2021年安徽省宁国市中考数学总复习:二次函数(附答案解析)
- 格式:docx
- 大小:2.50 MB
- 文档页数:210
2021中考数学二次函数的图象及其性质一轮复习一、选择题1. 若二次函数y=x2+bx+5配方后为y=(x-2)2+k,则b,k的值分别为()A. 0,5B. 0,1C. -4,5D. -4,12. 对于函数y=-2(x-m)2,下列说法不正确的是()A.其图象开口向下B.其图象的对称轴是直线x=mC.最大值为0D.其图象与y轴不相交3. 若抛物线y=x2-2x+3不动,将平面直角坐标系........xOy先沿水平方向向右平移1个单位,再沿铅直方向向上平移3个单位,则原抛物线图象的解析式应变为() A. y=(x-2)2+3 B. y=(x-2)2+5C. y=x2-1D. y=x2+44. (2020·深圳)二次函数y=ax2+bx+c(a≠0)的顶点坐标为(-1,n),其部分图象如图所示,以下结论错误..的是()A.abc>0 B.4ac-b2<0C.3a+c>0 D.关于x的方程ax2+bx+c=n+1无实数根5. 已知函数y=ax2-2ax-1(a是常数,a≠0),下列结论正确的是()A. 当a=1时,函数图象过点(-1,1)B. 当a=-2时,函数图象与x轴没有交点C. 若a>0,则当x≥1时,y随x的增大而减小D. 若a<0,则当x≤1时,y随x的增大而增大6. 点P1(-1,y1),P2(3,y2),P3(5,y3)均在二次函数y=-x2+2x+c的图象上,则y1,y2,y3的大小关系是()A. y3>y2>y1B. y3>y1=y2C. y1>y2>y3D. y1=y2>y37. (2020·福建)10.已知()111,P x y ,()222,P x y 是抛物线22=-y ax ax 上的点,下列命题正确的是( )A.若12|1||1|->-x x ,则12>y yB.若12|1||1|->-x x ,则12<y yC.若12|1||1|-=-x x ,则12=y yD.若12=y y ,则12=x x二、填空题8. 将抛物线y =-(x +2)2向________平移________个单位长度,得到抛物线y =-(x -1)2.9. 如图,抛物线y=ax 2与直线y=bx+c 的两个交点坐标分别为A (-2,4),B (1,1),则方程ax 2=bx+c 的解是 .10. (2019•荆州)二次函数2245y x x =--+的最大值是__________.11. 已知二次函数y=-(x -1)2+2,当t<x<5时,y 随x 的增大而减小,则实数t 的取值范围是 .12. (2019•徐州)已知二次函数的图象经过点(2,2)P ,顶点为(0,0)O 将该图象向右平移,当它再次经过点P 时,所得抛物线的函数表达式为__________.13. 抛物线y =ax 2+bx +c(a ,b ,c 为常数)的顶点为P ,且抛物线经过点A(-1,0),B(m ,0),C(-2,n)(1<m <3,n <0),有下列结论: ①abc >0; ②3a +c <0; ③a(m -1)+2b >0;④a =-1时,存在点P 使△PAB 为直角三角形. 其中正确结论的序号为________.14. 如图,抛物线y =-x 2+2x +3与y 轴交于点C ,点D (0,1),点P 在抛物线上,且△PCD 是以CD 为底的等腰三角形,则点P 的坐标为________.三、解答题15. 已知抛物线y =2x 2-4x +c 与x 轴有两个不同的交点.(1)求c 的取值范围;(2)若抛物线y =2x 2-4x +c 经过点A(2,m)和点B(3,n),试比较m 与n 的大小,并说明理由.16. 如图,已知抛物线y =x 2-(m +3)x +9的顶点C 在x 轴正半轴上,一次函数y=x +3与抛物线交于A 、B 两点,与x 、y 轴分别交于D 、E 两点. (1)求m 的值;(2)求A 、B 两点的坐标; (3)点P (a ,b )(-3<a <1)是抛物线上一点,当△P AB 的面积是△ABC 面积的2倍时,求a 、b 的值.17. (2019·山东滨州)如图①,抛物线211482y x x =-++与y 轴交于点A ,与x 轴交于点,B C ,将直线AB 绕点A 逆时针旋转90°,所得直线与x 轴交于点D . (1)求直线AD 的函数解析式;(2)如图②,若点P 是直线AD 上方抛物线上的一个动点 ①当点P 到直线AD 的距离最大时,求点P 的坐标和最大距离;②当点P到直线AD的距离为524时,求sin PAD的值.2021中考数学二次函数的图象及其性质一轮复习-答案一、选择题1. 【答案】D【解析】由y=(x-2)2+k知此二次函数的顶点坐标为(2,k),对称轴为x=2,由y=x2+bx+5知其对称轴为x=-b2,得-b2=2,所以b=-4;于是可以得到函数的解析式是y=x2-4x+5,把(2,k)代入其中即得k=1.2. 【答案】D3. 【答案】C【解析】由抛物线y=x2-2x+3得y=(x-1)2+2.保持抛物线不动,将平面直角坐标系先沿水平方向向右平移1个单位,其实质相当于抛物线向左平移1个单位,再将平面直角坐标系向上平移3个单位,则相当于抛物线向下平移3个单位,根据抛物线平移规律:左加右减,上加下减,可得新的抛物线解析式为y=(x-1+1)2+2-3=x2-1.4. 【答案】C【解析】根据抛物线开口向下,得到a<0,对称轴为直线x=-b2a=-1,知b=2a<0,抛物线与y轴交于正半轴,c>0,∴abc>0,故选项A正确;根据抛物线与x轴有两个交点,∴b2-4ac>0,即4ac-b2<0,故选项B正确;当x=1时,y=a+b+c<0,又∵b=2a,∴3a+c<0,∴选项C错误;∵抛物线开口向下,顶点为(-1,n),∴函数有最大值n,即抛物线y=ax2+bx+c与直线y =n+1无交点,一元二次方程ax2+bx+c=n+1无实数根,选项D正确;而要选择结论错误..的,因此本题选C.5. 【答案】D【解析】当a=1时,函数为y=x2-2x-1,当x=-1时,y=1+2-1=2,其图象经过点(-1,2),不过点(-1,1),所以A选项错误;当a=-2时,函数为y=-2x2+4x-1,b2-4ac=16-4×(-2)×(-1)=8>0,抛物线与x 轴有两个交点,故选项B 错误;当a >0时,抛物线的开口向上,它的对称轴是直线x =--2a2a =1,当x ≥1,在对称轴的右侧,y 随x 的增大而增大,所以C 选项错误;当a <0时,抛物线的开口向下,它的对称轴是直线x =--2a2a =1,当x ≤1,在对称轴的左侧,y 随x 的增大而增大,所以D 选项正确.6. 【答案】D 【解析】此类题利用图象法比较大小更直观简单.容易求出二次函数y =-x 2+2x +c 图象的对称轴为直线x =1,可画草图如解图:由解图知,P 1(-1,y 1),P 2(3,y 2)关于直线x =1对称,P 3(5,y 3)在图象的右下方部分上,因此,y 1=y 2>y 3.7. 【答案】C【解析】本题考查了二次函数的图象和性质,∵22=-y ax ax =a (x -1)2-a ,∴抛物线的对称轴为x =1,根据二次函数的对称性知若12|1||1|-=-x x ,则12=y y ,因此本题选C . 二、填空题8. 【答案】右 39. 【答案】x 1=-2,x 2=1[解析]∵抛物线y=ax 2与直线y=bx +c 的两个交点坐标分别为A (-2,4),B (1,1),∴的解为即方程ax 2=bx +c的解是x 1=-2,x 2=1.10. 【答案】7【解析】222452(1)7y x x x =--+=-++, 即二次函数245y x x =--+的最大值是7, 故答案为:7.11. 【答案】1≤t<5[解析]抛物线的对称轴为直线x=1,因为a=-1<0,所以抛物线开口向下,所以当x>1时,y 的值随x 值的增大而减小,因为t<x<5时,y 随x 的增大而减小,所以1≤t<5.12. 【答案】21(4)2yx =- 【解析】设原来的抛物线解析式为:2y ax =(0)a ≠, 把(2,2)P 代入,得24a =, 解得12a =, 故原来的抛物线解析式是:212y x =, 设平移后的抛物线解析式为:21()2y x b =-, 把(2,2)P 代入,得212(2)2b =-,解得0b =(舍去)或4b =,所以平移后抛物线的解析式是:21(4)2y x =-, 故答案为:21(4)2y x =-.13. 【答案】②③ [解析] 由抛物线经过A(-1,0),B(m ,0),可知对称轴为x =m -12=-b 2a, ∴-ba =m -1.∵1<m <3,∴ab <0.画出二次函数y =ax 2+bc +c 的大致图象可知a <0, ∴b >0.把(-1,0)代入y =ax 2+bx +c ,可得a -b +c =0, ∴c =b -a >0.∴abc <0,故①错误. 当x =3时,y <0,∴9a +3b +c =9a +3(a +c)+c =12a +4c =4(3a +c)<0,∴3a +c<0,故②正确. ∴-ba =m -1,∴a(m -1)+2b =-b +2b =b >0,故③正确.当a =-1时,y =-x 2+bx +c ,∴P(b 2,b +1+b 24).若△PAB 为直角三角形,则△PAB 为等腰直角三角形, ∴b +1+b 24=b2+1,∴b =-2或b =0.∵b >0,∴不存在点P 使△PAB 为直角三角形, 故④错误. 故答案为②③.14. 【答案】(1+2,2)或(1-2,2) 【解析】抛物线y =-x 2+2x +3与y 轴交于点C ,则点C 坐标是(0,3),∵点D(0,1),点P 在抛物线上,且△PCD 是以CD 为底的等腰三角形,∴易得点P 的纵坐标是2,当y =2时,∴-x 2+2x+3=2,则x 2-2x -1=0,解得方程的两根是x =2±222=1±2,∴点P 的坐标是(1+2,2)或(1-2,2).三、解答题15. 【答案】解:(1)∵抛物线y =2x 2-4x +c 与x 轴有两个不同的交点, ∴Δ=b 2-4ac =16-8c >0,∴c <2.(2)m<n.理由:∵抛物线y =2x 2-4x +c 的对称轴为直线x =1, ∴点A(2,m)和点B(3,n)都在对称轴的右侧. 又∵当x≥1时,y 随x 的增大而增大, ∴m <n.16. 【答案】解:(1)∵抛物线y =x 2-(m +3)x +9的顶点在x 轴的正半轴上, ∴方程x 2-(m +3)x +9=0有两个相等的实数根, ∴b 2-4ac =[-(m +3)]2-4×9=0,解得m =3或m =-9, 又∵抛物线对称轴大于0,即m +3>0, ∴m =3.(3分)(2)由(1)可知抛物线解析式为y =x 2-6x +9,联立一次函数y =x +3,可得⎩⎨⎧y =x 2-6x +9y =x +3,解得⎩⎨⎧x =1y =4或⎩⎨⎧x =6y =9,∴A(1,4),B(6,9).(6分)(3)如解图,分别过A 、B 、P 三点作x 轴的垂线,垂足分别为R 、S 、T ,解图∵A(1,4),B(6,9),C(3,0),P(a ,b),∴AR =4,BS =9,RC =3-1=2,CS =6-3=3,RS =6-1=5,PT =b ,RT =1-a ,ST =6-a ,∴S △ABC =S 梯形ABSR -S △ARC -S △BCS =12×(4+9)×5-12×2×4-12×3×9=15,S △PAB =S 梯形PBST -S 梯形ARTP -S 梯形ARSB =12(9+b)(6-a)-12(b +4)(1-a)-12×(4+9)×5=12(5b -5a -15).(8分) 又∵S △PAB =2S △ABC , ∴12(5b -5a -15)=30,即b -a =15, ∴b =15+a ,∵P 点在抛物线上, ∴b =a 2-6a +9,∴15+a =a 2-6a +9,解得a =7±732, ∵-3<a<1, ∴a =7-732,∴b =15+7-732=37-732.(10分)17. 【答案】(1)当0x =时,4y =,则点A 的坐标为()0,4,当0y =时,2110482x x =-++,解得,124,8x x =-=,则点B 的坐标为()4,0-,点C 的坐标为()8,0,∴4OA OB ==,∴45OBA OAB ∠=∠=︒, ∵将直线AB 绕点A 逆时针旋转90︒得到直线AD , ∴90BAD ∠=︒,∴45OAD =︒,∴45ODA ∠=︒,∴OA OD =,∴点D 的坐标为()4,0, 设直线AD 的函数解析式为,y kx b =+440b k b =⎧⎨+=⎩,得14k b =-⎧⎨=⎩, 即直线AD 的函数解析式为4y x =-+;(2)作PN x ⊥轴交直线AD 于点N ,如图①所示,设点P 的坐标为211,482t t t ⎛⎫-++ ⎪⎝⎭,则点N 的坐标为(),4t t -+,∴2211134(4)8282PN t t t t t ⎛⎫=-++--+=-+ ⎪⎝⎭,∴PN x ⊥轴, ∴PN y ∥轴,∴45OAD PNH ∠=∠=︒,作PH AD ⊥于点H ,则90PHN ∠=︒, ∴22222132322926)2282164164PH PN t t t ⎫==-+=-+=--+⎪⎝⎭, ∴当6t =时,PH 92P 的坐标为(56,2),即当点P 到直线AD 的距离最大时,点P 的坐标是(56,2),最大距离是924;②当点P 到直线AD的距离为524时,如图②所示,则2232521644t t -+=,解得:122,10t t ==, 则1P 的坐标为(92,2),2P 的坐标为(10,)72-,当1P 的坐标为(92,2),则221917(20)42P A ⎛⎫=-+-= ⎪⎝⎭,∴125344sin 172P AD ∠==; 当2P 的坐标为(10,)72-,则222725(100)422P A ⎛⎫=-+--= ⎪⎝⎭,∴25224sin 252P AD ∠==;由上可得,sin PAD ∠的值是53434或210. 【名师点睛】本题是一道二次函数的综合性题目,关键在于设P 点的横坐标,最后将其转化成二次函数的最值问题,通过求解二次函数的最值问题来求解最短距离,难度系数较大,是一道特别好的题目,应当熟练的掌握.。
