医用高分子抗癌药物载体
- 格式:ppt
- 大小:136.50 KB
- 文档页数:17
功能高分子医用高分子简介医用高分子定义在合成或天然高分子原有力学性能的基础上,再赋予传统使用性能以外的各种特定功能(如化学活性、光敏性、导电性、催化活性、生物相容性、药理性能、选择分类性能等)而制得的一类高分子。
医用高分子。
主要包括:用于制造人工组织和人工器官的高分子生物材料;作为载体、助剂或药理活性物质,用于提高药物制剂的安全性、长效性及专一性的药用高分子,其中具有药理活性的高分子化合物称高分子药物;以及用来制造医疗过程中各种体外用的器具和用品。
生物医用材料是指具有特殊性能、特殊功能,用于人工器官外科修复、理疗康复、诊断、检查、治疗疾患等医疗、保健领域,而对人体组织、血液不致产生不良影响的材料。
国际标准化组织(ISO)法国会议专门定义的“生物材料”就是生物医学材料,它是指“以医疗为目的,用于与组织接触以形成功能的无生命的材料”。
生物医用高分子材料是生物医用材料的一个重要组成部分,是一类用于诊断、治疗和器官修复与再生的材料,具有延长病人生命、提高病人生存质量的作用,是材料科学、化学、生命科学和医学交叉的发展领域。
其研究与开发既有重大的社会需求,也有重大的经济需求。
高性能医用高分子材料和器械是现代医学各种诊断和治疗技术赖以存在的基础,并不断推动各种新诊断和治疗手段的出现。
医用高分子的研究至今已有40多年的历史。
1949年,美国首先发表了医用高分子的展望性论文。
在文章中,第一次介绍了利用聚甲基丙烯酸甲酯作为人的头盖骨和关节,利用聚酰胺纤维作为手术缝合线的临床应用情况。
据不完全统计,截至1990年,美国、日本、西欧等发表的有关医用高分子的学术论文和专利已超过30000篇。
有人预计,现在的21世纪,医用高分子将进入一个全新的时代。
除了大脑之外,人体的所有部位和脏器都可用高分子材料来取代。
仿生人也将比想像中更快地来到世上。
在更加关爱人类自身健康的21世纪,医用高分子材料必将发挥日益重要的作用。
生物医用材料的研究与开发也得到了国家相关部门的高度重视,“十五”和“十一五”国家重点基础研究发展规划(“973”)都设立了生物医用材料的研究项目。
壳聚糖作为药物载体在医学领域中的应用摘要:壳聚糖的理化性质、生物活性以及安全性都符合作为药物载体的标准,药物包封于壳聚糖后其释放主要决定壳聚糖的生物降解和溶蚀,控制药物释药的浓度和时间,使药物的释放时间明显延长,对疾病治疗另辟了新的方法和途径。
关键字:壳聚糖药物载体医学应用前言作为新型药物输送和控释载体,可生物降解的聚合物纳米粒子,特别是基于多糖的纳米微球和纳米微囊,因其具有良好的生物相容性、超细粒径、合理的体内分布和高效的药物利用率,近年日益受到广泛关注。
可生物降解聚合物纳米微粒不仅可增强药物的稳定性、提高疗效、降低毒副作用,而且可有效地越过许多生物屏障和组织间隙到达病灶部位,从而更有效地对药物进行靶向输送和控制释放,是包埋多肽、蛋白质、核酸、疫苗一类生物活性大分子药物的理想载体[1]。
壳聚糖是一种生物可降解的高分子聚合物,由于其良好的生物可降解性、对生物黏膜较强的黏附性、无毒性及组织相容性,是一种理想的药物载体。
由壳聚糖制备的纳米微球可以能够提高药物的稳定性、提高了疏水性药物的溶解度、改变给药途径、增加药物的吸收、提高药物的生物利用度、降低药物的不良反应等特点;也可以缓释、控释、靶向释放药物等。
因此,壳聚糖纳米微球作为药物载体有着巨大的应用潜力。
1.1壳聚糖的物理化学及生物学性质随着对其物理化学和生物特性的不断揭示,壳聚糖基纳米微粒现已被认为是一类极具应用前景的药物控释载体,特别适用于具有生物活性大分子药物的包埋和释放。
从技术角度来看,壳聚糖最重要的优势在于它的可溶性和带正电性,这些特点使其在液态介质中可与带负电荷的聚合物、大分子甚至一些聚阴离子相互作用,由此发生的溶胶-凝胶转变过程则可方便地用于载药纳米微粒的制备;从生物药剂角度来看,壳聚糖纳米微粒具有附着在生物体粘膜表面的特性,这使得它尤其适用于粘膜药物的靶向输送。
黄小龙等[2]通过实验证明了壳聚糖纳米粒子能打开小肠上皮细胞间紧密的节点,使大分子药物更易越过上皮组织、增加药物在小肠内的吸收;Luessen等[3]用壳聚糖纳米微粒包埋多肽类药物-布舍若林,发现药物在小鼠体内吸收的生物利用度达5.1%,而未被包埋药物的生物利用度仅为0.1%。
医用高分子材料介绍现代药剂学——高分子材料在药剂学中的应用介绍了高分子材料作为药物载体的必要条件:适当的载药量;载药后具有适当的药物释放能力;无毒、无抗原性,具有良好的生物相容性。
