组数据都出现了这样一个问题,因此我们决定用另外一个仪器第二次测量。
表五 第一次测量的实验数据及相关计算数值(2)作图法求KΘHAc1/ΛmcΛm图三 第一次实验数据以1/Λm 对cΛm 作图求K ΘHAc 图四 第一次实验数据以1/Λm 对cΛm 作图拟合结果 根据拟合结果:直线的斜率为:36293.42452;直线的截距为:-266.69365 根据公式:因为截距为负值无法加入计算,因此用表三中25℃时的摩尔电导率代入计算:求得K ΘHAc =(1/0.03908)2/斜率=1.80*10-5通过查阅《普通化学原理》附表,知:25℃时,醋酸的K ΘHAc =1.75*10-5 相对误差:2.86%。
电导法测定弱电解质的电离常数Ⅰ、目的要求 一、用电导法测定弱电解质醋酸在水溶液中的解离平衡常数Kc ;二、巩固溶液电导的基本概念及其熟悉DDS-307型电导率仪的使用 Ⅱ、仪器与试剂Ⅲ、实验原理醋酸在水溶液中呈下列平衡:HAc = H + + Ac -c(1-α) c α c α式中c 为醋酸浓度;α为电离度,则电离平衡常数Kc 为:定温下,Kc 为常数,通过测定不同浓度下的电离度就可求得平衡常数Kc 值。
醋酸溶液的电离度可用电导法测定。
溶液的电导用电导率仪测定。
测定溶液的电导,要将被测溶液注入电导池中,如图1-1所示图1 浸入式电导池若两电极间距离为l ,电极的面积为A ,则溶液电导G 为: G =式中: 为电导率。
电解质溶液的电导率不仅与温度有关,还与溶液的浓度有关。
溶液的电导率κ按 ⎪⎭⎫ ⎝⎛==A l G ρκ1式计算。
对电导池而言,⎪⎭⎫ ⎝⎛A l 称为电导池常数,可将一精确已知电导率值的标准溶液(通常用KCl 溶液)充入待用电导池中,在指定温度下测定其电导率,然后按照⎪⎭⎫ ⎝⎛==A l G ρκ1算出电导池常数⎪⎭⎫ ⎝⎛A l 值。
对于弱电解质来说,无限稀释时的摩尔电导率∞Λm 反映了该电解质全部电离且没有相互作用时的电导能力,而一定浓度下的m Λ反应的是部分电离且离子间存在一定相互作用时的电导能力。
如果弱电解质德电离度比较小,电离产生出的离子浓度较低,使离子间作用力可以忽略不计,那么m Λ与∞Λm 的差别就可以近似看成是由部分离子与全部电离产生的离子数目不同所致,所以弱电解值的电离度可表示为:а=m Λ/∞Λm若电解质为MA 型,电解质的浓度为c ,那么电离平衡常数αα-=12c Kc 若已知该电解质溶液的物质的量浓度,则依照式c m /κ=Λ即可求出摩尔电导率m Λ值。
再根据奥斯特瓦尔德(Ostwald )稀释定律。
()m m m m c Kc Λ-ΛΛΛ=∞∞2实验证明,弱电解质的电离度а越小,该式越精确。
实验六 电解质溶液电导率与弱酸电离常数测定一、实验目的1.用电导率仪测定氯化钾和醋酸溶液的电导率。
2.掌握电导率仪的使用方法。
二、实验原理电解质溶液是依靠正负离子的定向迁移转移电流的。
溶液的导电本领可以用电导率表示。
将电解质溶液放入两平行电极之间,两电极距离为l [m ],两电极面积均为A [m 2],则溶液的电阻为:1l lR R A Aκ=⋅=⋅(1) 1cell l k K G A R=⋅= (2)式中:K cell —电池常数; G —溶液电导; κ—电导率在研究电导时,常用到摩尔电导率来描述溶液的导电能力,它与电导率和浓度的关系为:m cκΛ= (3)式中:Λm —摩尔电导率 [m 2·Ω-1·mol -1]; κ—电导率 [Ω-1·m -1]; c —摩尔浓度 [mol ·m -3]。