2024年中考数学总复习:二次函数一.选择题(共25小题)1.抛物线y=(x+1)2﹣1的对称轴是()A.直线x=0B.直线x=1C.直线x=﹣1D.直线y=12.将抛物线y=﹣x2+2向左平移2个单位,再向下平移3个单位,得到抛物线解析式为()A.y=﹣(x+2)2﹣1B.y=﹣(x﹣2)2﹣1C.y=﹣(x+2)2+5D.y=﹣(x﹣2)2+53.已知二次函数y=kx2+2x+1的图象与x轴有交点,则k的取值范围是()A.k<1且k≠0B.k≤1C.k≥1D.k≤1且k≠0 4.把抛物线y=x2+bx+2的图象向右平移3个单位,再向上平移2个单位,所得到的图象的解析式为y=x2﹣4x+7,则b=()A.2B.4C.6D.85.已知点(﹣3,y1),(2,y2),(−12,y3)都在函数y=x2﹣1的图象上,则()A.y2<y1<y3B.y1<y3<y2C.y1<y2<y3D.y3<y2<y1 6.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①当x>﹣1时,y的值随x值的增大而增大;②a﹣b+c>0;③4a+b=0;④9a+c>3b;其中正确的结论是()A.①B.②C.③D.④7.已知二次函数y=3(x﹣1)2+k的图像上有三点A(√2,y1),B(3,y2),A(0,y3),则y1,y2,y3为的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y2>y3>y18.A(−12,y1),B(1,y2),C(4,y3)三点都在二次函数y=﹣(x﹣1)2+k的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y1<y3<y2C.y3<y1<y2D.y3<y2<y1第1页(共17页)。
2023年安徽中考数学总复习专题:基于数学建模的二次函数的实际应用1.如图,正常水位时,抛物线形拱桥下的水面宽AB为20m,此时拱桥的最高点到水面的距离为4m.(1)把拱桥看作一个二次函数的图象,建立恰当的平面直角坐标系,求出这个二次函数的表达式;(2)当水面宽10m时,达到警戒水位,如果水位以0.2m/h的速度持续上涨,那么达到警戒水位后,再过多长时间此桥孔将被淹没?2.如图①,一个可调节高度的喷灌架喷射出的水流可以近似地看成抛物线.图②是喷射出的水流在平面直角坐标系中的示意图,其中喷灌架置于点O处,喷水头的高度(喷水头距喷灌架底部的距离)设置的是1米,当喷射出的水流距离喷水头水平距离为8米时,达到最大高度5米.(1)求水流运行轨迹的函数解析式;(2)若在距喷灌架12米处有一棵3.5米高的果树,问:水流是否会碰到这棵果树?请通过计算说明.3.如图1是一座抛物线型拱桥C1侧面示意图.水面宽AB与桥面长CD均为24m,点E在CD上,DE=6m,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x 轴建立平面直角坐标系.(1)求桥拱顶部O离水面的距离;(2)如图2,在(1)的条件下,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆是形状相同的抛物线C2,C3,其最低点与桥面CD的距离均为1m.求拱桥抛物线C1与钢缆抛物线C2的竖距离的最小值.4.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1,y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨.写出这两种蔬菜所获得的销售利润之和w(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少元?5.在北京冬奥自由式滑雪女子大跳台决赛上,中国选手谷爱凌凭借精彩发挥夺得金牌,创造历史.如图1是跳台比赛场地的示意图,在图2中取某一位置的水平线为x轴,过跳台终点A作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=―112x2+76x+1近似表示滑雪场地上的一座小山坡,某运动员从点O正上方4米处的A点滑出,滑出后沿一段抛物线C2:y=―18x2+bx+c运动.(1)当运动员运动到离A处的水平距离为4米时,离水平线的高度为8米,求抛物线C2的函数解析式(不要求写出自变量x的取值范围);(2)在(1)的条件下,当运动员运动的水平距离为多少米时,运动员与小山坡的竖直距离H取到最大值?最大值为多少?6.掷实心球是北京市高中阶段学校招生体育考试的选考项目.如图1是小杰投掷实心球训练,他尝试利用数学模型来研究实心球的运动情况.他以水平方向为x轴方向,1m为单位长度,建立了如图2所示的平面直角坐标系,实心球从y轴上的A点出手,运动路径可看作抛物线,在B点处达到最高位置,落在x轴上的点C处.小杰某次试投时的数据如图2所示.(1)在图中画出实心球运动路径的示意图;(2)根据图中信息,求出实心球路径所在抛物线的表达式;(3)根据北京市高中阶段学校招生体育考试评分标准(男生),若实心球投犾距离(实心球落地点C与出手点A的水平距离OC的长度)不小于10m,成绩为满分10分.请通过计算,判断小杰此次试投的成绩是否能达到满分.7.如图1,在建筑工人临时宿舍外,有两根相距10米的立柱AB,CD垂直于水平地面上,在AB,CD间拉起一根晾衣绳,由于绳子本身的重力,使绳子无法绷直,其形状可近似看成抛物线y=120x2+bx+c,已知绳子最低点距离地面74米.以点B为坐标原点,直线BD为x轴,直线AB为y轴建立平面直角坐标系.(1)求立柱AB的长度;(2)一段时间后,绳子被抻长,下垂更多,为了防止衣服碰到地面,在线段BD之间与AB相距4米的地方加上一根立柱MN撑起绳子,这时立柱左侧的抛物线F1的最低点相对点A下降了1米,距立柱MN也是1米,如图2所示,求MN的长;(3)若加在线段BD之间的立柱MN的长度是2.4米,并通过调整MN的位置,使抛物线F1的开口大小与抛物线y=112x2+1的开口大小相同,顶点距离地面1.92米.求MN与CD的最近距离.8.如图是小明站在点O处长抛篮球的路线示意图,球在点A处离手,且OA=1m.第一次在点D处落地,然后弹起在点E处落地,篮球在距O点6m的点B处正上方达到最高点,最高点C距地面的高度BC=4m,点E到篮球框正下方的距离EF=2m,篮球框的垂直高度为3m.据试验,两次划出的抛物线形状相同,但第二次的最大高度为第一次的12,以小明站立处点O为原点,建立如图所示的平面直角坐标系.(1)求抛物线ACD的函数解析式;(2)求篮球第二次的落地点E到点O的距离;(结果保留整数)(3)若小明想一次投中篮球框,他应该向前走多少米?(结果精确到0.1m)(参考数据:3≈1.73,6≈2.45)9.某公园要修建一个圆形喷水池,在池中心竖直安装一根水管,水管OA长2.25m.在水管的顶端安装一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m.(1)建立如图所示平面直角坐标系,求抛物线(第一象限部分)的解析式;(2)不考虑其它因素,水池的直径至少要多少米才能使喷出的水流不落到池外?(3)实际施工时,经测量,水池的最大半径只有2.5m,在不改变喷出的抛物线形水柱形状的情况下,且喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,需对水管的长度进行调整,求调整后水管的最大长度.10.如图1所示为某公司生产的A型活动板房,成本是每个395元,它由长方形和抛物线构成,长方形的长AD=4米,宽AB=3米,抛物线的最高点E到BC的距离为4米.(1)按如图1所示建立平面直角坐标系;求该抛物线的解析式.(2)现将A型活动板房改为B型活动板房.如图2,在抛物线与AD之间的区域内加装一扇长方形窗户框架FGMN,点G、M在AD上,点N、F在抛物线上,长方形窗户框架的成本为10元/米,设M(m,0),且满足12≤m≤1,当窗户框架FGMN的周长最大时,每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇长方形窗户框架FGMN成本)(3)根据市场调查,以单价600元销售(2)中窗户框架周长最大时的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润W(元)最大?最大利润是多少?参考答案与试题解析1.解:(1)以水面所在直线AB为x轴,以过拱顶垂直于AB的直线为y轴建立平面直角坐标系,如图所示:∴A(﹣10,0),C(0,4),设二次函数的解析式为y=ax2+4(a≠0),把点A坐标代入解析式得:100a+4=0,解得:a=―1 25,∴这个函数的表达式为:y=―125x2+4;(2)当水面宽10m时,即x=5时,y=―125×52+4=3,此时水面离拱顶4﹣3=1(m),1÷0.2=5(h),答:达到警戒水位后,再过5h此桥孔将被淹没.2.解:(1)由题可知:抛物线的顶点为(8,5),设水流形成的抛物线为y=a(x﹣8)2+5,将点(0,1)代入可得a=―5 64,∴抛物线为:y=―564(x﹣8)2+5.(2)能,理由如下:当x=12时,y=―564(12﹣8)2+3.75>3.5,∴水流能碰到这棵果树.3.解:(1)根据题意可知点F的坐标为(6,﹣1.5),可设拱桥侧面所在二次函数表达式为:y1=a1x2.将F(6,﹣1.5)代入y1=a1x2有:﹣1.5=36a1,求得a1=―1 24,∴y1=―124x2,当x=12时,y1=―124×122=﹣6,∴桥拱顶部离水面高度为6m;(2)由题意可知右边钢缆所在抛物线的顶点坐标为(6,1),可设其表达式为y2=a2(x ﹣6)2+1,将H(0,4)代入其表达式有:4=a2(0﹣6)2+1,求得a2=1 12,∴右边钢缆所在抛物线表达式为:y2=112(x﹣6)2+1,同理可得左边钢缆所在抛物线表达式为:y3=112(x+6)2+1设拱桥抛物线C1与钢缆抛物线C2的竖距离为Lm,则L=y2﹣y1=112(x﹣6)2+1﹣(―124x2)=18x2﹣x+4=18(x﹣4)2+2,∵18>0,∴当x=4时,L最小值=2,答:拱桥抛物线C1与钢缆抛物线C2的竖距离的最小值是2m.4.解:(1)由题意得:5k=3,解得k=0.6,∴y1=0.6x;∵抛物线y2=ax2+bx经过(1,2),(5,6),∴a+b=225a+5b=6,解得:a=―0.2 b=2.2,∴y2=﹣0.2x2+2.2x;(2)w=0.6(10﹣t)+(﹣0.2t2+2.2t)=﹣0.2t2+1.6t+6=﹣0.2(t﹣4)2+9.2,∵﹣0.2<0,∴当t=4时,w有最大值9.2(千元),答:甲种蔬菜进货量为6吨,乙种蔬菜进货量为4吨时,获得的销售利润之和最大,最大利润是9200元.5.解:(1)由题意可知抛物线C2:y=―18x2+bx+c过点(0,4)和(4,8),将其代入得:c =4―18×16+4b +c =8, 解得:b =32c =4, ∴抛物线C 2的函数解析式为:y =―18x 2+32x +4; (2)∵运动员与小山坡的竖直距离为H 米,∴H =―18x 2+32x +4﹣(―112x 2+76x +1); =―124(x ﹣4)2+113 ∵―124<0, ∴当x =4时,H 取到最大值,最大值为113. 6.解:(1)如图所示:(2)解:依题意,抛物线的顶点B 的坐标为(4,3),点A 的坐标为(0,2).设该抛物线的表达式为y =a (x ﹣5)2+4,∵抛物线过点A (0,2),∴a (0﹣5)2+4=2,解得,a =―225, ∴该抛物线的表达式为y =―225(x ﹣5)2+4; (3)解:令y =0,得―225(x ﹣5)2+4=0, 解得x 1=5+52,x 2=5﹣52(C 在x 轴正半轴,故舍去).∴点C 的坐标为(5+52,0).∴OC =5+52>5+5=10,∴小杰此次试投的成绩达到满分.7.解:(1)由题意抛物线的解析式为y=120(x﹣5)2+74,即y=120x2―12x+3,令x=0,得到y=3,∴AB=3米;(2)由题意设抛物线F1的解析式为y=a(x﹣3)2+2,把A(0,3)代入解析式得:3=a(0﹣3)2+2,解得:a=1 9,∴y=19(x﹣3)2+2,当x=4时,y=19 9,∴MN=199米;(3)抛物线F1的开口大小与抛物线y=112x2+1的开口大小相同,顶点距离地面1.92米,∴设抛物线F1的解析式为y=112(x﹣h)2+1.92,把A(0,3)代入解析式得:3=112(﹣h)2+1.92,解得:h1=﹣3.6(舍去),h2=3.6,∴抛物线F1的解析式为y=112(x﹣3.6)2+1.92,∵MN=2.4,∴当y=2.4时,112(x﹣3.6)2+1.92=2.4,解得:x1=1.2,x2=6,当x=1.2时,DM=10﹣1.2=8.8(米),当x=6时,DM=10﹣6=4(米),∵4<8.8,∴MN与CD的最近距离为4米.8.解:(1)设篮球开始飞出到第一次落地时抛物线的表达式为y=a(x﹣h)2+k,∵h=6,k=4,∴y=a(x﹣6)2+4,由已知:当x=0时y=1,即1=36a+4,∴a=―1 12,∴抛物线ACD的函数表达式为y=―112(x﹣6)2+4;(2)令y=0,―112(x﹣6)2+4=0,∴(x﹣6)2=48,解得:x1=43+6≈13,x2=﹣43+6<0(舍去),∴篮球第一次落地距O点约13米;如图,第二次篮球弹出后的距离为DE,根据题意:DE=MN,∴2=―112(x﹣6)2+4,解得:x1=6﹣26,x2=6+26,∴DE=MN=|x1﹣x2|=46≈10,∴OE=OD+DE≈13+10=23(米),∴篮球第二次落地点E距O点的距离约为23米;(3)当y=3时,3=―112(x﹣6)2+4,解得:x1=6﹣23≈2.5,x2=6+23≈9,∵OF=OE+EF≈23+2=25,∴25﹣9=16(米)或25﹣2.5=22.5(米),∴小明需要在第一次抛球时投中篮筐,他应该向前走16米或22.5米.9.解:(1)由题意可知,抛物线的顶点坐标为(1,3),∴设抛物线的解析式为:y=a(x﹣1)2+3,将(0,2.25)代入得,a(0﹣1)2+3=2.25,解得a=―3 4,∴抛物线的解析式为:y=―34(x﹣1)2+3.(2)令y=0,得,0=―34(x﹣1)2+3,解得x=﹣1(舍)或x=3,∵2×3=6(米),∴水池的直径至少要6米才能使喷出的水流不落到池外.(3)将抛物线向下平移,使平移后的抛物线经过点(2.5,0),设平移后的抛物线的解析式为:y=―34(x﹣1)2+h,将(2.5,0)代入得,―34(2.5﹣1)2+h=0,解得h=27 16,当x=0时,y=―34(0﹣1)2+2716=1516.∴调整后水管的最大长度1516米.10.解:(1)∵长方形的长AD=4米,宽AB=3米,抛物线的最高点E到BC的距离为4米,∴OH=AB=3米,EO=EH﹣OH=4﹣3=1米,E(0,1),D(2,0),由题意知抛物线的函数表达式为y=ax2+1,把点D(2,0)代入,得a=―1 4,∴该抛物线的函数表达式为y=―14x2+1;(2)∵M(m,0),∴N(m,―14m2+1),∴MN=―14m2+1,∴C矩形MNFG=2(MG+MN)=2[2m+(―14m2+1)]=―12m2+4m+2,∵―12<0,对称轴为m=4,且12≤m≤1,∴当m=1时,C有最大值,最大值为11 2,∴长方形窗户框架的成本为112×10=55(元),∴395+55=450(元),答:每个B型活动板房的成本是450元;(3)根据题意,得W=(n﹣450)[100+20(600―n)10]=﹣2(n﹣550)2+20000,∵﹣2<0,∴当n=550 时,W有最大值,且最大值为20000,答:公司将销售单价n定为550 元时,每月销售B型活动板房所获利润W最大,最大利润20000元.。