止匕外,根据制剂的加工和成型要求,还应具有适当的分子量和理化性质。
一、高分子材料基础介绍(一)高分子化合物的概念大分子简称为聚合物。
它大致分为有机聚合物化合物(称为有机聚合物)和无机聚合物化合物(无机聚合物)。
高分子化合物又称聚合物或高聚物,是指分子量超过104的一种化合物。
它们是由许多简单的结构单元通过共价键反复连接而成的分子。
(2)重复单元——是聚合物链的基本组成单元。
方括号是指重复连接,这意味着整个分子是通过顺序连接多个这样的重复单元而形成的。
n是重复单元的数量,也称为聚合度。
它是一个平均值,即包含在聚合物中的同源分子的重复单元数的平均值。
根据测定方法或计算方法,获得的平均值在大小和含义上有所不同。
聚合物的分子量M是重复单元的分子量Mo和聚合度(DP)的乘积:例如,如果聚氯乙烯的分子量为50, 000至150, 000,重复单元的分子量为62.5,平均聚合度为800至2400。
也就是说,聚氯乙烯分子是通过结合800至2400个氯乙烯结构单元形成的。
由重复单元连接的线性大分子类似于长链。
因此,重复单元有时被称为链接。
对于像聚乙烯和聚氯乙烯这样的分子,它们的重复单元的组成与合成它们的起始材料相同,只是电子结构略有变化。
因此,这种聚合物的重复单元是单体单元,或者换句话说,是由称为均聚物的单体聚合形成的聚合物。
由两种或多种单体共聚形成的聚合物称为共聚物。
这些聚合物的重复单元与单体结构不同。
(3)大分子化合物的命名1。
习惯命名遵循习惯,聚合物通常根据其来源和制备方法来命名。
大多数天然聚合物都有特殊的名称。
例如,纤维素、淀粉、蛋白质、甲壳质、阿拉伯树胶、藻酸等。
这些名称通常不反映物质的结构。
一些大分子化合物是由天然聚合物衍生或改变而来的,它们的名称是以衍生物开头的基团。
高分子载体药物摘要:随着药物学研究、生物材料科学和临床医学的发展,高分子载体药物作为它们相交叉之后的新兴给药技术开始登上历史舞台。
本文介绍了高分子载体药物的优势及发展现状,并对其未来发展存在的困难以及前景做出了展望。
关键词:高分子药物载体优势分类问题高分子分为天然高分子和合成高分子。
天然高分子用于药物已有很长的历史例如多糖、多肽及酶类药物的使用。
自50 年代初合成高分子开始登上药理学舞台,被用作药物辅料。
而到了20 世纪60 年代,众多化学家们提出了将高分子材料应用于生物药物领域1,从此,对高分子药物大规模研究真正拉开帷幕,制备高分子药物逐步成为改善药物的最有效的方法之一。
如今高分子药物的研究已经形成较为完善的体系,有些药物已经走出临床,走入市场如治疗溃疡性结肠炎的艾迪莎。
而在众多的高分子药物之中,高分子载体药物凭借其独特的优点,成为了近来人们研究的热点之一。
目前由于存在药物低的吸收新陈代谢和降解等作用的个体差异,注射给药时水相的药物溶解度低等因素的影响,对于某些疾病,单纯的靶向新药研发已经不能适应治疗的要求。
为了解决这些问题,药物载体应运而生。
药物载体可以定向的将药物运送到靶器官与靶细胞发挥作用,能有效防止药物在体内循环过程中被过早降解、灭活、排泄以或发生人体免疫反应。
含载体的制剂比普通药剂具有可及时释放药物维持较高的血药浓度或靶器官的药物浓度并具有较长的作用时间等优点,大大提高了药物的安全性与长效性。
作为药物载体应当具有无毒、生物相容性好、可生物降解、载药能力强、可延长药物疗效、延缓体内成分对药物的破坏、物理化学存储稳定、对靶器官有特异趋向性、成本低和利于大规模的生产的特点。
国内外对此已开展广泛研究。
载体种类繁多常见的药物载体有OPW 乳状液、脂质体、聚合然物的微粒或纳米粒子2 。
而OPW 乳状液作为药物载体存在不稳定的问题;聚合物粒子虽然由于粒子小可穿越生物膜屏障到达人体特定部位,但毒副作用大;脂质体作为药物载1 《高分子载体药物的应用与研究趋势》吴承尧权静李树白朱利民《化学世界》2009 50卷第9期,561-566页2《固体脂质纳米粒载体》李欣玮孙立新林晓宏郑利强《化学进展》2007 19卷第1期,87-92页体有较好的生物相容性靶向性,但热力学不稳定,粒径较大,易被单核吞噬细胞系统所吸收。
医用高分子材料的研究现状医用高分子材料是指在医疗领域使用的一类高分子材料,其在医疗器械、药物传递系统和组织工程等方面具有广泛的应用前景。
目前,医用高分子材料领域的研究已经取得了一系列重要的进展,涉及到材料的设计、合成、表征以及在医疗领域的应用等方面。
在医用高分子材料的研究中,一项关键的任务是对材料的性能进行调控,以满足不同的医疗需求。
