麦克斯韦方程组
- 格式:pdf
- 大小:464.87 KB
- 文档页数:5
麦克斯韦方程组是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一套偏微分方程。
它们描述了电场、磁场、电荷密度和电流密度之间的关系。
它包含四个方程:电荷如何产生电场的高斯定理;不存在的磁单极子的高斯定律;电流与变化的电场如何产生磁场的麦克斯韦安培定律以及变化的磁场如何产生电场的法拉第电磁感应定律。
从麦克斯韦方程中,我们可以推断出光波是电磁波。
麦克斯韦方程和洛伦兹力方程构成了经典电磁学的完整组合。
1865年,麦克斯韦建立了由20个方程和20个变量组成的原始方程
麦克斯韦方程组是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一套偏微分方程。
它们描述了电场、磁场、电荷密度和电流密度之间的关系。
它包含四个方程:电荷如何产生电场的高斯定理;不存在的磁单极子的高斯定律;电流与变化的电场如何产生磁场的麦克斯韦安培定律以及变化的磁场如何产生电场的法拉第电磁感应定律。
详细介绍
麦克斯韦方程是英国物理学家麦克斯韦在19世纪建立的描述电场和磁场的四个基本方程。
麦克斯韦方程
麦克斯韦方程
微分形式的方程通常称为麦克斯韦方程。
在麦克斯韦方程组中,电场和磁场是一个整体。
方程组系统而完整地推广了电磁场的基本规律,预测了电磁波的存在。
核心理念
麦克斯韦的旋涡电场和位移电流假说的核心思想是:变化的磁场激发旋涡电场,变化的电场激发旋涡磁场;电场和磁场不是彼此孤立的,而是相互联系,相互激发,形成统一的电磁场(这也是电磁波的形成原理)。
麦克斯韦进一步整合了电场和磁场的所有定律,建立了完整的电磁场理论体系。
电磁理论体系的核心是麦克斯韦方程组。
麦克斯韦方程组八种麦克斯韦方程组是描述电磁场的物理定律,由詹姆斯·克拉克·麦克斯韦在19世纪提出。
它包括八个方程,分别是电场的高斯定律、磁场的高斯定律、法拉第电磁感应定律、安培环路定律以及四个麦克斯韦方程。
第一个麦克斯韦方程是电场的高斯定律。
它表明电场线从正电荷流出,经过负电荷后重新进入正电荷。
就像洪水的水流从高处流向低处,电场力对电荷产生的影响也是类似的。
这个方程告诉我们,电场线的描述类似于水流的路径。
第二个麦克斯韦方程是磁场的高斯定律。
与电场类似,磁场线也存在着从南极出来,从北极重新进入的过程。
这一方程告诉我们,磁场线的描述也类似于电场线。
它们都是由正负极之间的相互作用所产生的。
第三个麦克斯韦方程是法拉第电磁感应定律。
根据这个定律,磁场的变化将产生感应电流。
我们可以将这个定律与发电机相联系。
当磁场线通过线圈时,线圈内将产生电流。
这个方程是电磁场与电流之间的关系,极大地推动了电磁学的发展。
第四个麦克斯韦方程是安培环路定律。
它描述了沿闭合回路的电流产生的磁场,类似于法拉第电磁感应定律的反过程。
这个方程告诉我们,电流通过线圈时会产生磁场。
而这个磁场又会影响周围的物体。
这个定律在电磁学和电路设计中非常重要。
除了这四个基本的麦克斯韦方程外,还有四个补充方程。
第五个麦克斯韦方程是电场的环路定律。
它描述了电场沿闭合回路的等效电动势。
这个方程帮助我们理解电场在电路中的行为。
第六个麦克斯韦方程是磁场的环路定律。
它类似于电场的环路定律,描述了磁场沿闭合回路的等效电动势。
这个方程帮助我们理解磁场在电路中的行为。
第七个麦克斯韦方程是电磁场的连续性方程。
它描述了电场和磁场的变化对电磁波传播的影响。
这个方程对于研究电磁波的传播特性非常重要。
第八个麦克斯韦方程是电磁波的速度方程。
它描述了电磁波在空间中传播的速度。
这个方程给出了电磁波的传播速度与电磁场的性质之间的关系。
总结来说,麦克斯韦方程组是描述电磁场的重要定律,它包括了电场的高斯定律、磁场的高斯定律、法拉第电磁感应定律、安培环路定律以及四个补充方程。
世界第一公式:麦克斯韦方程组麦克斯韦方程组,是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一组描述电场、磁场与电荷密度、电流密度之间关系的偏微分方程。
从麦克斯韦方程组,可以推论出光波是电磁波。
麦克斯韦方程组和洛伦兹力方程是经典电磁学的基础方程。
从这些基础方程的相关理论,发展出现代的电力科技与电子科技。
麦克斯韦1865年提出的最初形式的方程组由20个等式和20个变量组成。
他在1873年尝试用四元数来表达,但未成功。