函数图象解题思路起点:动点从何处出发,何时出发,何速度运动,运动方向是什么,形成的是何图形?起点有没有意义?点运动的路程(边长)中间点:分阶段运动,中间的位置是什么?终点:何时何地结束运动,停止时是否有先后?特殊点:运动过程中特殊的位置。
类型一、实际问题【经典例题1】已知A ,B 两地相距120千米,甲、乙两人沿同一条公路从A 地出发到B 地,乙骑自行车,甲骑摩托车,图中DE ,OC 分别表示甲、乙离开A 地的路程s (单位:千米)与时间t (单位:小时)的函数关系的图象,设在这个过程中,甲、乙两人相距y (单位:千米),则y 关于t 的函数图象是( )A.B. C. D.【解析】 由题意和图象可得,乙到达B 地时甲距A 地120km ,开始时两人的距离为0; 甲的速度是:120÷(3−1)=60km/h ,乙的速度是:80÷3=380km/h ,即乙出发1小时后两人距离为380km ;设乙出发后被甲追上的时间为x h ,则60(x −1)=380x ,得x =1.8,即乙出发后被甲追上的时间为1.8h.所以符合题意的函数图象只有选项B.故选:B.练习1-1甲、乙两位同学进行长跑训练,甲和乙所跑的路程S (单位:米)与所用时间t (单位:秒)之间的函数图象分别为线段OA 和折线OBCD ,则下列说法正确的是( )A.两人从起跑线同时出发,同时到达终点B.跑步过程中,两人相遇一次C.起跑后160秒时,甲、乙两人相距最远D.乙在跑前300米时,速度最慢练习1-2小明在书上看到了一个实验:如图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t 以及容器内水面的高度h ,并画出表示h 与t 的函数关系的大致图象,如下图所示.小明选择的物体可能是( )A.B.C.D.练习1-3如图,在一个盛水的圆柱形容器的水面以下,有一个用细线吊着的下端开了一个很小的孔的充满水的薄壁小球,当慢慢地匀速将小球从水下向水面上拉动时,圆柱形容器内水面的高度与时间的函数图象大致是()类型二:几何动态①动点图形面积【经典例题2】如图,在等腰△ABC中,AB=AC=4cm,△B=30°,点P从点B 出发,以3cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A. B. C. D.【解析】作AH ⊥BC 于H ,∵AB=AC=4cm ,∴BH=CH ,∵∠B=30°,∴AH=12AB=2,BH=3AH=23,∴BC=2BH=43,∵点P 运动的速度为3m/s ,Q 点运动的速度为1cm/s ,∴点P 从B 点运动到C 需4s ,Q 点运动到C 需8s ,当0△x △4时,作QD ⊥BC 于D ,如图1,BQ=x ,BP=3x ,在Rt △BDQ 中,DQ=21BQ=21x , ∴y=21⋅21x ⋅3x =43x 2,当4<x △8时,作QD ⊥BC 于D ,如图2,CQ=8−x ,BP=43在Rt △BDQ 中,DQ=21CQ=21(8−x ),∴y=21⋅21(8−x )⋅43=−3+83, 综上所述,⎪⎩⎪⎨⎧≤<+-≤≤=)84(383)40(432x x x x y ,,,.故选D.练习2-1四边形ABCD 为直角梯形,CD△AB ,CB△AB 且CD=BC=21AB ,若直线l △AB ,直线l 截这个梯形所得的位于此直线左方的图形面积为y ,点A 到直线L 的距离为x ,则y 与x 关系的大致图象为( )A.B. C. D.练习2-2如图,四边形ABCD 是矩形,AB=8,BC=4,动点P 以每秒2个单位的速度从点A 沿线段AB 向B 点运动,同时动点Q 以每秒3个单位的速度从点B 出发沿B −C −D 的方向运动,当点Q 到达点D 时P 、Q 同时停止运动,若记△PQA 的面积为y ,运动时间为x ,则下列图象中能大致表示y 与x 之间函数关系图象的是( )练习2-3如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C移动至终点C.设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()A. B. C. D.练习2-4如图,四边形ABCD为正方形,若AB=4,E是AD边上一点(点E与点A、D不重合),BE的中垂线交AB于M,交DC于N,设AE=x,则图中阴影部分的面积S与x的大致图象是()A. B. C. D.练习2-5如图,正方形ABCD中,AB=4cm,点E、F同时从C点出发,以1cm/s 的速度分别沿CB﹣BA、CD﹣DA运动,到点A时停止运动.设运动时间为t (s),△AEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为()练习2-6如图,在△ABCD中,AB=6,BC=10,AB△AC,点P从点B出发沿着B→A→C的路径运动,同时点Q从点A出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是()A.B.C.D.练习2-7如图,在平面直角坐标系x Oy中,A(2,0),B(0,2),点M在线段AB 上,记MO+MP最小值的平方为s,当点P沿x轴正向从点O运动到点A时(设点P的横坐标为x),s关于x的函数图象大致为()A. B. C. D.练习2-8木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A. B. C. D.练习2-9数学课上,老师提出一个问题:如图△,在平面直角坐标系中,点A的坐标为(0,1),点B是x轴正半轴上一动点,以AB为边作等腰直角三角形ABC,使△BAC=90°,点C在第一象限,设点B的横坐标为x,设……为y,y与x之间的函数图象如图△所示,题中用“……”表示的缺失的条件应补为( )A. 点C的横坐标B. 点C的纵坐标C. △ABC的周长D. △ABC的面积练习2-10如图,在平面直角坐标系x Oy中,以点A(2,3)为顶点作一直角∠PAQ,使其两边分别与x轴,y轴的正半轴交于点P,Q.连接PQ,过点A作AH⊥PQ 于点H.设点P的横坐标为x,AH的长为y,则下列图象中,能表示y与x函数关系的图象大致是().②动点图形边长【经典例题3】如图△,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图△所示,则AD边的长为( )A. 3B. 4C. 5D. 6【解析】当P 点在AB 上运动时,△AOP 面积逐渐增大,当P 点到达B 点时,△AOP 面积最大为3. ∴21AB •21=3,即AB •BC=12. 当P 点在BC 上运动时,△AOP 面积逐渐减小,当P 点到达C 点时,△AOP 面积为0,此时结合图象可知P 点运动路径长为7,∴AB+BC=7.则BC=7-AB ,代入AB •BC=12,得AB 2-7AB+12=0,解得AB=4或3, 因为AB<AD ,即AB<BC ,所以AB=3,BC=4.故选:B .练习3-1如图1,动点P 从菱形ABCD 的顶点A 出发,沿以1cm/s 的速度运动到点D ,设点P 的运动时间为x (s ),△PAB 的面积为y(cm 2),表示y 与x 的函数关系的图象如图2所示,则a 的值为( ) A.25 B.5 C. 2 D.52练习3-2如如图△,菱形ABCD中,∠B=60°,动点P以每秒1个单位的速度自点A出发沿线段AB运动到点B,同时动点Q以每秒2个单位的速度自点B--运动到点D.图△是点P、Q运动时,△BPQ的面积S随时出发沿折线B C D间t变化关系图象,则a的值是()A.2B.2.5C.3D.练习3-3如如图1,四边形ABCD中,AB△CD,△B=90°,AC=AD.动点P从点B出发沿折线B﹣A﹣D﹣C方向以1单位/秒的速度运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于()A.10B.C.8D.练习3-4如如图1,点P 从ABC △的顶点B 出发,沿B C A →→匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则ABC △的面积是______.练习3-5如图1,在矩形ABCD 中,动点E 从A 出发,沿AB →BC 方向运动,当点E 到达点C 时停止运动,过点E 做FE ⊥AE ,交CD 于F 点,设点E 运动路程为x ,FC=y ,如图2所表示的是y 与x 的函数关系的大致图象,当点E 在BC 上运动时,FC 的最大长度是52,则矩形ABCD 的面积是() A.523 B. 5 C. 6 D. 425【经典例题4——圆】如图,在平面直角坐标系x Oy中,以(3,0)为圆心作△P,△P与x轴交于A. B,与y轴交于点C(0,2),Q为△P上不同于A. B的任意一点,连接QA、QB,过P点分别作PE△QA于E,PF△QB于F. 设点Q的横坐标为x,PE2+PF2=y.当Q 点在△P上顺时针从点A运动到点B的过程中,下列图象中能表示y与x的函数关系的部分图象是( )【解析】△P(3,0),C(0,2),△PC2=13.△AC是直径,△△Q=90°.又PE△QA于E,PF△QB于F,△四边形PEQF是矩形。
中考数学总复习《二次函数的三种形式》专项练习题附答案一、单选题1.抛物线y=x2-6x+5的顶点坐标为()A.(3,-4)B.(3,4)C.(-3,-4)D.(-3,4)2.如图,在平面直角坐标系中,抛物线所表示的函数解析式为y=﹣2(x﹣h)2+k,则下列结论正确的是( )A.h>0,k>0B.h<0,k>0C.h<0,k<0D.h>0,k<03.把二次函数y=x2-4x+3化成y=a(x-h)2+k的形式是()A.y=(x-2)2-1B.y=(x+2)2-1C.y=(x-2)2+7D.y=(x+2)2+74.抛物线y=(x+2)2−3的对称轴是()A.直线x=2B.直线x=-2C.直线x=-3D.直线x=35.将二次函数y=x2﹣6x+5用配方法化成y=(x﹣h)2+k的形式,下列结果中正确的是()A.y=(x﹣6)2+5B.y=(x﹣3)2+5C.y=(x﹣3)2﹣4D.y=(x+3)2﹣96.已知二次函数y=(x−1m)(mx−4m)(其中m>0),下列说法正确的是()A.当x>2时都有y随着x的增大而增大B.当x<3时都有y随着x的增大而减小C.若x<n时都有y随着x的增大而减小,则n≥2+12mD.若x<n时都有y随着x的增大而减小,则n≤2+12m7.将二次函数y=2x2﹣4x+1化成顶点式是()A.y=2(x+1)2﹣1B.y=2(x﹣1)2﹣1C.y=2(x+1)2+1 D.y=2(x﹣1)2+18.二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2B.y=(x﹣2)2+4C.y=(x﹣2)2+2D.y=(x﹣1)2+39.在平面直角坐标系中,将抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是()A.y=-(x-1)2-2B.y=-(x+1)2-2C.y=-(x-1)2+2D.y=-(x+1)2+210.已知二次函数y=x2+bx+c的图像经过点(−1,−2),则bc有()A.最小值−14B.最小值−94C.最大值14D.最大值9411.二次函数y=x2+2x﹣3的图象的顶点坐标是()A.(﹣1,﹣4)B.(1,﹣4)C.(﹣1,﹣2)D.(1,﹣2)12.二次函数y=﹣3x2+6x变形为y=a(x+m)2+n形式,正确的是()A.y=﹣3(x+1)2﹣3B.y=﹣3(x﹣1)2﹣3C.y=﹣3(x+1)2+3D.y=﹣3(x﹣1)2+3二、填空题13.若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b+k=.14.二次函数y=﹣4(1+2x)(x﹣3)的一般形式y=ax2+bx+c是.15.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:x…-4-3-2-10…y…3-2-5-6-5…的取值范围是.16.某抛物线的顶点坐标为(﹣2,﹣1),开口方向、形状与抛物线y=3x2相同,则此抛物线的解析式是.17.把二次函数y=x2﹣12x化为形如y=a(x﹣h)2+k的形式18.已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是.(只需写一个)三、综合题19.成都地铁规划到2020年将通车13条线路,近几年正是成都地铁加紧建设和密集开通的几年,市场对建材的需求量有所提高,根据市场调查分析可预测:投资水泥生产销售后所获得的利润y1(万元)与投资资金量x(万元)满足正比例关系y1=20x;投资钢材生产销售的后所获得的利润y2(万元)与投资资金量x(万元)满足函数关系的图象如图所示(其中OA是抛物线的一部分,A为抛物线的顶点,AB∥x轴).(1)直接写出当0<x<30及x>30时y2与x之间的函数关系式;(2)某建材经销公司计划投资100万元用于生产销售水泥和钢材两种材料,若设投资钢材部分的资金量为t(万元),生长销售完这两种材料后获得的总利润为W(万元).①求W与t之间的函数关系式;②若要求投资钢材部分的资金量不得少于45万元,那么当投资钢材部分的资金量为多少万元时获得的总利润最大?最大总利润是多少?20.如图,需在一面墙上绘制两个形状相同的抛物绒型图案,按照图中的直角坐标系,最高点M到横轴的距离是4米,到纵轴的距离是6米;纵轴上的点A到横轴的距离是1米,右侧抛物线的最大高度是左侧抛物线最大高度的一半.(结果保留整数或分数,参考数据√3= 74,√6= 52)(1)求左侧抛物线的表达式;(2)求右侧抛物线的表达式;(3)求这个图案在水平方向上的最大跨度是多少米.21.已知二次函数y=x2−4x+3.(1)将y=x2−4x+3化成y=a(x−ℎ)2+k的形式:;(2)这个二次函数图象与x轴交点坐标为;(3)这个二次函数图象的最低点的坐标为;(4)当y<0时x的取值范围是.22.已知:二次函数y=2x2+bx+c的图象经过点(1,0),(2,10)(1)求这个抛物线的解析式;(2)运用配方法,把这个抛物线的解析式化为y=a(x+m)2+k的形式,并指出它的顶点坐标;(3)把这个抛物线先向右平移4个单位,再向上平移6个单位,求平移后得到的抛物线与y轴的交点坐标.23.已知抛物线y=x2+2x+2(1)该抛物线的对称轴是,顶点坐标;(2)选取适当的数据填入下表,并在直角坐标系内描点画出该抛物线的图象;x……y……(3)若该抛物线上两点A(x1,y1),B(x2,y2)的横坐标满足x1>x2>1,试比较y1与y2的大小.24.如图,东湖隧道的截面由抛物线和长方形构成,长方形的长OA为12cm,宽OB为4cm,隧道顶端D到路面的距离为10cm,建立如图所示的直角坐标系(1)求该抛物线的解析式.