Λm 随浓度变化的规律,对强弱电解质各不相同,对强电解质稀溶液可用下列经验公式表示:m m ∞Λ=Λ- (4) 式中: m ∞Λ—无限稀释时的摩尔电导率; A —常数将Λm m ∞Λ。
对于弱电解质来说,它的电离度α等于溶液的浓度为C 时的摩尔电导率Λm 和溶液的浓度无限稀释时的摩尔电导率m ∞Λ之比,即 mmα∞Λ=Λ (5) 在1—1价型弱电解质溶液电离达到平衡时,电离平衡常数c K Θ与C 和α的关系如下式:2(1)cCa K a C ΘΘ=- (6)其中31C mol dm Θ-=⋅将(4)式代入(5),可得2()m cm m mC K C ΘΛΘ∞∞=ΛΛ-Λ (7)根据离子独立运动规律,m∞Λ可以从离子的无限稀释摩尔电导率计算出来。
m Λ可由实验测定,然后按(6)式计算出c K Θ。
三、仪器和药品DDS —307型电导率仪一台;电导电极一支;50ml 烧杯两只;50ml 容量瓶4只;25ml 移液管2只;0.01mol ·dm -3标准KCl 溶液;0.100mol ·dm -3标准醋酸溶液。
电导测定的应用基本原理:1.弱电解质电离常数的测定本实验是通过对不同浓度HAc溶液的电导率的测定来确定电离平衡常数对于HAc,在溶液中电离达到平衡时,电离平衡常数Kc与原始浓度C和电离度α有以下关系:HAc H+ + Ac-t=0 C 0 0t=t平衡 C1-α Cα CαK= Cα2 =Cα2 1C1-α 1-α当T一定时,K一般为常数,因此,在确定c之后,可通过电解质α的测定求得K;电离度α等于浓度为c时的摩尔电导率Λm与溶液无限稀释时的摩尔电导率之比,即α=Λm/Λ∞m 2将2代入1K= CΛ2m/ Λ∞mΛ∞m-Λm 3整理得CΛm = KΛ∞m2 4Λm- KΛ∞m以CΛm对1/Λm作图,其直线的斜率为KΛ∞m2 ,如知道Λ∞m值可有文献查得,就可算出K;文献:25℃时无限稀释的HAc水溶液的摩尔电导率=3.90710-2S·m2·m-1电解质溶液的导电能力通常用电导G来表示,若将电解质溶液放入两平行电极之间,设电极的面积为A,两电极的间的距离为l,则溶液的电导G为:G = кA / l即к= G 1 / A = G K cell 5 式中к为该溶液的电导率,其单位是S.m-1;l/A为电导池常数,以K cell来表示,它的单位为m-1;由于电极的l和A不易精确测量,因此在实验中用一种已知电导率的溶液先求出电导池的常数Kcell,然后再把欲测的的溶液放入该电导池中测出其电导值,在根据上式求出其电导率;在讨论电解质溶液的电导能力时常用摩尔电导率Λm这个物理量;摩尔电导率与电导率的关系:Λm=K/C 6 式中,C为该溶液的浓度,单位为mol.m-3;Λm的单位为S.m2.mol-1;注意,当浓度C的单位是mol/L表示时,则要换算成mol/m3,后再计算;而对于弱电解质Hac来说,由于其电导率很小,故得HAc溶液的电导率也包括水的电导率;所以K HAc=K溶液-K H20 7 将7K HAc代入6;算出浓度c的HAc的Λm,以此Λm代入4再进行数据处理,才算出电离常数K2.CaF2或BaSO4饱和溶液溶度积K