现在所使用的数学形式是奥利弗·赫维赛德和约西亚·吉布斯于1884年以矢量分析的形式重新表达的。
在英国科学期刊《物理世界》发起的“最伟大公式”中,麦克斯韦方程组力压勾股定理,质能转换公式,名列第一。
这里,不细谈任何具体的推导和数学关系,纯粹挥挥手扯扯淡地说一说电磁学里的概念和思想。
1力、能、场、势经典物理研究的一个重要对象就是力force。
比如牛顿力学的核心就是F=ma这个公式,剩下的什么平抛圆周简谐运动都可以用这货加上微积分推出来。
但是力有一点不好,它是个向量vector(既有大小又有方向),所以即便是简单的受力分析,想解出运动方程却难得要死。
很多时候,从能量的角度出发反而问题会变得简单很多。
能量energy说到底就是力在空间上的积分(能量=功=力×距离),所以和力是有紧密联系的,而且能量是个标量scalar,加减乘除十分方便。
分析力学中的拉格朗日力学和哈密顿力学就绕开了力,从能量出发,算运动方程比牛顿力学要简便得多。
在电磁学里,我们通过力定义出了场field的概念。
我们注意到洛仑兹力总有着F=q(E+v×B)的形式,具体不谈,单看这个公式就会发现力和电荷(或电荷×速度)程正比。
那么我们便可以刨去电荷(或电荷×速度)的部分,仅仅看剩下的这个“系数”有着怎样的动力学性质。
也就是说,场是某种遍布在空间中的东西,当电荷置于场中时便会受力。
麦克斯韦方程组维基百科,自由的百科全书麦克斯韦方程组(Maxwell's equations)是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一组偏微分方程,描述电场、磁场与电荷密度、电流密度之间的关系。
它含有的四个方程分别为:电荷是如何产生电场的高斯定理;论述了磁单极子的不存在的高斯磁定律;电流和变化的电场是怎样产生磁场的麦克斯韦-安培定律,以及变化的磁场是如何产生电场的法拉第电磁感应定律。
从麦克斯韦方程组,可以推论出光波是电磁波。
麦克斯韦方程组和洛伦兹力方程共同形成了经典电磁学的完整组合。
1865年,麦克斯韦建立了最初形式的方程,由20个等式和20个变量组成。
他在1873年尝试用四元数来表达,但未成功。
当代使用的数学表达式是由奥利弗·赫维赛德和约西亚·吉布斯于1884年使用矢量分析的形式重新表达的。
概论麦克斯韦方程组乃是由四个方程共同组成的。
它们分别为▪高斯定律描述电场是怎样由电荷生成的。
更详细地说,通过任意闭合表面的电通量与这闭合表面内的电荷之间的关系。
▪高斯磁定律表明,通过任意闭合表面的磁通量等于零,或者,磁场是一个螺线矢量场。
换句话说,类比于电荷的磁荷,又称为磁单极子,实际并不存在于宇宙。
▪法拉第电磁感应定律描述含时磁场怎样生成电场。
许多发电机的运作原理是法拉第电磁感应定律里的电磁感应效应:机械地旋转一块条形磁铁来生成一个含时磁场,紧接着生成一个电场于附近的导线。
▪麦克斯韦-安培定律阐明,磁场可以用两种方法生成:一种是靠电流(原本的安培定律),另一种是靠含时电场(麦克斯韦修正项目)。
这个定律意味着一个含时磁场可以生成含时电场,而含时电场又可以生成含时磁场。
这样,理论上允许电磁波的存在,传播于空间。
▪一般表述在这段落里,所有方程都采用国际单位制。
若改采其它单位制,经典力学的方程形式不会改变;但是,麦克斯韦方程组的形式会稍微改变,大致形式仍旧相同,只有不同的常数会出现于方程的某些位置。
麦克斯韦方程组麦克斯韦方程组是描述电磁场的四个基本方程,由苏格兰物理学家詹姆斯·克拉克·麦克斯韦在19世纪提出。
这四个方程求解了电磁场的本质,对于描述电磁波的传播以及电磁现象的研究起着重要的作用。
麦克斯韦方程组的第一个方程是高斯定律,它描述了电荷对电场产生的影响。
它的数学表达式为:∮E·dA = ε0∫ρdV其中,∮E·dA表示电场在截面A上的面积分,ε0为真空中的介电常数,ρ为电场中的电荷密度。
第二个方程是法拉第电磁感应定律,它描述了磁场通过闭合回路所产生的感应电场。
数学上可以表示为:∮B·dl = μ0(I + ε0d(∫E·dA)/dt)其中,∮B·dl表示磁场在环路l上的线积分,μ0为真空中的磁导率,I为环路中的电流强度,d(∫E·dA)/dt表示时间的变化率。
第三个方程是安培定律,它描述了环路中通过的电流对磁场产生的影响。
数学上可以表示为:∮B·dl = μ0I其中,∮B·dl表示磁场在环路l上的线积分,μ0为真空中的磁导率,I为环路中的电流强度。
最后一个方程是法拉第电磁感应定律的推广形式,也被称为麦克斯韦-安培定律。