(2)一辆货运汽车载一长方体集装箱,集装箱最高处与地面距离为6m,宽为4m,隧道内设双向行车道,问这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面高度相等,如果灯离地面的高度不超过8.5m,那么两排灯的水平距离最小是多少米?参考答案与解析1.【答案】A2.【答案】A3.【答案】A4.【答案】B5.【答案】C6.【答案】D7.【答案】B8.【答案】D9.【答案】A10.【答案】B11.【答案】A12.【答案】D13.【答案】﹣314.【答案】y=﹣8x2+20x+1215.【答案】y>-516.【答案】y=3(x+2)2﹣117.【答案】y=(x﹣6)2﹣3618.【答案】y=2x2﹣119.【答案】(1)解:当0<x≤30时根据题意设y2=a(x﹣30)2+900将原点(0,0)代入,得:900a+900=0,解得:a=﹣1∴y2=﹣(x﹣30)2+900=﹣x2+60x当x>30时y2=900(2)解:①设投资钢材部分的资金量为t万元,则投资生产水泥的资金量为(100﹣t)万元当0<t≤30时W=y1+y2=20(100﹣t)+(﹣t2+60t)=﹣t2+40t+2000当t>30时W=20(100﹣t)+900=﹣20t+2900;②∵t≥45∴W=﹣20t+2900,W随t的增大而减小∴当t=45时W最大值=2000万元答:当投资钢材部分的资金量为45万元时获得的总利润最大,最大总利润是2000万元.20.【答案】(1)解:最高点M到横轴的距离是4米,到纵轴的距离是6米∴M(6,4)设左侧抛物线的表达式为y=a(x﹣6)2+4把A(0,1)代入y=a(x﹣6)2+4得a=﹣112∴左侧抛物线的表达式为y=﹣112(x﹣6)2+4(2)解:∵抛物线y=﹣112(x﹣6)2+4与x轴的交点C(13,0)∵右侧抛物线与左侧抛物线形状相同∴设右侧抛物线的表达式为y=﹣112(x﹣h)2+2把C(13,0)代入y=﹣112(x﹣h)2+2得0=﹣112(13﹣h)2+2解得:h=18,h=8(不合题意,舍去)∴右侧抛物线的表达式为y=﹣112(x﹣18)2+2(3)解:∵C(13,0),右侧抛物线的对称轴是直线x=18∴D(23,0)∴这个图案在水平方向上的最大跨度是23米21.【答案】(1)y=(x-2)2-1(2)(1,0)或(3,0)(3)(2,-1)(4)1<x<322.【答案】(1)解:将(1,0)和(2,10)分别代入二次函数y=2x2+bx+c,得{0=2+b+c10=8+2b+c解得{b=4c=−6∴这个抛物线的解析式是y=2x2+4x-6.(2)解:y=2x2+4x-6=2(x+1)2-8∴顶点坐标是(-1,-8).(3)解:将顶点(-1,-8)先向右平移4个单位,再向上平移6个单位,得顶点坐标为(3,-2)∴平移后得到的抛物线的解析式是y=2(x-3)2-2,令x=0,则y=16∴它与y轴的交点的坐标是(0,16).23.【答案】(1)x=1;(1,3)(2)解:x…-10123…y…-1232-1…(3)解:因为在对称轴x=1右侧,y随x的增大而减小,又x1>x2>1,所以y1<y2.24.【答案】(1)解:根据题意,该抛物线的顶点坐标为(6,10)设抛物线解析式为y=a(x﹣6)2+10将点B(0,4)代入,得:36a+10=4解得:a=﹣1 6故该抛物线解析式为y=﹣16(x﹣6)2+10(2)解:根据题意,当x=6+4=10时y=﹣16×16+10=223>6∴这辆货车能安全通过(3)解:当y=8.5时有:﹣16(x﹣6)2+10=8.5解得:x1=3 x2=9∴x2﹣x1=6答:两排灯的水平距离最小是6米。
中考数学复习----《二次函数之函数变换》知识点总结与专项练习题(含答案解析)知识点总结1.二次函数的平移:①若函数进行左右平移,则在函数的自变量上进行加减。
左加右减。
②若函数进行上下平移,则在函数解析式整体后面进行加减。
上加下减。
2.一次函数的对称变换:①若二次函数关于x轴对称,则自变量不变,函数值变为相反数。
②若二次函数关于y轴对称,则函数值不变,自变量变成相反数。
③若二次函数关于原点对称,则自变量与函数值均变成相反数。
练习题1、(2022•通辽)在平面直角坐标系中,将二次函数y=(x﹣1)2+1的图像向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为()A.y=(x﹣2)2﹣1 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2﹣1【分析】根据图像的平移规律,可得答案.【解答】解:将二次函数y=(x﹣1)2+1的图像向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式是y=(x﹣1+1)2+1﹣2,即y=x2﹣1.故选:D.2、(2022•玉林)小嘉说:将二次函数y=x2的图像平移或翻折后经过点(2,0)有4种方法:①向右平移2个单位长度②向右平移1个单位长度,再向下平移1个单位长度③向下平移4个单位长度④沿x 轴翻折,再向上平移4个单位长度你认为小嘉说的方法中正确的个数有( )A .1个B .2个C .3个D .4个【分析】分别求出平移或翻折后的解析式,将点(2,0)代入可求解.【解答】解:①向右平移2个单位长度,则平移后的解析式为y =(x ﹣2)2,当x =2时,y =0,所以平移后的抛物线过点(2,0),故①符合题意;②向右平移1个单位长度,再向下平移1个单位长度,则平移后的解析式为y =(x ﹣1)2﹣1,当x =2时,y =0,所以平移后的抛物线过点(2,0),故②符合题意;③向下平移4个单位长度,则平移后的解析式为y =x 2﹣4,当x =2时,y =0,所以平移后的抛物线过点(2,0),故③符合题意;④沿x 轴翻折,再向上平移4个单位长度,则平移后的解析式为y =﹣x 2+4,当x =2时,y =0,所以平移后的抛物线过点(2,0),故④符合题意;故选:D .3、(2022•泸州)抛物线y =﹣21x 2+x +1经平移后,不可能得到的抛物线是( ) A .y =﹣21x 2+x B .y =﹣21x 2﹣4 C .y =﹣21x 2+2021x ﹣2022 D .y =﹣x 2+x +1【分析】根据抛物线的平移规律,可得答案.【解答】解:∵将抛物线y =﹣x 2+x +1经过平移后开口方向不变,开口大小也不变, ∴抛物线y =﹣x 2+x +1经过平移后不可能得到的抛物线是y =﹣x 2+x +1.故选:D .4、(2022•湖州)将抛物线y =x 2向上平移3个单位,所得抛物线的解析式是( )A.y=x2+3 B.y=x2﹣3 C.y=(x+3)2D.y=(x﹣3)2【分析】根据二次函数变化规律:左加右减,上加下减,进而得出变化后解析式.【解答】解:∵抛物线y=x2向上平移3个单位,∴平移后的解析式为:y=x2+3.故选:A.5、(2022•牡丹江)抛物线y=x2﹣2x+3向右平移2个单位长度,再向上平移3个单位长度,得到抛物线的顶点坐标是.【分析】利用平移规律可求得平移后的抛物线的解析式,可求得其顶点坐标.【解答】解:∵抛物线y=x2﹣2x+3=(x﹣1)2+2,∴抛物线y=x2﹣2x+3向右平移2个单位长度,再向上平移3个单位长度,得到抛物线y=(x﹣1﹣2)2+2+3,即y=(x﹣3)2+5,∴平移后的抛物线的顶点坐标为(3,5).故答案为:(3,5).6、(2022•黑龙江)把二次函数y=2x2的图像向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为.【分析】直接根据“上加下减,左加右减”的原则进行解答.【解答】解:由“左加右减”的原则可知,将二次函数y=2x2的图像向左平移1个单位长度所得抛物线的解析式为:y=2(x+1)2;由“上加下减”的原则可知,将抛物线y =2(x+1)2向下平移2个单位长度所得抛物线的解析式为:y=2(x+1)2﹣2,故答案为:y=2(x+1)2﹣2.7、(2022•黔东南州)在平面直角坐标系中,将抛物线y=x2+2x﹣1先绕原点旋转180°,再向下平移5个单位,所得到的抛物线的顶点坐标是.【分析】先求出绕原点旋转180°的抛物线解析式,再求出向下平移5个单位长度的解析式,配成顶点式即可得答案.【解答】解:将抛物线y=x2+2x﹣1绕原点旋转180°后所得抛物线为:﹣y=(﹣x)2+2(﹣x)﹣1,即y=﹣x2+2x+1,再将抛物线y=﹣x2+2x+1向下平移5个单位得y=﹣x2+2x+1﹣5=﹣x2+2x﹣4=﹣(x﹣1)2﹣3,∴所得到的抛物线的顶点坐标是(1,﹣3),故答案为:(1,﹣3).8、(2022•荆州)规定:两个函数y1,y2的图像关于y轴对称,则称这两个函数互为“Y 函数”.例如:函数y1=2x+2与y2=﹣2x+2的图像关于y轴对称,则这两个函数互为“Y 函数”.若函数y=kx2+2(k﹣1)x+k﹣3(k为常数)的“Y函数”图像与x轴只有一个交点,则其“Y函数”的解析式为.【分析】根据关于y轴对称的图形的对称点的坐标特点,分情况讨论求解.【解答】解:∵函数y=kx2+2(k﹣1)x+k﹣3(k为常数)的“Y函数”图像与x轴只有一个交点,∴函数y=kx2+2(k﹣1)x+k﹣3(k为常数)的图像与x轴也只有一个交点,当k=0时,函数解析式为y=﹣2x﹣3,它的“Y函数”解析式为y=2x﹣3,它们的图像与x轴只有一个交点,当k≠0时,此函数是二次函数,∵它们的图像与x轴都只有一个交点,∴它们的顶点分别在x轴上,∴=0,解得:k=﹣1,∴原函数的解析式为y=﹣x2﹣4x﹣4=﹣(x+2)2,∴它的“Y函数”解析式为y=﹣(x﹣2)2=﹣x2+4x﹣4,综上,“Y函数”的解析式为y=2x﹣3或y=﹣x2+4x﹣4,故答案为:y=2x﹣3或y=﹣x2+4x﹣4.。
2021年九年级数学中考复习——函数专题:二次函数实际应用(二)1.为确保贫困人口到2020年底如期脱贫,习总书记提出扶贫开发“贵在精准,重在精准,成败之举在于精准”,近年来扶贫工作小组对果农进行精准扶贫,帮助果农因地制宜种植一种有机生态水果并拓宽了市场,有机生态水果产量呈逐年上升,去年这种水果的产量是亩产约1000千克.(1)预计明年这种水果产量要达到亩产1440千克,求这种水果亩产量去年到明年平均每年的增长率为多少?(2)某水果店从果农处直接以每千克30元批发,专营这种水果.调查发现,若每千克的平均销售价为40元,则每天可售出200千克,若每千克的平均销售价每降低1元,每天可多卖出50千克,设水果店一天的利润为w元,当每千克的平均销售价为多少元时.该水果店一天的利润最大,最大利润是多少?2.一种工艺品的进价为100元,标价135元出售,每天可售出100件,根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件.(1)当每件售价130元时,获得的利润为多少元?(2)每天获得利润为W元,求每天获得的利润W与降价x元之间的函数关系式?要使每天获得的利润最大,每件需降价多少元?最大利润为多少元?3.某商品的成本为20元,市场调查发现:当售价为180元时,每周可售出50件,每涨价10元每周少售出1件.现要求每周至少售出35件,且售价不低于180元.(1)设售价为x元(x为10的整数倍),每周利润为y元,求y与x之间的函数关系式,并直接写出x的取值范围;(2)当售价为多少时,(销售这种商品)每周的利润最大?最大利润是多少?(3)若希望每周利润不得低于10400元,则售价x的范围为.4.在篮球比赛中,东东投出的球在点A处反弹,反弹后球运动的路线为抛物线的一部分(如图所示建立直角坐标系),抛物线顶点为点B.(1)求该抛物线的函数表达式;(2)当球运动到点C时被东东抢到,CD⊥x轴于点D,CD=2.6m.求OD的长.5.小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?6.如图,某隧道的截面由抛物线和长方形构成,长方形的长OA为12m,宽OB为4m,隧道顶端D到路面的距离为10m,建立如图所示的直角坐标系.(1)求该抛物线的解析式;(2)一辆货运汽车载一长方体集装箱,集装箱最高处与地面距离为6m,宽为4m,隧道内设双向行车道,问这辆货车能否安全通过?7.某品牌钢笔进价为每支20元,经销商小周在销售中发现,每月销售量y(支)与销售单价x(元)之间满足一次函数y=﹣10x+500的关系,在销售中销售单价不低于进价,而每支钢笔的利润不高于进价的60%,设小周每月获得利润为w(元).(1)当销售单价定为每支多少元时,每月可获得最大利润?每月的最大利润是多少?(2)如果小周想要每月获得的利润不低于2000元,那么小周每月的成本最少需要多少元?(成本=进价×销售量).8.某超市销售一种牛奶,进价为每箱36元,规定售价不低于进价.现在的售价为每箱60元,每月可销售100箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x之间的函数关系式和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?9.李师傅承包了一片池塘养鱼,他用总长为120m的围网围成如图所示的6个矩形区域,其中除矩形AEFJ外,其它5个矩形的面积都相等.若AE=xm,矩形ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)当x为何值时,y取得最大值,最大值是多少?10.陆臻同学善于总结改进学习方法,他发现每解题1分钟学习收益量为2;对解题过程进行回顾反思效果会更好,用于回顾反思的时间x(单位:分钟)与学习收益量y的关系如图所示(其中OA是抛物线的一部分,A为抛物线的顶点).某一天他共有30分钟进行学习,且用于回顾反思的时间不能超过用于解题的时间.(1)求陆臻回顾反思的学习收益量y与用于回顾反思的时间x之间的函数关系式;(2)陆臻如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大?(学习收益总量=解题的学习收益量+回顾反思的学习收益量)参考答案1.解:(1)设这种水果去年到明年每亩产量平均每年的增长率为x,由题意,得:1000(1+x)2=1440,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:平均每年的增长率为20%.(2)设每千克的平均销售价为m元,由题意得:w=(m﹣30)[200+50×(40﹣m)]=﹣50(m﹣37)2+2450,∵﹣50<0,∴当m=37时,w取得最大值为2450.答:当每千克平均销售价为37元时,一天的利润最大,最大利润是2450元.2.解:(1)当每件售价130元时,135﹣130=5(元),即降价5元,由题意得:(130﹣100)(100+4×5)=30×(100+20)=30×120=3600(元),∴当每件售价130元时,获得的利润为3600元.