sp的测定利用电导发能方便地求出微溶盐的溶解度,再利用溶解度得到其溶度积值;CaF2的溶解平衡可表示为:CaF2 Ca2+ + 2F-K sp=CCa2+CF-2=4C3 8微溶盐的溶解度很小,饱和溶液的浓度则很低,所以6式中Λm可以认为就是Λ∞,C为饱和溶液中微溶盐的溶解度;Λ∞盐= k盐/c盐9 k 盐是纯微溶盐的电导率;注意在实验中所测定的饱和溶液的电导值为盐与水的电导之和G溶液=GH2O+G盐10 这样,整个实验可由测得的微溶盐饱和溶液的电导利用10式求出G盐,利用5式求出盐,再利用9式求出溶解度,最后求出K sp;3.电导滴定在分析化学中常用电导测定来确定滴定的终点,称为电导滴定;当溶液混浊或有颜色,不能用指示剂变色来指示终点时,这个方法更显得实用,方便;电导滴定可用于酸碱中和、生成沉淀、氧化还原等各类滴定反应;其原理通常被滴定溶液中的一种离子与滴入试剂中的一种离子结合生成离解度极小的电解质或固体沉淀,使得溶液中原有的某种离子被另一种离子所替代,因而使电导发生改变;仪器、试剂:碱性滴定管25ml一支、DDS-11A电导率仪1台、移液管25ml一支、铂黑电极1支、锥形瓶250ml3个、烧杯100ml、NaOH标准溶液0.1ml/dm3、HAc0.04mol.dm-3、磁力搅拌器;实验步骤方案一一、电极的处理接好DDS-11A电导率仪测量线路;电导仪是用方法见附录现将铂黑电极浸泡于蒸馏水数分钟,取出后用蒸馏水淋洗,用滤纸吸干电极上的水勿碰二、乙酸溶液浓度的测定--电导滴定用25ml移液管移取HAc溶液于锥形瓶中,置于磁力搅拌器上,用标准NaOH 溶液滴定,同时测定溶液的电导率;三、测定HAc溶液的电导率用移液管向干燥洁净的100ml烧杯中加入25ml已标定的HAc溶液,插入铂黑电极测其电导率值;用另一支干净移液管从上述烧杯中吸出25ml蒸馏水搅拌均匀,测其电导率;再用第一支移液管从上述烧杯中吸出25mlHAc溶液,注意管壁不带出溶液弃去,并补充25ml蒸馏水,搅拌,测其电导率;如此再稀释三次,共测出六种不同浓度HAc溶液的电导率;测毕,以蒸馏水洗净铂黑电极,浸入蒸馏水中;四、测定蒸馏水的电导率取100ml烧杯,用蒸馏水冲洗数次,盛蒸馏水,测其电导率;方案二:将电导滴定用于酸碱中和、沉淀反应等反映类型,作为四种不同类型的电导滴定曲线;方案二:用电导方法测定三种难溶盐饱和溶液的溶度积K SPDDS-11A电导率仪的使用方法DDS-11为保证测量准确及仪表安全,下各点使用;(1)通电前,检查表针是否指零如不指零,可调整表头调整螺丝,使表针指零;(2)当电源线的插头被插入仪器的电源孔在仪器的背面后,开启电源开关,灯即亮;预热后即可工作;3 将范围选择器5扳到所需的测量范围如不知被测量的大小,应先调至最大量程位量,以免过载使表针打弯,以后逐档改变到所需量程;4 连接电板引线;被测定为低电导5μΩ-1以下时,用光亮铂电极;被测液电导在5μΩ-1-150mΩ-1时,用铂黑电极;5 将校正测量换档开关扳向“校正”,调整校正调节器б,使指针停在指示电表8中的倒立三角形处;6 将开关4板向“测量”,将指示电表8中的读数乘以范围选择器5上的倍率,即得被测溶液的电导度;7在测量中要经常检查“校正”是否改变,即将开关4扳向“校正”时,指针是否仍停留在倒立三角形处;。
实验六:电导法测弱电解质H A c的电离平衡常数实验六:电导法测弱电解质的电离平衡常数一、实验目的:1、掌握惠斯登电桥法测定电导的原理。