这涉及到对高分子材料的合成方法进行改进。
目前研究者们采用多种方法合成医用高分子材料,例如自组装、聚合、交联等方法。
这些方法可以控制材料的形态、分子量、分子结构和化学功能团的引入等,从而调控材料的性能。
医用高分子材料的表征是研究的另一个关键方面。
通过对材料的物理性质、化学性质和生物相容性等进行表征,可以评估材料的可操作性和可靠性。
例如,通过测定材料的力学性能、热性能、表面形貌和摩擦学性能等,可以了解材料的耐用性和稳定性。
另外,通过体外和体内实验评估材料的生物相容性和生物活性,可以评估材料的安全性和效果。
除了对医用高分子材料的合成和表征,其在医疗领域的应用也是研究的重要内容。
目前,医用高分子材料广泛应用于医疗器械、药物传递系统和组织工程等领域。
例如,在医疗器械方面,医用高分子材料可以用于制备支架、人工关节和心脏起搏器等。
在药物传递系统方面,医用高分子材料可以用于制备纳米粒子、聚合物药物载体和控释系统等。
在组织工程方面,医用高分子材料可以用于制备人工皮肤、骨替代材料和血管替代材料等。
医用高分子材料的研究还面临一些挑战。
首先,材料的生物相容性是一个重要的考虑因素。
材料与生物体的相互作用可能引起免疫反应和细胞毒性,从而影响材料的应用。
其次,材料的稳定性和可持续性也是一个重要问题,特别是对于长期使用的医疗器械和药物传递系统。
此外,材料的生产成本和规模化制备也是一个挑战,这可能限制材料的商业化应用。
总的来说,医用高分子材料的研究目前正处于快速发展阶段,涉及到材料的合成、表征和在医疗领域的应用等方面。
分散聚合法原位包埋抗肿瘤药物复合微球的工艺研究-高分子材料与工程毕业论文理工学院毕业论文学生姓名:xx 学号:xxxx专业:高分子材料与工程题目:分散聚合法原位包埋抗肿瘤药物复合微球的工艺研究指导教师:xxx(教授)评阅教师:2014 年6 月xx科技大学理工学院毕业论文成绩评定表注:该表一式两份,一份归档,一份装入学生毕业设计说明书(论文)中。
毕业论文中文摘要毕业论文外文摘要本科毕业论文第 1 页共 23 页目录1 绪论 (1)1.1 前言 (1)1.2 国内外研究进展 (3)1.2.1 抗肿瘤药物的使用 (4)1.3 本课题研究意义和内容 (5)2 实验内容 (6)2.1 实验原料及仪器 (6)2.1.1 实验原料 (6)2.1.2 仪器及型号 (6)2.2 实验步骤 (7)2.2.1 分散聚合制备聚甲基丙烯酸甲酯微球实验步骤 (7)2.2.2 分散聚合法包覆尿嘧啶实验操作步骤 (8)2.3 表征 (8)2.3.1 扫描电镜 (8)2.3.2 粒度分布 (8)2.3.3 紫外-分光光度测试 (8)2.3.1 单体转化率测试 (8)3 结果与讨论 (9)3.1 改变乙醇和水的配比来探究聚合物微球从体系析出的情况 (9)3.2 分散剂对单体所占的质量分数对反应体系的影响 (10)3.2.1 分散剂的用量对反应结果的影响 (15)3.2.2 分散剂的用量对聚甲基丙烯酸甲酯粒径的影响错误!未定义书签。
3.3 改变乙醇和水的配比来探究微球粒度分布 ...................... 错误!未定义书签。
3.4 引发剂对单体聚合转化率的影响 (13)3.5 合成产物的红外光谱图分析 .............................................. 错误!未定义书签。
3.6 药物的包覆率 (15)3.7 透射电镜分析 ...................................................................... 错误!未定义书签。
聚氨基酸胶束作为肿瘤靶向药物载体的研究进展贾纳;刘佳;马琛;顾艳丽;赛那;吕晓洁【摘要】聚氨基酸作为一种毒副作用低、生物相容性好的高分子材料,被广泛应用于肿瘤以及基因治疗。
聚氨基酸链的活性基团丰富,可通过多种反应途径与目的基团连接,从而实现药物的主动靶向性。
同时又因为聚合物胶束的粒径为1~100纳米,而肿瘤组织毛细血管壁与正常组织血管壁相比间隙较宽,可以形成“渗透滞留”效应(EPR效应),使载药纳米粒在肿瘤组织中不断蓄积,进而实现药物在肿瘤中的被动靶向性,本文简要综述了载药聚天冬氨酸、聚谷氨酸以及聚赖氨酸聚合物胶束的理化性质及优势,如肿瘤靶向性、缓释性等,并对近年来聚氨基酸胶束的研究进展进行综述。