(2)由题意得:W=(135﹣x﹣100)(100+4x)=﹣4x2+40x+3500=﹣4(x﹣5)2+3600,∴当x=5时,每天获得的利润最大,最大利润为3600元.∴每天获得的利润W与降价x元之间的函数关系式为:W=﹣4x2+40x+3500,要使每天获得的利润最大,每件需降价5元,最大利润为3600元.3.解:(1)由题意得:y=(x﹣20)(50﹣)=﹣x2+70x﹣1360,∵要求每周至少售出35件,∴50﹣≥35,解得:x≤330,又∵售价不低于180元,∴180≤x≤330.∴y与x之间的函数关系式为y=﹣x2+70x﹣1360(180≤x≤330,且x为10的整数倍);(2)∵y=﹣x2+70x﹣1360=﹣(x﹣350)2+10890,∵二次项系数为负,当x≤350时,y随x的增大而增大,又∵180≤x≤330,∴当x=330时,y=10850,最大值∴当售价为330元时,(销售这种商品)每周的利润最大,最大利润是10850元;(3)∵每周利润不得低于10400元,∴﹣(x﹣350)2+10890≥10400,∴(x﹣350)2≤4900,解得:280≤x≤420,又∵180≤x≤330,∴280≤x≤330.故答案为:280≤x≤330,且x为10的整数倍.4.解:(1)设y=a(x﹣0.4)2+3.32(a≠0),把x=0,y=3代入上式得,3=a(0﹣0.4)2+3.32,解得a=﹣2,∴抛物线的函数表达式为y=﹣2(x﹣0.4)2+3.32.(2)把y=2.6代入y=﹣2(x﹣0.4)2+3.32,化简得(x﹣0.4)2=0.36,解得x1=﹣0.2(舍去),x2=1,∴OD=1m.5.解:(1)由题意得:w=(x﹣20)•y=(x﹣20)(﹣10x+500)=﹣10x2+700x﹣10000.∵每件的利润不高于成本价的60%.∴20≤x≤20(1+60%),∴20≤x≤32,∴w=﹣10x2+700x﹣10000(20≤x≤32).(2)∵w=﹣10x2+700x﹣10000(20≤x≤32),∴对称轴为直线x=﹣=35,又∵a=﹣10<0,∴抛物线开口向下,∴当20≤x≤32时,w随x的增大而增大,∴当x=32时,w有最大值,最大值为﹣10×322+700×32﹣10000=2160(元).∴当销售单价定为32元时,每月可获得最大利润,每月的最大利润是2160元.6.解:(1)根据题意,该抛物线的顶点坐标为(6,10),设抛物线解析式为:y=a(x﹣6)2+10,将点B(0,4)代入,得:36a+10=4,解得:a=﹣,故该抛物线解析式为y=﹣(x﹣6)2+10;(2)根据题意,当x=6+4=10时,y=﹣×16+10=>6,∴这辆货车能安全通过.7.解:(1)由题意得:w=(x﹣20)y=(x﹣20)(﹣10x+500)=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250,∵a=﹣10<0,20≤x≤20(1+60%),∴当20≤x≤32时,w随x的增大而增大,=﹣10(32﹣35)2+2250=2160.∴当x=32时,w最大答:当销售单价定为每支32元时,每月可获得最大利润,每月的最大利润是2160元.(2)设小周每月的成本需要p(元),根据题意得:p=20(﹣10x+500)=﹣200x+10000,∵w=﹣10x2+700x﹣10000≥2000,∴30≤x≤40,又∵20≤x≤32,﹣200<0,∴当30≤x≤32时,w≥2000,p随x的增大而减小,=﹣200×32+10000=3600.∴当x=32时,p的值最小,p最小值答:想要每月获得的利润不低于2000元,小周每月的成本最少需要3600元.8.解:(1)根据题意,得:y=100+10x,由60﹣x≥36得x≤24,∴1≤x≤24,且x为整数;(2)设所获利润为W,则W=(60﹣x﹣36)(10x+100)=﹣10x2+140x+2400=﹣10(x﹣7)2+2890,∵a<0∴函数开口向下,有最大值,∴当x=7时,W取得最大值,最大值为2890,答:超市定价为53元时,才能使每月销售牛奶的利润最大,最大利润是2890元.9.解:(1)∵除矩形AEFJ外,其它5个矩形的面积都相等,且AE=xm,∴IC=3ID=3xm,3AE+3AD+5IC=120,∴3x+3AD+5×3x=120,∴AD=(40﹣6x)m,∴y=4x(40﹣6x)=﹣24x2+160x,∵AD>0,40﹣6x>0,∴0<x<,∴y=﹣24x2+160x(0<x<);(2)y=﹣24x2+160x=﹣24+,∵﹣24<0,∴x=时,y取得最大值,最大值是.10.解:(1)当0≤x≤5时,设y=a(x﹣5)2+25,把(0,0)代入,得:0=25a+25,解得:a=﹣1,∴y=﹣(x﹣5)2+25=﹣x2+10x;当5<x≤15时,y=25.综上,y=;(2)设陆臻用于回顾反思的时间为x(0≤x≤15)分钟,学习收益总量为Z,则他用于解题的时间为(30﹣x)分钟.当0≤x≤5时,Z=﹣x2+10x+2(30﹣x)=﹣x2+8x+60=﹣(x﹣4)2+76.=76.∴当x=4时,Z最大当5<x≤15时,Z=25+2(30﹣x)=﹣2x+85.∵Z随x的增大而减小,∴Z<﹣2×5+85=75.综上所述,当x=4时,Z=76,此时30﹣x=26.最大∴陆臻用于回顾反思的时间为4分钟,用于解题的时间为26分钟时,才能使这30分钟的学习收益总量最大.。
中考数学总复习《二次函数的最值》练习题附带答案一、单选题(共12题;共24分)1.二次函数y=−(x−1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+ n的值为()A.52B.2C.12D.322.已知二次函数y=(x-1)2-3,则此二次函数()A.有最大值1B.有最小值1C.有最大值-3D.有最小值-33.二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x﹣3﹣2﹣1012345y1250﹣3﹣4﹣30512⑴二次函数y=ax2+bx+c有最小值,最小值为﹣3;⑴当−12<x<2时,y<0;⑴二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.3B.2C.1D.04.对于代数式x2-10x+24,下列说法:①它是二次三项式;②该代数式的值可能等于2017;③分解因式的结果是(x-4)(x-6);④该代数式的值可能小于-1.其中正确的有()A.1个B.2个C.3 个D.4个5.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④a+b+cb−a的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个6.已知非负数a,b,c满足a+b=3且c﹣3a=﹣6,设y=a2+b+c的最大值为m,最小值为n,则m ﹣n的值是()A.16B.15C.9D.77.由二次函数y=(x﹣1)2﹣3可知()A.图象开口向下B.对称轴是直线x=﹣1C.函数最小值是3D.顶点是(1,﹣3)8.抛物线y=x2,当﹣1≤x≤3时,y的取值范围是()A.﹣1≤y≤9B.0≤y≤9C.1≤y≤9D.﹣1≤y≤39.已知二次函数的图象(-0.7≤x≤2)如图所示。
2021年中考数学复习之专题突破训练《专题五:二次函数》参考答案与试题解析一、选择题1.已知原点是抛物线2(1)y m x =+的最高点,则m 的范围是( ) A .1m <-B .1m <C .1m >-D .2m >-【考点】3H :二次函数的性质【分析】由于原点是抛物线2(1)y m x =+的最高点,这要求抛物线必须开口向下,由此可以确定m 的范围.【解答】解:原点是抛物线2(1)y m x =+的最高点, 10m ∴+<,即1m <-. 故选:A .【点评】此题主要考查了二次函数的性质.2.将二次函数241y x x =--化为2()y x h k =-+的形式,结果为( ) A .2(2)5y x =++B .2(2)5y x =+-C .2(2)5y x =-+D .2(2)5y x =--【考点】9H :二次函数的三种形式 【专题】11:计算题【分析】把241y x x =--进行配方得到22445(2)y x x x =-+-=-,5-. 【解答】解:2241445y x x x x =--=-+-2(2)5x =--. 故选:D .【点评】本题考查了二次函数的三种形式:一般式2(y ax bx c a =++、b 、c 为常数,0)a ≠;顶点式2()y a x k h =-+,顶点坐标为(,)k h ;交点式12()()y x x x x =--,1x 、2x 为抛物线与x 轴交点的横坐标.3.将抛物线22y x =向左平移3个单位得到的抛物线的解析式是( )A .223y x =+B .223y x =-C .22(3)y x =+D .22(3)y x =-【考点】6H :二次函数图象与几何变换 【专题】1:常规题型【分析】根据“左加右减”的原则进行解答即可.【解答】解:将抛物线22y x =向左平移3个单位所得直线解析式为:22(3)y x =+; 故选:C .【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.4.如图,以(1,4)-为顶点的二次函数2y ax bx c =++的图象与x 轴负半轴交于A 点,则一元二次方程20ax bx c ++=的正数解的范围是( )A .23x <<B .34x <<C .45x <<D .56x <<【考点】HB :图象法求一元二次方程的近似根【分析】先根据图象得出对称轴左侧图象与x 轴交点横坐标的取值范围,再利用对称轴1x =,可以算出右侧交点横坐标的取值范围.【解答】解:二次函数2y ax bx c =++的顶点为(1,4)-,∴对称轴为1x =,而对称轴左侧图象与x 轴交点横坐标的取值范围是32x -<<-,∴右侧交点横坐标的取值范围是45x <<.故选:C .【点评】此题主要考查了图象法求一元二次方程的近似根,解答本题首先需要观察得出对称轴左侧图象与x 轴交点横坐标的取值范围,再根据对称性算出右侧交点横坐标的取值范围.5.二次函数21y x =-+的图象与x 轴交于A 、B 两点,与y 轴交于点C ,下列说法错误的是( )A .点C 的坐标是(0,1)B .线段AB 的长为2C .ABC ∆是等腰直角三角形D .当0x >时,y 随x 增大而增大【考点】3H :二次函数的性质;HA :抛物线与x 轴的交点【分析】判断各选项,点C 的坐标可以令0x =,得到的y 值即为点C 的纵坐标;令0y =,得到的两个x 值即为与x 轴的交点坐标A 、B ;且AB 的长也有两点坐标求得,对函数的增减性可借助函数图象进行判断.【解答】解:A ,令0x =,1y =,则C 点的坐标为(0,1),正确;B ,令0y =,1x =±,则(1,0)A -,(1,0)B ,||2AB =,正确;C ,由A 、B 、C 三点坐标可以得出AC BC =,且222AC BC AB +=,则ABC ∆是等腰直角三角形,正确;D ,当0x >时,y 随x 增大而减小,错误.故选:D .【点评】本题考查了二次函数的性质,需学会判定函数的单调性及由坐标判定线段或点之间连线构成的图形的形状等问题.6.已知二次函数2(1)4y x =--,当0y <时,x 的取值范围是( ) A .31x -<<B .1x <-或3x >C .13x -<<D .3x <-或1x >【考点】3H :二次函数的性质;HA :抛物线与x 轴的交点 【专题】1 :常规题型【分析】先求出方程2(1)40x --=的解, 得出函数与x 轴的交点坐标, 根据函数的性质得出答案即可 .【解答】解:二次函数2(1)4y x =--,∴抛物线的开口向上, 当0y =时,20(1)4x =--,解得:3x =或1-,∴当0y <时,x 的取值范围是13x -<<,故选:C .【点评】本题考查了二次函数与x 轴的交点和二次函数的性质, 能熟记二次函数的性质的内容是解此题的关键 .7.已知1(1,)A y -,2(1,)B y ,3(2,)C y 三点在抛物线22y x x m =-+上,则1y 、2y 、3y 的大小关系为( ) A .123y y y <<B .321y y y <<C .213y y y <<D .231y y y <<【考点】5H :二次函数图象上点的坐标特征 【专题】11:计算题【分析】分别计算自变量为1-、1和2所对应的函数值,然后比较函数值的大小即可. 【解答】解:当1x =-时,212123y x x m m m =-+=++=+;当1x =时,222121y x x m m m =-+=-+=-+;当2x =时,23244y x x m m m =-+=-+=, 所以231y y y <<. 故选:D .【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式. 8.共享单车为市民出行带来了方便,某单车公司第一个月投放a 辆单车,计划第三个月投放单车y 辆,设该公司第二、三两个月投放单车数量的月平均增长率为x ,那么y 与x 的函数关系是( ) A .2(1)y a x =+B .2(1)y a x =-C .2(1)y x a =-+D .2y x a =+【考点】HD :根据实际问题列二次函数关系式 【专题】1:常规题型【分析】主要考查增长率问题,一般用增长后的量=增长前的量(1⨯+增长率),如果设该公司第二、三两个月投放单车数量的月平均增长率为x ,然后根据已知条件可得出方程. 【解答】解:设该公司第二、三两个月投放单车数量的月平均增长率为x , 依题意得第三个月第三个月投放单车2(1)a x +辆, 则2(1)y a x =+. 故选:A .【点评】此题主要考查了根据实际问题列二次函数关系式,求平均变化率的方法为:若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为2(1)a x b ±=.9.二次函数2y x mx =-+的图象如图,对称轴为直线2x =,若关于x 的一元二次方程20(x mx t t -+-=为实数)在15x <<的范围内有解,则t 的取值范围是( )A .5t >-B .53t -<<C .34t <D .54t -<【考点】HA :抛物线与x 轴的交点;HB :图象法求一元二次方程的近似根 【专题】68:模型思想【分析】如图,关于x 的一元二次方程20x mx t -+-=的解就是抛物线2y x mx =-+与直线y t =的交点的横坐标,利用图象法即可解决问题.【解答】解:如图,关于x 的一元二次方程20x mx t -+-=的解就是抛物线2y x mx =-+与直线y t =的交点的横坐标,由题意可知:4m =,当1x =时,3y =, 当5x =时,5y =-,由图象可知关于x 的一元二次方程20(x mx t t -+-=为实数)在15x <<的范围内有解, 直线y t =在直线5y =-和直线4y =之间包括直线4y =,54t ∴-<.