2、学会实验测量的操作技术。
3、学会图解法求算解离度,了解电导测定的应用。
二、实验原理:电解质溶液的导电能力由电导G来量度,它是电阻的倒数,即:电导的单位是“西门子”,符号为“S”,。
将电解质溶液放入两平行电极之间,若两电极距离为l,电极面积为A,则溶液的电导为:式中电导率,其物理意义是l=1m,A=1m2时溶液的电导,其单位为S·m-1。
定义电导池系数则通常将一个电导率已知的电解质溶液注入电导池中,测其电导,根据上式即可求出K cell。
在研究电解质溶液的导电能力时,经常使用摩尔电导率,其定义为:式中c为电解质溶液的浓度,的单位是:S·m2·mol-1。
对于弱电解质(例如醋酸)来说,由于其电导率很小,所以测得的溶液的电导率应包括水的电导率,即电解质溶液是由正、负离子的迁移来传递电流的,在弱电解质溶液中,只有解离部分的离子才对电导有贡献,而在无限稀释的溶液中,电解质全部解离,其摩尔电导率是正、负离子的极限摩尔电导率之和。
即式中ν+,ν-分别为正、负离子的化学计量数,可查表得到。
与的差别来自两个因素,一是电解质的不完全电离,二是离子间的相互作用。
若溶液中离子浓度很低,彼此相隔较远,相互作用力可以忽略,则与之间的关系可表示为:(推导)式中α为弱电解质的解离度。
醋酸在水溶液中有下列平衡:其解离平衡常数为(推导)将代入上式整理可得此式称为奥斯特瓦尔德(Ostwald)稀释定律。
改写成线性方程为:以对作图得一直线,斜率为,截距为,由此可求得和 (推导) :整理可得:电解质溶液的电导通常利用惠斯登(Wheatston)电桥测量,但测量时不能用直流电源,因直流电流通过溶液时,导致电化学反应发生,不但使电极附近溶液的浓度改变引起浓差极化,还会改变两极的本质。
因此必须采用较高频率的交流电,其频率通常选为1000Hz。
另外,构成电导池的两极采用惰性铂电极,以免电极与溶液间发生化学反应。
惠斯登电桥的线路如图8-1所示,其中S为交流信号发生器,R1、R2和R3是三个可变交流变阻箱的阻值,R x为待测溶液的阻值,H为耳机(或示波器),C1为在R3上并联的可变电容器,以实现容抗平衡。
测定时,调节R1、R2、R3和C1,使H中无电流通过,此时电桥达到了平衡。
则有:即R x的倒数即为溶液的电导,即由于温度对溶液的电导有影响,因此实验应在恒温条件下进行。
本实验通过测定0.02mol KCl溶液的电阻,求得电导池系数通过测定水、醋酸溶液的电导G,分别求出其电导率根据两式计算出各浓度醋酸溶液的,最后以三、仪器与药品交流信号发生器1台恒温槽1台(图)示波器1台(图)可变电阻箱1个(图)电导电极1个(图)电导池1个(图)10mL移液管2支0.02 mol·dm-3氯化钾溶液、0.1 mol·dm-3乙酸溶液、电导水四、实验步骤1、按8-1图连接好惠斯登电桥测量线路,调节恒温槽温度至25℃。
2、测定电导水的电导。
依次用蒸馏水、电导水洗电极及电导池各三次,在电导池中装入电导水,水面高度应高于电极铂片2mm以上,放入恒温槽中恒温后,测定其电阻。
然后更换电导水,再测定两次,取其平均值。
3、测定醋酸溶液的电导。
取20mL 0.1 mol·dm-3醋酸溶液注入电导池中,测定其电阻。
用移液管从电导池中吸出10mL溶液弃去,用另一支移液管取10mL电导水注入电导池中,混合均匀,待温度恒定后,测量其电阻,如此操作,共稀释4次,即分别测定0.1、0.05、0.025、0.0125、0.00625 mol·dm-3五个浓度溶液的电阻R x。