%Poly amino acids as a low toxicity, good biocompatibility of polymer materials, has been widely applied to gene therapy of cancer, and so on. Poly amino acid chain reactive group rich, more reactive way to connect with the destination group through in order to achieve active drug targeting. While since the polymer micelle particle size of about 1 to 100 nm, and the tumor tissue and normal tissue wall of the capillary gap is wider compared to the blood vessel wall, may be formed“permeate retention” effect(EPR effect), so that drug loaded particles continuously accumulate in tumor tissue, and thus achieve better drug in the tumor passive targeting, this article briefly reviews the drug polyaspartic acid, polyglutamic acid and poly-lysine polymer micelle physicochemical the nature and advantages, such as tumor targeting, sustained release, etc., amino acids and poly micelles in recent years were reviewed.【期刊名称】《北方药学》【年(卷),期】2016(013)008【总页数】3页(P102-103,104)【关键词】聚氨基酸胶束;靶向性;肿瘤【作者】贾纳;刘佳;马琛;顾艳丽;赛那;吕晓洁【作者单位】内蒙古医科大学药学院呼和浩特010100;内蒙古医科大学药学院呼和浩特010100;广东省珠海市高新区唐家湾镇卫生院珠海 519080;内蒙古医科大学药学院呼和浩特010100;内蒙古医科大学药学院呼和浩特010100;内蒙古医科大学药学院呼和浩特010100【正文语种】中文【中图分类】R979.1近年来,恶性肿瘤的发病率明显升高,成为人类健康和生命的一大杀手。
纳米药物载体技术用纳米粒子作为药物载体可实现靶向输送、缓释给药的目的, 这是由于小粒子可以进入很多大粒子难以进入的人体器官组织, 如小于50nm 的粒子就能穿过肝脏皮或通过淋巴传送到脾和骨髓, 也可能到达肿瘤组织。
另外纳米粒子能越过许多生物屏障到达病灶部位, 如透过血脑屏障( BBB) 把药物送到脑部, 通过口服给药可使药物在淋巴结中富集等。
具有生物活性的大分子药物( 如多肽、蛋白类药物) 很难越过生物屏障, 用纳米粒子作为载体可克服这一困难, 并提高其在体输送过程中的稳定性。
用纳米粒子实现基因非病毒转染, 是输送基因药物的有效途径。
药物既可以通过物理包埋也可以通过化学键合的方式结合到聚合物纳米粒子中。
载有药物的聚合物纳米粒子通常以胶体分散体的形式通过口服、经皮、皮下与肌肉注射、动脉注射、静脉点滴和体腔黏膜吸附等给药方式进入人体。
制备聚合物纳米粒子的方法主要有以下几种: ( 1) 单体聚合形成聚合物纳米粒子; ( 2) 聚合物后分散形成纳米粒子; ( 3) 结构规整的两亲性聚合物在水介质中自组装形成纳米粒子。
1 单体聚合制备的聚合物纳米粒子聚氰基丙烯酸烷基酯( PACA) 在人体极易生物降解, 且对许多组织具有生物相容性。
制备聚氰基丙烯酸烷基酯纳米粒子采用的是阴离子引发的乳液聚合方法, 通常以OH-为引发剂, 反应一般在酸性水介质中进行, 常用的乳化剂有葡聚糖、乙二醇与丙二醇的嵌段共聚物和聚山梨酸酯等, 具体制备过程见图1。
当反应介质pH 值偏高时, OH-浓度大, 反应速度快, 形成的PACA 分子量低, 以此作为给药载体材料进入人体后, 降解速度太快, 不利于药物缓释。
因此聚合反应介质的pH 值通常控制在1.0~ 3.5 围。
图 1 聚氰基丙烯酸烷基酯纳米粒子的制备过程PACA 纳米粒子载药的方式有两种: 一是药物与单体一起加入, 药物在聚合反应过程中被包埋在粒子; 二是聚合反应完成后, 药物通过吸附进入粒子部。