故选:D .【点评】本题考查抛物线与x 轴的交点、一元二次方程等知识,解题的关键是学会利用图象法解决问题,画出图象是解决问题的关键,属于中考选择题中的压轴题. 10.二次函数23(2)5y x =--与y 轴交点坐标为( )A .(0,2)B .(0,5)-C .(0,7)D .(0,3)【考点】5H :二次函数图象上点的坐标特征 【专题】2B :探究型【分析】根据题目中的函数解析式,令0x =,求出相应的y 的值,即可解答本题. 【解答】解:23(2)5y x =--∴当0x =时,7y =,即二次函数23(2)5y x =--与y 轴交点坐标为(0,7), 故选:C .【点评】本题考查二次函数图象上点的坐标特征,解答本题的关键是明确二次函数与y 轴交点的横坐标等于0.11.对于函数25y x =,下列结论正确的是( ) A .y 随x 的增大而增大 B .图象开口向下 C .图象关于y 轴对称D .无论x 取何值,y 的值总是正的 【考点】3H :二次函数的性质 【专题】535:二次函数图象及其性质【分析】根据二次函数解析式结合二次函数的性质,即可得出结论. 【解答】解:二次函数解析式为25y x =,∴二次函数图象开口向上,当0x <时y 随x 增大而减小,当0x >时y 随x 增大而增大,对称轴为y 轴,无论x 取何值,y 的值总是非负. 故选:C .【点评】本题考查了二次函数的性质,根据二次函数的性质逐一对照四个选项即可得出结论. 12.某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨一元,月销售量就减少10千克.设销售单价为每千克x 元,月销售利润为y 元,则y 与x 的函数关系式为( ) A .(40)(50010)y x x =-- B .(40)(10500)y x x =--C .(40)[50010(50)]y x x =---D .(40)[50010(50)]y x x =---【考点】HD :根据实际问题列二次函数关系式 【专题】1:常规题型【分析】直接利用每千克利润⨯销量=总利润,进而得出关系式. 【解答】解:设销售单价为每千克x 元,月销售利润为y 元, 则y 与x 的函数关系式为:(40)[50010(50)]y x x =---. 故选:C .【点评】此题主要考查了根据实际问题抽象出二次函数关系式,正确表示出销量是解题关键. 13.如图,抛物线21y x =+与双曲线ky x=的交点A 的横坐标是1,则关于x 的不等式210kx x-->的解集是( )A .1x >B .1x <-C .01x <<D .10x -<<【考点】HC :二次函数与不等式若二次函数22(1)31y a x x a =-++-的图象经过原点,则a 的值必为( ) A .1或1-B .1C .1-D .0【考点】8H :待定系数法求二次函数解析式;1H :二次函数的定义【分析】先把原点坐标代入二次函数解析式得到a 的方程,解方程得到1a =或1a =-,根据二次函数的定义可判断1a =-.【解答】解:把(0,0)代入22(1)31y a x x a =-++-, 得210a -=,解得1a =或1a =-, 因为10a -≠, 所以1a ≠,即1a =-. 故选:C .【点评】本题考查了待定系数法求二次函数解析式,同时考查了二次函数的定义. 15.已知非负数a ,b ,c 满足2a b +=,34c a -=,设2S a b c =++的最大值为m ,最小值为n ,则m n -的值为( )A .9B .8C .1D .103【考点】7H :二次函数的最值【分析】用a 表示出b 、c 并求出a 的取值范围,再代入S 整理成关于a 的函数形式,然后根据二次函数的增减性求出m 、n 的值,再相减即可得解. 【解答】解:2a b +=,34c a -=, 2b a ∴=-,34c a =+, b ,c 都是非负数, ∴20340a a -⎧⎨+⎩①②,解不等式①得,2a , 解不等式②得,43a -, 423a ∴-, 又a 是非负数,02a ∴,22(2)34S a b c a a a =++=+-++, 226a a =++,∴对称轴为直线2121a =-=-⨯, 0a ∴=时,最小值6n =,2a =时,最大值2222614m =+⨯+=,1468m n ∴-=-=.故选:B .【点评】本题考查了二次函数的最值问题,用a 表示出b 、c 并求出a 的取值范围是解题的关键,难点在于整理出s 关于a 的函数关系式.16.如图,二次函数2(0)y ax bx c a =++≠的图象的顶点在第一象限,且过点(0,1)和(1,0)-,下列结论:①0ab <,②24b >,③02a b c <++<,④01b <<,⑤当1x >-时,0y >.其中正确结论的个数是( )A .2个B .3个C .4个D .5个【考点】4H :二次函数图象与系数的关系 【专题】31:数形结合【分析】利用抛物线开口方向得0a <,利用对称轴在y 轴的右侧得0b >,则可对①进行判断;根据二次函数图象上点的坐标特征得1c =,0a b c -+=,则1b a c a =+=+,所以01b <<,于是可对②④进行判断;由于1122a b c a a a ++=+++=+,利用0a <可得2a b c ++<,再根据抛物线的对称性得到抛物线与x 轴的另一个交点在(1,0)和(2,0)之间,则1x =时,函数值为正数,即0a b c ++>,由此可对③进行判断;观察函数图象得到1x >-时,抛物线有部分在x 轴上方,有部分在x 轴下方,则可对⑤进行判断.【解答】解:由抛物线开口向下, 0a ∴<,对称轴在y 轴的右侧, 0b ∴>,0ab ∴<,所以①正确;点(0,1)和(1,0)-都在抛物线2y ax bx c =++上, 1c ∴=,0a b c -+=,1b a c a ∴=+=+,而0a <,01b ∴<<,所以②错误,④正确; 1122a b c a a a ++=+++=+,而0a <,222a ∴+<,即2a b c ++<,抛物线与x 轴的一个交点坐标为(1,0)-,而抛物线的对称轴在y 轴右侧,在直线1x =的左侧,∴抛物线与x 轴的另一个交点在(1,0)和(2,0)之间,1x ∴=时,0y >,即0a b c ++>,02a b c ∴<++<,所以③正确;1x >-时,抛物线有部分在x 轴上方,有部分在x 轴下方,0y ∴>或0y =或0y <,所以⑤错误.故选:B .【点评】本题考查了二次函数图象与系数的关系:对于二次函数2(0)y ax bx c a =++≠,当0a >时,抛物线向上开口;当0a <时,抛物线向下开口;一次项系数b 和二次项系数a共同决定对称轴的位置:当a 与b 同号时当函数2(1)2y x =--的函数值y 随着x 的增大而减小时,x 的取值范围是( ) A .0x >B .1x <C .1x >D .x 为任意实数【考点】3H :二次函数的性质 【专题】31:数形结合【分析】利用二次函数的增减性求解即可,并画出了图形,可直接看出. 【解答】解:对称轴是:1x =,且开口向上,如图所示,∴当1x <时,函数值y 随着x 的增大而减小; 故选:B .【点评】本题主要考查了二次函数的性质,解题的关键是熟记二次函数的性质. 18.将抛物线2y x =平移得到抛物线2(3)y x =+,则这个平移过程正确的是( ) A .向左平移3个单位 B .向右平移3个单位C .向上平移3个单位D .向下平移3个单位【考点】6H :二次函数图象与几何变换 【专题】46:几何变换【分析】先利用顶点式得到两抛物线的顶点坐标,然后通过点的平移情况判断抛物线平移的情况.【解答】解:抛物线2y x =的顶点坐标为(0,0),抛物线2(3)y x =+的顶点坐标为(3,0)-, 点(0,0)向左平移3个单位可得到(3,0)-,∴将抛物线2y x =向左平移3个单位得到抛物线2(3)y x =+.故选:A .【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 19.把160元的电器连续两次降价后的价格为y 元,若平均每次降价的百分率是x ,则y 与x 的函数关系式为( )A .320(1)y x =-B .320(1)y x =-C .2160(1)y x =-D .2160(1)y x =-【答案】D【考点】根据实际问题列二次函数关系式【分析】由原价160元可以得到第一次降价后的价格是160(1)x -,第二次降价是在第一次降价后的价格的基础上降价的,为160(1)(1)x x --,由此即可得到函数关系式. 【解答】解:第一次降价后的价格是160(1)x -, 第二次降价为2160(1)(1)160(1)x x x -⨯-=- 则y 与x 的函数关系式为2160(1)y x =-. 故选:D .【点评】此题考查从实际问题中得出二次函数解析式,需注意第二次降价是在第一次降价后的价格的基础上降价的,所以会出现自变量的二次,即关于x 的二次函数. 20.下列函数中是二次函数的为( ) A .31y x =-B .231y x =-C .22(1)y x x =+-D .323y x x =+-【考点】1H :二次函数的定义【分析】根据二次函数的定义,可得答案.【解答】解:A 、31y x =-是一次函数,故A 错误;B 、231y x =-是二次函数,故B 正确;C 、22(1)y x x =+-不含二次项,故C 错误;D 、323y x x =+-是三次函数,故D 错误;故选:B .【点评】本题考查了二次函数的定义,形如2(0)y ax bx c a =++≠是二次函数,要先化简再判断.21.函数21y ax =+和(y ax a a =+为常数,且0)a ≠,在同一平面直角坐标系中的大致图象可能是( )A .B .C .D .【答案】D【考点】二次函数的图象;一次函数的图象【专题】推理能力;几何直观;一次函数及其应用;二次函数图象及其性质【分析】由二次函数21y ax =+的图象顶点(0,1)可排除A 、B 答案;由一次函数y ax a =+的图象过点(1,0)-可排除C 答案.此题得解. 【解答】解:21y ax =+,∴二次函数21y ax =+的图象的顶点为(0,1),故A 、B 不符合题意;当0y ax a =+=时,1x =-,∴一次函数y ax a =+的图象过点(1,0)-,故C 不符题意.故选:D .【点评】本题考查了一次函数的图象以及二次函数的图象,利用一次函数图象经过定点排除A 、B 、C 选项是解题的关键.22.点(,)P m n 在以y 轴为对称轴的二次函数24y x ax =++的图象上.则m n -的最大值等于( ) A .154B .4C .154-D .174-【答案】C【考点】二次函数图象上点的坐标特征;二次函数的性质 【专题】二次函数图象及其性质;应用意识【分析】根据题意,可以得到a 的值,m 和n 的关系,然后将m 、n 作差,利用二次函数的性质,即可得到m n -的最大值,本题得以解决.【解答】解:点(,)P m n 在以y 轴为对称轴的二次函数24y x ax =++的图象上, 0a ∴=,24n m ∴=+,222115(4)4()24m n m m m m m ∴-=-+=-+-=---,∴当12m =时,m n -取得最大值,此时154m n -=-, 故选:C .【点评】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.23.已知抛物线22(26)3y x m x m =+-+-与y 轴交于点A ,与直线4x =交于点B ,当2x >时,y 值随x 值的增大而增大.记抛物线在线段AB 下方的部分为G ,M 为G 上任意一点,设M 的纵坐标为t ,若3t -,则m 的取值范围是( ) A .32mB .332m C .3m D .13m【答案】A【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征 【专题】二次函数图象及其性质;应用意识【分析】根据题意,22bx a=-,2434ac b a --【解答】解:当对称轴在y 轴的右侧时,2226026224(3)(26)34m m m m ⎧⎪-<⎪-⎪-⎨⎪⎪----⎪⎩, 解得332m <, 当对称轴是y 轴时,3m =,符合题意,当对称轴在y 轴的左侧时,260m ->,解得3m >, 综上所述,满足条件的m 的值为32m . 故选:A .【点评】本题考查二次函数图形与系数的关系,二次函数图象上的点的坐标特征,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考选择题中的压轴题.24.若二次函数22y a x bx c =--的图象,过不同的六点(1,)A n -、(5,1)B n -、(6,1)C n +、D 1)y 、2(2,)E y 、3(4,)F y ,则1y 、2y 、3y 的大小关系是( )A .123y y y <<B .132y y y <<C .231y y y <<D .213y y y <<【答案】D【考点】二次函数图象上点的坐标特征;二次函数的图象 【专题】二次函数图象及其性质;推理能力【分析】由解析式可知抛物线开口向上,点(1,)A n -、(5,1)B n -、(6,1)C n +求得抛物线对称轴所处的范围,然后根据二次函数的性质判断可得.【解答】解:由题意22225513661a b c n a b c n a b c n ⎧+-=⎪--=-⎨⎪--=+⎩①②③②-①得,22461a b -=-④, ③-②得,2112a b -=⑤, ④6-⨯⑤得到,21342a =,可得5942b =, ∴抛物线的对称轴259226b x a -=-=, (2D ,1)y 、2(2,)E y 、3(4,)F y ,则213y y y <<, 故选:D .【点评】本题主要考查二次函数图象上点的坐标特征,根据题意得到抛物线的对称轴和开口方向是解题的关键.25.在同一平面直角坐标系中,若抛物线22y mx x n =+-与262y x x m n =--+-关于x 轴对称,则m ,n 的值为( )A .6m =-,3n =-B .6m =-,3n =C .6m =,3n =-D .6m =,3n =【答案】D【考点】6H :二次函数图象与几何变换;3H :二次函数的性质 【专题】535:二次函数图象及其性质;67:推理能力;69:应用意识 【分析】根据关于x 轴对称,函数y 是互为相反数即可求得.【解答】解:抛物线22y mx x n =+-与262y x x m n =--+-关于x 轴对称,22y mx x n ∴-=--+,22y mx x n ∴=--+与262y x x m n =--+-相同, 6m ∴-=-,n m n =-,解得6m =,3n =, 故选:D .