4、测定电导池系数。
按2中所述方法测定0.02 mol·dm-3的KCl溶液的电阻,重复测定三次,取其平均值。
已知25 ℃时0.02 mol·dm-3的KCl溶液的电导κ(KCl)=0.2765S·m-1。
5、将上述测量数据及处理结果记录于下表中。
6、以对作图,由直线的斜率计算。
已知25℃时= 349.82×10-4 S·m2·mol-1,= 40.9×10-4 S·m2·mol-1。
计算出,并与作图法得到的相比较。
【实验关键提示】1. 利用惠斯登电桥测定溶液的电导,关键是找到电桥的平衡点,一般测量步骤是,先选择R2/R1=1(理论上讲,此时所得到的结果的误差最小),再调节R3使通过示波器H的信号最小。
但在测量电导水时,由于R x较大,可选择R2/R1=10或R2/R1=100。
2. 对交流信号来说,电导池R x的两个电极相当于一个电容器,这一结果使电桥两支线的位相不同,因而找不到示波器H中信号完全消失的位置,对于精确的测量,需要在电阻R3上并联一个可变电容器C1,以实现容抗平衡。
另外,为避免外来电磁波的干扰,最好使用屏蔽导线,接线柱的裸露部分尽量缩短。
3. 由于温度变化会影响电导,一般在室温下温度升高1oC,电导将增加2%,因此测量时应注意保持恒温,待测液一般需恒温10 min。
4. 本实验所测定的醋酸溶液及电导水的电导率都是很小的,若其中有微量的杂质会引起很大的实验误差,因此实验过程中必须保持样品的纯度,石英蒸馏器制备的二次蒸馏水的电导率应小于1×10-4 S·m-1,测量样品的步骤遵循电导率由小到大的先后顺序,测量时电导池和电导电极要用待测液洗干净。
5.本实验所用电导电极是镀铂黑的铂电极,镀铂黑的目的是为了增大电极的表面积,减小电流密度,从而降低由电流引起的极化效应,因此在实验过程中不要用滤纸擦拭铂黑,以免使铂黑脱落而改变电导池系数。
实验结束后,用蒸馏水冲洗电极,最后浸泡在蒸馏水中。
【讨论】电导测定不仅有助于研究电解质溶液的特性,也可直接用来解决一些化学问题,诸如计算水的离子积,难溶盐的溶解度和弱电解质的解离度等。
对于这些浓度极低的体系,一般的分析方法难以精确测定。
然而,正是由于浓度低,离子间的相互作用可以忽略,才有Λm一式成立,这便为电导法解决问题提供了方便。
根据可得:对于强电解质(如AgCl、PbSO4等)溶液,α=1,通过和可以计算出其溶解度c;对于弱电解质(如HAc等),通过和c可以计算出解离度α。
其中可以查表得到,因此电导法解决这类问题最终归结为电导率的精确测定。
电解质溶液属于离子导体,其电阻同电子导体(如金属、石墨等)一样,也服从欧姆定律和(推导)式,因此两者测量电阻的原理和方法相同,即可以利用惠斯登电桥。
所不同的是,电解质溶液的导电机理是由正、负离子共同承担的,导电过程中在两电极上总是伴随着电化学反应,这种特殊性导致在测量技术上需做如下三点改变:(1)使用交流电源;(2)因采用交流电源,所以不能用直流检流器,而改用示波器或耳机;(3)需补偿电导池的电容。
为防止电导池中溶液浓度改变而产生极化,交流电源的频率应高一些。
但是另一方面,由于电阻箱(R1,R2,R3)存在电感和电容,电导池也有电容,因此在使用高频交流信号时,电桥平衡条件应当是:式中Z是阻抗(包括电阻、电容和电感),若交流信号的频率不太高,则电感和电容的影响可以忽略,此时仍然成立。