【点评】本题考查了二次函数图象与几何变换,根据关于x 轴对称的坐标特征把抛物线22y mx x n =+-化成关于x 轴对称的抛物线的解析式是解题的关键.26.已知关于x 的二次函数24y x x m =-+在13x -的取值范围内最大值7,则该二次函数的最小值是( ) A .2- B .1-C .0D .1【答案】A【考点】二次函数的最值【专题】二次函数图象及其性质;运算能力【分析】先将二次函数写成顶点式,得出对称轴及开口方向,根据抛物线开口向上时离对称轴越远函数值越大,可知当1x =-时,7y =,从而可解得m 的值;再根据抛物线的顶点式可得其最小值. 【解答】解:24y x x m =-+2(2)4x m =-+-,∴对称轴为直线2x =,抛物线开口向上,二次函数在13x -的取值范围内最大值7, 当1x =-时,7y =,27(1)4(1)m ∴=--⨯-+, 解得:2m =,∴当2x =时,该二次函数有最小值,最小值为0242+-=-.故选:A .【点评】本题考查了二次函数的最值,熟练掌握二次函数的性质是解题的关键. 27.将二次函数2245y x x =-+的右边进行配方,正确的结果是( ) A .22(1)3y x =-- B .22(2)3y x =-- C .22(1)3y x =-+ D .22(2)3y x =-+【考点】9H :二次函数的三种形式【专题】66:运算能力;535:二次函数图象及其性质【分析】先提出二次项系数,再加上一次项系数一半的平方,即得出顶点式的形式. 【解答】解:提出二次项系数得,22(2)5y x x =-+, 配方得,22(21)52y x x =-++-, 即22(1)3y x =-+. 故选:C .【点评】本题考查了二次函数的三种形式,一般式:2y ax bx c =++,顶点式:2()y a x h k =-+;两根式:12()()y a x x x x =--.28.二次函数y =x 2﹣x +a ﹣4的图象与x 轴有两个公共点,a 取满足条件的最小整数,将图象在x 轴上方的部分沿x 轴翻折,其余部分保持不变,得到一个新图象,当直线y =kx ﹣2与新图象恰有三个公共点时,则k 的值不可能是 A .﹣1B .﹣2C .1D .2【考点】一次函数图象与系数的关系;一次函数图象上点的坐标特征;二次函数的性质;二次函数图象与几何变换;二次函数的最值;抛物线与x轴的交点.【专题】分类讨论;二次函数图象及其性质;数据分析观念.【答案】D【分析】由二次函数y=x2﹣x+a﹣4的图象与x轴有两个公共点,则△>0且a≠1,得到a=2.①当k>0时,直线y=kx﹣2与新图象恰有三个公共点时,此时直线过点B、C,故将点B的坐标代入y=kx﹣2,即可求解;②当k<0时,直线y=kx﹣2与新图象恰有三个公共点时,则此时直线过A、C点或直线与y=x2﹣x﹣2只有一个交点,进而求解.【解答】解:∵二次函数y=x2﹣x+a﹣4的图象与x轴有两个公共点,则△>0且a≠1,当△=2﹣4=8a﹣7>0时,解得a>,∵a取满足条件的最小整数,而a≠1,故a=2,当a=2时,y=x2﹣x+a﹣4=x2﹣x﹣2,设原抛物线交x轴于点A、B,交y轴于点C,将图象在x轴上方的部分沿x轴翻折,其余部分保持不变,得到一个新图象,如下图所示,对于y=x2﹣x﹣2,令y=0,则y=x2﹣x﹣2=0,解得x=﹣1或2,令x=0,则y=﹣2,故点A、B、C的坐标分别为、、,由直线y=kx﹣2知,该直线过点C,①当k>0时,∵直线y=kx﹣2与新图象恰有三个公共点时,则此时直线过点B、C,将点B的坐标代入y=kx﹣2得:0=2k﹣2,解得k=1;②当k<0时,∵直线y =kx ﹣2与新图象恰有三个公共点时,则此时直线过A 、C 点或直线与y =x 2﹣x ﹣2只有一个交点, 当直线过点A 、C 时,将点A 的坐标代入直线表达式得:0=﹣k ﹣2, 解得k =﹣2,当直线与y =x 2﹣x ﹣2只有一个交点时,联立直线和抛物线的表达式得:x 2﹣x ﹣2=kx ﹣2,即x 2﹣x =0, 则△=2﹣4×1×0=0, 解得k =﹣1,综上,k =1或﹣2或﹣1, 故选:D .【点评】本题考查的是抛物线与x 轴的交点,涉及到一次函数、根的判别式等知识点,分类求解是本题解题的关键.29.已知二次函数2y ax bx c =++与自变量x 的部分对应值如表,下列说法错误的是( )A .0a <B .方程22ax bx c ++=-的正根在4与5之间C .20a b +>D .若点1(5,)y 、3(2-,2)y 都在函数图象上,则12y y <【答案】B【考点】抛物线与x 轴的交点;图象法求一元二次方程的近似根;根的判别式;二次函数图象与系数的关系;根与系数的关系 【专题】推理能力;二次函数图象及其性质【分析】利用表中函数值的变换情况可判断抛物线的开口方向,则可对A 进行判断;利用抛物线的对称性可得1x =-和4x =的函数值相等,则可对B 进行判断;利用0x =和3x =时函数值相等可得到抛物线的对称轴方程,则可对C 进行判断;利用二次函数的性质则可对D 进行判断.【解答】解:二次函数值先由小变大,再由大变小,∴抛物线的开口向下,0a ∴<,故A 正确;1x =-时,3y =-,4x ∴=时,3y =-,∴二次函数2y ax bx c =++的函数值为2-时,10x -<<或34x <<,即方程22ax bx c ++=-的负根在1-与0之间,正根在3与4之间, 故B 错误;抛物线过点(0,1)和(3,1),∴抛物线的对称轴为直线32x =, 3122b a ∴-=>, 20a b ∴+>,故C 正确;3(2-,2)y 关于直线32x =的对称点为9(2,2)y ,952<, 12y y ∴<,故D 正确; 故选:B .【点评】本题考查了二次函数的图象与系数的关系,二次函数的性质.抛物线与x 轴的交点,熟练掌握二次函数的性质和抛物线的对称性是解决此题的关键. 30.在平面直角坐标系有一条抛物线241y x x =-+-,则在下列结论中: ①此抛物线的开口向下; ②此抛物线的对称轴是2x =; ③当12x x <时,则有12y y <;④当2x >时,若0m >,则有2()444x m x m -+++<; ⑤此抛物线中,当x 取任何实数时,y 值都不可能等于5; ⑥此抛物线与x 轴有两个交点.在下列给出的序号中,含有错误结论的是( ) A .①②③ B .①②④C .①②⑤D .①②⑥【答案】B【考点】抛物线与x 轴的交点;二次函数与不等式31.将函数224y x x =-+化为2()y a x h k =-+的形式为 2(1)3y x =-+ . 【考点】9H :二次函数的三种形式 【分析】利用配方法整理即可得解.【解答】解:2224(21)3y x x x x =-+=-++,2(1)3x =-+, 所以,2(1)3y x =-+. 故答案为:2(1)3y x =-+.【点评】本题考查了二次函数的三种形式,熟练掌握配方法是解题的关键.32.如果函数2(1)(y m x x m =-+是常数)是二次函数,那么m 的取值范围是 1m ≠ . 【考点】1H :二次函数的定义【专题】536:二次函数的应用;33:函数思想 【分析】依据二次函数的二次项系数不为零求解即可. 【解答】解:函数2(1)(y m x x m =-+为常数)是二次函数, 10m ∴-≠,解得:1m ≠,故答案为:1m ≠.【点评】本题主要考查的是二次函数的定义,掌握二次函数的特点是解题的关键. 33.如果函数232(3)1y x x -+=-++是二次函数,那么的值一定是 0 .【考点】二次函数的定义【分析】根据二次函数的定义,列出方程与不等式求解即可. 【解答】解:由题意得:2322-+=,解得0=或3=; 又30-≠,3∴≠.∴当0=时,这个函数是二次函数.故答案为:0.【点评】本题考查二次函数的定义,关键是掌握二次函数的定义:一般地,形如2(y ax bx c a =++、b 、c 是常数,0)a ≠的函数,叫做二次函数.34.设1(A x ,1)y 、2(B x ,2)y 是抛物线2242y x x =+-上的点,坐标系原点O 位于线段AB的中点处,则AB 的长为【考点】5H :二次函数图象上点的坐标特征【专题】11:计算题【分析】由于原点O 是线段AB 的中点得到A 点和B 点关于原点中心对称,则12x x =-,12y y =-,根据抛物线的位置可确定A 点和B 点在第一、三象限,设A 点在第一象限,再把点A 和B 点坐标代入解析式得到2111242y x x =+-,2111242y x x -=--,两式相加可得到11x =,则14y =,于是可确定A 点和B 点坐标,然后利用两点间的距离公式计算.【解答】解:原点是线段的中点,,与,关于原点中心对称,,,,抛物线的对称轴为直线,顶点坐标为,点和点在第一、三象限,设点在第一象限,点坐标为,,,,,,与,.O AB 1(A x ∴1)y 2(B x 2)y 12x x ∴=-12y y =-222422(1)4y x x x =+-=+-∴1x =-(1,4)--A ∴B A B ∴1(x -1)y -2111242y x x ∴=+-2111242y x x -=--11x ∴=14y ∴=(1,4)A ∴(1,4)B --AB ∴=故答案为.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了两点间的距离公式.35.在一幢高的大楼上掉下一个苹果,苹果离地面的高度与时间大致有如下关系:. 5 秒钟后苹果落到地面.【考点】:二次函数的应用【分析】苹果落到地面,即的值为0,代入函数解析式求得的值即可解决问题.【解答】解:把代入函数解析式得,,解得,;答:5秒钟后苹果落到地面.故答案为:5.【点评】此题主要考查二次函数与一元二次方程的关系,解答时注意结合图象解答.36.如图,抛物线的对称轴为,点,点是抛物线与轴的两个交点,若点的坐标为,则点的坐标为 .【考点】二次函数的性质;抛物线与轴的交点【专题】二次函数图象及其性质【分析】根据抛物线的对称轴结合点的横坐标,即可求出点的横坐标,此题得解.【解答】解:抛物线的对称轴为直线,点的坐标为,点的横坐标为,点的坐标为.故答案为:.【点评】本题考查了抛物线与轴的交点以及二次函数的性质,牢记抛物线的对称性是解题125m ()h m ()t s 21255h t =-HE h t 0h =21255h t =-212550t -=15t =25t =-2y ax bx c =++1x =P Q x P (4,0)Q (2,0)-x P Q 1x =P (4,0)∴Q 1242⨯-=-∴Q (2,0)-(2,0)-x的关键.37.如图,在平面直角坐标系中,菱形的顶点在轴负半轴上,顶点在轴正半轴上.若抛物线经过点、,则点的坐标为 .【考点】菱形的性质;二次函数的性质;二次函数图象上点的坐标特征【专题】二次函数图象及其性质【分析】根据抛物线经过点、和二次函数图象具有对称性,可以求得该抛物线的对称轴和的长,然后根据菱形的性质和勾股定理可以求得的长,从而可以求得的长,进而写出点的坐标.【解答】解:抛物线,该抛物线的顶点的横坐标是,当时,,点的坐标为:,,抛物线经过点、,轴,,,,,,,,,点的坐标为,故答案为:【点评】本题考查二次函数的性质、二次函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.ABCD A x B x 2108(0)y ax ax a =-+>C D B(4,0)2108(0)y ax ax a =-+>C D CD AO OB B 22108(5)258y ax ax a x a =-+=--+∴5x =0x =8y =∴D (0,8)8OD ∴=2108(0)y ax ax a =-+>C D ////CD AB x 5210CD ∴=⨯=10AD ∴=90AOD ∠=︒8OD =10AD=6AO ∴====10AB =101064OB AO ∴=-=-=∴B (4,0)(4,0)。
2021中考数学专题训练:二次函数的图象及性质一、选择题1. 在平面直角坐标系中,对于二次函数y=(x-2)2+1,下列说法中错误的是()A.y的最小值为1B.图象顶点坐标为(2,1),对称轴为直线x=2C.当x<2时,y的值随x值的增大而增大,当x≥2时,y的值随x值的增大而减小D.它的图象可以由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到2. 抛物线y=2(x-3)2+1的顶点坐标是()A. (3,1)B. (3,-1)C. (-3,1)D. (-3,-1)3. 已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:有下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2;③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(x2,3)是抛物线上的两点,则x1<x2.其中正确的个数是()A.2 B.3 C.4 D.54. 某人画二次函数y=ax2+bx+c的图象时,列出下表(计算没有错误):根据此表判断:一元二次方程ax2+bx+c=0的一个根x1满足下列关系式中的() A.3.2<x1<3.3 B.3.3<x1<3.4 C.3.4<x1<3.5 D.3.1<x1<3.25. 二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2>4ac;②abc<0;③2a +b-c>0;④a+b+c<0.其中正确的是()A.①④B.②④C.②③D.①②③④6. (2019•嘉兴)小飞研究二次函数y=–(x–m)2–m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=–x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当–1<x<2时,y随x的增大而增大,则m的取值范围为m≥2其中错误结论的序号是A.①B.②C.③D.④7. (2020·常德)二次函数的图象如图所示,下列结论:240b ac ->①;0abc <②;40a b +=③;420a b c -+>④.其中正确结论的个数是( )A .4B .3C .2D .18. (2020·湖北孝感)将抛物线:y =-2x +3向左平移1个单位长度,得到抛物线,抛物线与抛物线关于x 轴对称,则抛物线的解析式为( ) A.y =--2 B.y =-+2 C.y =-2 D.y =+2二、填空题9. 经过A (4,0),B (-2,0),C (0,3)三点的抛物线解析式是_____________.10. 如图所示,抛物线y =ax 2-3x +a 2-1经过原点,那么a 的值是________.11. 