综合以上因素,交流信号的频率一般选择在1000Hz左右。
电导电极的选用应根据被测溶液电导率的大小而定,对电导率大的溶液,应选择电导池系数大的电极;反之,则选择电导池系数小的电极。
本实验的示零装置采用示波器,其灵敏度高而且很直观,但常受到外来电磁波的干扰,若采用低阻值的耳机则可避免这种干扰,但灵敏度不高,且克服不了测量过程中的人为因素。
应用电导法测量可以解决多种实际问题,它是电化学测量技术中最基本的方法之一,由于具有准确、快速的优点,所以在实际中得到广泛的应用,如水质的检验、电导滴定、通过测定电导确定工业用水的含盐量以及增大溶液的电导使电解时能耗降低等等。
近年来,由于实验技术的不断发展,已出现许多测定电导率的专用仪器,它是把测出的电阻值换算成电导率直接显示在仪器上,其测量原理与惠斯登电桥类似。
通过本实验学习希望同学们能够掌握这种方法,并学会运用电导知识分析电解质溶液的一些性能。
25o C时醋酸解离平衡常数的文献值为=1.754x10-5,同学们将计算结果与此比较,分析产生误差的原因,并对本实验装置的测量精度作出评价。
【思考题】能否通过测量电极间的距离和极板面积来求得电导池系数?应如何得到电导池系数?答:不能通过测量电极间的距离和极板面积来求算电导池系数。
因为极板镀铂黑,表面凸凹不平,其面积不可能通过几何测量算准。
可以通过测量已知电导率的KCl溶液的电导算出。
(2)测电导时为什么要恒温?实验中测电导池系数和溶液电导时,温度是否要一致?答:因为电导与温度有关,所以测量时要在恒温条件下进行。
测量蒸馏水和测量醋酸溶液的电导,两者的温度应保持一致。
而测量电导池系数(用KCl溶液)的温度可以与醋酸溶液不同,因为电导池系数与温度无关,只要使KCl溶液的电导率与温度对应即可。
(3)实验中为什么要用铂黑电极?使用时应注意什么?答:镀铂黑的目的是为了增大电极的表面积,减小电流密度,从而降低由交流电引起的极化效应。
但使用时要注意,不要用滤纸擦试铂黑,以免使铂黑脱落而改变电导池系数。
实验结束后,用蒸馏水冲洗电极,并浸泡在蒸馏水中。
(4)测定溶液的电导为什么要用交流电桥?能否用直流电桥?答:测量溶液的电导不能用直流电源,因为直流电通过溶液时,由于电化学反应的发生,不但使电极附近溶液的浓度改变而引起浓差极化,还会改变电极的本质。
因此必须采用交流电源,使交流电前半周在电极上产生的变化在后半周得以抵消。
实验八电导法测定弱电解质的解离平衡常数姓名:__________ 学号:__________ 地点:__________实验日期:______ 室温:__________ 气压:__________一、实验目的二、实验原理三、实验操作1.写出实验所用的仪器和药品。
2.写出实验操作步骤。
四、实验数据记录与处理1.记录KCl溶液的电导(或电阻);查表得KCl溶液的电导率κ= S·m-1。
计算电导池系数K cell。
2.记录电导水的电导(或电阻),计算其电导率κ(H2O)。
3.将测定醋酸溶液的原始数据记录于下表中:4.以Λm对作图,并计算离解平衡常数。
五、结果与讨论写出对实验结果和实验现象的分析、归纳和解释,以及通过实验所获得的心得体会等。
鼓励学员通过查阅文献,提出对实验进一步研究与改进的建议等。