已知函数y =ax 2+c 的图象与函数y =-3x 2-2的图象关于x 轴对称,则a =________,c =________.12. (2019•天水)二次函数2y ax bx c =++的图象如图所示,若42M a b =+,=-.则M、N的大小关系为M__________N.(填“>”、“=”或“<”)N a b13. 如图,抛物线y=-x2+x+2与x轴相交于A,B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x 轴,与拋物线相交于P,Q两点,则线段PQ的长为.14. 如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是________.三、解答题15. 已知抛物线经过点A(1,0),B(0,3),且对称轴是直线x=2,求该抛物线的解析式.16. 把抛物线y=x2先向左平移1个单位长度,再向下平移4个单位长度,得到如图5-ZT -4所示的二次函数的图象.(1)求此二次函数的解析式;(2)在平移后的抛物线上存在一点M,使△ABM的面积为20,请直接写出点M的坐标.17. 如图,二次函数的图象与x轴交于A(-3,0),B(1,0)两点,交y轴于点C(0,3),点C,D是二次函数图象上的一对对称点,一次函数的图象过点B,D.(1)请直接写出点D的坐标;(2)求二次函数的解析式;(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.18. 如图1,把两个全等的Rt△AOB和Rt△COD方别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.(1)求该抛物线的函数解析式;(2)点P为线段OC上的一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移的过程中与△COD重叠部分的面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.2021中考数学专题训练:二次函数的图象及性质-答案一、选择题1. 【答案】C[解析]根据二次函数的性质进行判断,由二次函数y=(x-2)2+1,得它的顶点坐标是(2,1),对称轴为直线x=2,当x=2时,函数的最小值是1,图象开口向上,当x≥2时,y的值随x值的增大而增大,当x<2时,y的值随x值的增大而减小,可由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到,所以选项C是错误的,故选C.2. 【答案】A【解析】∵抛物线y=a(x-h)2+k的顶点坐标是(h,k),∴y=2(x -3)2+1的顶点坐标是(3,1).3. 【答案】B[解析] 先根据二次函数的部分对应值在坐标系中描点、连线,由图象可以看出抛物线开口向上,所以结论①正确.由图象(或表格)可以看出抛物线与x轴的两个交点分别为(0,0),(4,0),所以抛物线的对称轴为直线x=2且抛物线与x轴的两个交点间的距离为4,所以结论②和④正确.由图象可以看出当0<x<4时,y<0,所以结论③错误.由图象可以看出当抛物线上的点的纵坐标为2或3时,对应的点均有两个,若A(x1,2),B(x2,3)是抛物线上两点,既有可能x1<x2,也有可能x1>x2,所以结论⑤错误.4. 【答案】B[解析] 从表格中的数据看,当3.2≤x≤3.5时,y随x的增大而增大,且x=3.3时,y=-0.17<0,x=3.4时,y=0.08>0,故y=0一定在3.3<x<3.4这个范围内取得,∴方程的根也在此范围内.故选B.5. 【答案】A[解析] ①因为图象与x轴有两个不同的交点,所以b2-4ac>0,即b2>4ac,故①正确.②图象开口向下,故a<0.图象与y轴交于正半轴,故c>0.因为对称轴为直线x=-1,所以-b2a=-1,所以2a=b,故b<0,所以abc>0,故②错误.③因为a<0,b<0,c>0,所以2a +b -c<0,故③错误.④当x =1时,y =a +b +c ,由图可得,当x =-3时,y<0.因为抛物线的对称轴为直线x =-1,所以由对称性可知,当x =1时,y<0,即a +b +c<0,故④正确.综上所述,①④正确,故选A.6. 【答案】C【解析】把(m ,–m+1)代入y=–x+1,–m+1=–m+1,左=右,故①正确; 当–(x –m)2–m+1=0时,x1=1m m -x2=1m m - 若顶点与x 轴的两个交点构成等腰直角三角形, 则1–m+(1–m)2+1–m+(1–m)2=4(1–m),即m2–m=0,∴m=0或1时,∴存在一个m 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形;故②正确; 当x1<x2,且x1、x2在对称轴右侧时,∵–1<0,∴在对称轴右侧y 随x 的增大而减小,即y1>y2,故③错误; ∵–1<0,∴在对称轴左侧y 随x 的增大而增大, ∴m≥2,故④正确, 故选C .7. 【答案】B 【解析】本题考查了二次函数图像与系数的关系.∵抛物线与x 轴有两个交点,∴方程20ax bx c ++=有两个不相等的实数根,240b ac ∴->,故①正确,由图象知,抛物线的对称轴为直线2x =,22ba∴-=,40a b ∴+=,故③正确,由图象知,抛物线开口方向向下,0a ∴<.∵40a b +=,0b ∴>.∵抛物线与y 轴的交点在y 轴的正半轴上,0c ∴>.0abc ∴<,故②正确,由图象知,当2x =-时,0y <,420a b c ∴-+<,故④错误.综上所述,正确的结论有3个,因此本题选B .8. 【答案】A【解析】利用平移得性质“上加下减,左加右减”得抛物线得解析式:y =-2(x +1)+3,整理得y =+2,再利用关于x 轴对称的性质“横坐标不变,纵坐标互为相反数”得:y =--2.故选A. 二、填空题9. 【答案】y=-(x -4)(x +2)[解析]设抛物线解析式为y=a (x -4)(x +2),把C (0,3)代入上式得3=a (0-4)(0+2),解得a=-,故y=-(x -4)(x +2).10. 【答案】-1 [解析] 因为抛物线经过原点(0,0),所以a 2-1=0,即a =±1.因为抛物线的开口向下,所以舍去a =1.故a =-1.11. 【答案】3212. 【答案】<【解析】当1x =-时,0y a b c =-+>, 当2x =时,420y a b c =++<,()42M N a b a b -=+--()420a b c a b c =++--+<, 即M N <, 故答案为:<.13. 【答案】2[解析]当y=0时,-x 2+x +2=0,解得x 1=-2,x 2=4,∴点A 的坐标为(-2,0).当x=0时,y=-x 2+x +2=2,∴点C 的坐标为(0,2). 当y=2时,-x 2+x +2=2,解得x 1=0,x 2=2, ∴点D 的坐标为(2,2).设直线AD 的解析式为y=kx +b (k ≠0),将A (-2,0),D (2,2)代入y=kx +b ,得解得∴直线AD 的解析式为y=x +1.当x=0时,y=x +1=1,∴点E 的坐标为(0,1). 当y=1时,-x 2+x +2=1,解得x 1=1-,x 2=1+, ∴点P 的坐标为(1-,1),点Q 的坐标为(1+,1),∴PQ=1+-(1-)=2.14. 【答案】-2 [解析] 抛物线y =ax 2+bx 的顶点C 的坐标为(-b 2a ,-b24a).把x =-b 2a 代入y =ax 2,得点B 的坐标为(-b 2a ,b 24a ).在y =ax 2+bx 中,令y =0,则ax 2+bx =0,解得x 1=0,x 2=-b a ,∴A(-ba ,0).∵四边形ABOC 为正方形,∴BC =OA ,∴2·b 24a =-b a ,即b 2+2b =0.解得b =-2或b =0(不符合题意,舍去).三、解答题15. 【答案】解:∵抛物线的对称轴是直线x =2且经过点A(1,0),∴由抛物线的对称性可知,抛物线还经过点(3,0).设抛物线的解析式为y =a(x -1)(x -3).把(0,3)代入解析式,得3=3a ,∴a =1,∴y =(x -1)(x -3),即该抛物线的解析式为y =x2-4x +3.16. 【答案】解:(1)此二次函数的解析式为y =(x +1)2-4,即y =x2+2x -3.(2)∵当y =0时,x2+2x -3=0,解得x1=-3,x2=1,∴A(1,0),B(-3,0),∴AB =4. 设点M 的坐标为(m ,n).∵△ABM 的面积为20,∴12AB·|n|=20,解得n =±10. 当n =10时,m2+2m -3=10,解得m =-1+14或m =-1-14,∴点M 的坐标为(-1+14,10)或(-1-14,10);当n =-10时,m2+2m -3=-10,此方程无解.故点M 的坐标为(-1+14,10)或(-1-14,10).17. 【答案】解:(1)D(-2,3).(2)设二次函数的解析式为y=ax2+bx+c(a,b,c为常数,且a≠0),根据题意,得解得∴二次函数的解析式为y=-x2-2x+3.(3)x<-2或x>1.18. 【答案】(1)将A(1,2)、O(0,0)、C(2,1)分别代入y=ax2+bx+c,得2,0,42 1.a b cca b c++=⎧⎪=⎨⎪++=⎩解得32a=-,72b=,0c=.所以23722y x x=-+.(2)如图2,过点P、M分别作梯形ABPM的高PP′、MM′,如果梯形ABPM是等腰梯形,那么AM′=BP′,因此yA-y M′=yP′-yB.直线OC的解析式为12y x=,设点P的坐标为1(,)2x x,那么237(,)22M x x x-+.解方程23712()222x x x--+=,得123x=,22x=.x=2的几何意义是P与C重合,此时梯形不存在.所以21(,)33P.图2 图3(3)如图3,△AOB 与△COD 重叠部分的形状是四边形EFGH ,作EK ⊥OD 于K .设点A ′移动的水平距离为m ,那么OG =1+m ,GB ′=m .在Rt △OFG 中,11(1)22FG OG m ==+.所以21(1)4OFG S m ∆=+. 在Rt △A ′HG 中,A ′G =2-m ,所以111'(2)1222HG A G m m ==-=-. 所以13(1)(1)22OH OG HG m m m =-=+--=. 在Rt △OEK 中,OK =2 EK ;在Rt △EHK 中,EK =2HK ;所以OK =4HK . 因此4432332OK OH m m ==⨯=.所以12EK OK m ==. 所以211332224OEH S OH EK m m m ∆=⋅=⨯⋅=. 于是22213111(1)44224OFG OEH S S S m m m m ∆∆=-=+-=-++2113()228m =--+. 因为0<m <1,所以当12m =时,S 取得最大值,最大值为38.。
2021年安徽省宁国市中考数学总复习:二次函数
一.选择题(共50小题)
1.如图1所示的是山西大同北都桥的照片,桥上面的部分是以抛物线为模型设计而成的,从正面观察该桥的上面部分是一条抛物线,如图2,若AB=60,OC=15,以AB所在直线为x轴,抛物线的顶点C在y轴上建立平面直角坐标系,则此桥上半部分所在抛物线的解析式为()
A.y=−1
60
x2+15B.y=−160x2−15
C.y=−
1
240
x2+15D.y=−1240x2−15
2.如图,抛物线y=ax2+bx+c经过点(﹣1,0),与y轴交于(0,2),抛物线的对称轴为直线x=1,则下列结论中:①a+c=b;②方程ax2+bx+c=0的解为﹣1和3;③2a+b=0;
④c﹣a>2,其中正确的结论有()
A.1个B.2个C.3个D.4个
3.在平面直角坐标系中,对于二次函数y=(x﹣2)2+1,下列说法:①y的最小值为1;
②图象顶点坐标为(﹣2,1),对称轴为直线x=﹣2;③当x<2时,y的值随x值的增
大而增大,当x≥2时,y的值随x值的增大而减小;④它的图象可以由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到.其中错误的个数是()A.1B.2C.3D.4
4.抛物线y=(x+1)2+(m2+1)(m为常数)的顶点在()
A.第一象限B.第二象限C.第三象限D.第四象限
5.对于抛物线y=−1
3
(x−5)2+3,下列说法错误的是()
A.对称轴是直线x=5
B.函数的最大值是3
C.开口向下,顶点坐标(5,3)
D.当x>5时,y随x的增大而增大
6.对于二次函数y=﹣2(x+3)2的图象,下列说法不正确的是()A.开口向下
B.对称轴是直线x=﹣3
C.顶点坐标为(﹣3,0)
D.当x<﹣3 时,y随x的增大而减小
7.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①abc>0;②4a+2b+c>0;③9a﹣b+c=0;④若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣8.其中正确的结论有()个
A.2B.3C.4D.5
8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②若m为任意实数,则a+b≥am2+bm;③a﹣b+c>0;④3a+c<0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中正确的个数为()
A.2B.3C.4D.5
9.已知二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),交x轴于A,B两点,交y轴于C,则:
①a+c=0;
②无论a取何值,此二次函数图象与x轴必有两个交点,函数图象截x轴所得的线段长
度必大于2;
③当函数在x>1时,y随x的增大而增大;
④若a=1,则OA•OB=OC2.
以上说法正确的有()
A.1个B.2个C.3个D.4个
10.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n),抛物线与y 轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①a+b+c>0;②对于任意实数m,a+b≥am2+bm总成立;③关于x的方程ax2+bx+c=n有两个相等的实数根;
④﹣1≤a≤−23,其中结论正确个数为()
A.1 个B.2 个C.3 个D.4 个
11.抛物线y=ax2+bx+c(a,b,c为常数)的顶点为P,且抛物线经过点A(﹣1,0),B (m,0),C(﹣2,n)(1<m<3,n<0),下列结论:①abc>0,②3a+c<0,③a(m ﹣1)+2b>0,④a=﹣1时,存在点P使△P AB为直角三角形.其中正确有()A.1个B.2个C.3个D.4个
12.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是()。