它描述了变化的电场对磁场产生的影响,以及变化的磁场对电场产生的影响。
数学上可以表示为:∮E·dl = - d(∫B·dA)/dt其中,∮E·dl表示电场在环路l上的线积分,∮B·dA表示磁场通过闭合曲面的通量,d(∫B·dA)/dt表示时间的变化率。
麦克斯韦方程组是电磁学的基础,它描述了电荷和电流对电磁场产生的影响,以及电场和磁场对电荷和电流产生的影响。
通过这四个方程,我们可以推导出电磁波的存在和传播,解释电磁感应现象,研究电磁场的性质。
麦克斯韦方程组的研究也对电磁学的发展做出了巨大的贡献。
麦克斯韦方程组的理论和实验研究为电磁学的发展奠定了基础。
麦克斯韦方程组详解
1麦克斯韦方程组
麦克斯韦方程组是一组常微分方程,用于描述物体的运动行为。
该方程组的解取决于初始条件,其解可以用来解释物体的速度和加速度,以及所受外力的大小、方向和方向。
该方程组一般由两个方程组成:动量定理和动量法则。
2动量定理
动量定理是一种物理定理,主要用于说明物体质量的变化和受力的关系。
动量定理简要的表达为:物体的动量的变化等于受力的大小×作用时间。
即受力F与时间t的乘积就是物体动量变化的量级。
以此,可以用动量定理来描述物体受力后的运动状态变化。
3动量法则
动量法则是一种物理定理,用于说明物体受到外力时,物体的动量、速度和加速度等变化的规律性。
动量法则简要表达为:物体受外力F时,物体的动量p变化等于外力F和受力时间t的乘积,即Ft。
因此,可以用动量法则来描述物体受力后的变化情况。
4麦克斯韦方程的解
麦克斯韦方程组的解是对于物体的运动情况的描述,主要由动量定理和动量法则组成。
解得麦克斯韦方程组可以得到物体受到外力F 后,物体的动量、速度和加速度等变化情况。
其解又是由物体的初始
条件求得的,通过解麦克斯韦方程组,可以得到物体的运动参数,从而研究物体的运动行为。
麦克斯韦方程组本章要点:1. 电磁感应定律及楞次定律2. 动生电动势和感生电动势*3. 自感与互感*4. 磁场的能量5. 麦克斯韦方程组分别讨论了静电场和稳恒磁场的,以及它们和物质相互作用的基本规律。
随着生产发展的需要,人们深入地研究了电磁现象的本质,从而对电磁场的认识有了一个飞跃。
由实验发现,不但电荷产生电场,电流产生磁场,而且变化着的电场和磁场可以相互产生,所以电场和磁场是一个统一的整体——电磁场。
杰出的英国物理学家法拉第于1831年发现了电磁感应现象,被誉为电磁理论的奠基人。
他的丰硕的实验研究成果以及他的新颖的“场”的观念和力线思想,为电磁现象的统一理论准备了条件。
1862年,英国的麦克斯韦完成了这个统一任务,建立了电磁场的普遍方程组,称为麦克斯韦方程组,并预言电磁场以波动形式运动,称为电磁波。
它的传播速度与真空中的光速相同,表明光也是电磁波。
这个预言于1888年由德国的赫兹通过实验所证实,从而实现了电、磁、光的统一,并开辟了一个全新的战略领域——电磁波的应用和研究。
1895年俄国的波波夫和意大利的马可尼分别实现了无线电讯号的传输……本章首先讨论电磁感应现象,引出涡旋电场,从而得到随时间变化的磁场产生电场的基本规律;然后研究非稳恒条件下电流连续性方程,引出位移电流,说明随时间变化的电场产生磁场,从而得出在普遍情况下安培环路定理的推广形式;最后总结出电磁场运动的普遍规律——麦克斯韦方程。
8.1 电磁感应8.1.1 电磁感应现象自从发现了电流产生磁场的现象以后,人们提出一个问题:电流既然能够产生磁场,那么,能不能利用磁场来产生电流呢?下面先通过几个实验说明什么是电磁感应现象,以及产生电磁感应现象的条件。
1. 取一线圈A,把它的两端和一电流计G连成一闭合回路图8-1 (a),这时电流计的指针并不发生偏转,这是因为在电路里没有电动势。
再取一磁铁,先使其与线圈相对静止,电流计也不发生偏转。
但若使两者发生相对运动,电流计的指针则发生偏转。
§11.3 麦克斯韦方程组主要内容:一与变化电场相联系的磁场二麦克斯韦方程组三电磁波麦克斯韦在分析电磁感应现象后,提出了“涡旋电场”的概念,总结出变化磁场激发电场所遵循的规律。
从对称性考虑,变化的电场会不会激发磁场呢?在分析传导电流激发磁场所遵循的安培环路定理后,他又提出“位移电流”假说,对安培环路定理进行了修改和扩充,总结出变化电场激发磁场所遵循的规律,并在此基础上用一组方程概括了电磁场的全部规律。
C安培环路定理:=⋅⎰Ll d H=∑ii I ⎰⎰⋅SSd j 安培环路定律的局限性11.3.1与变化电场相联系的磁场LS 1S 2S 1:以L 为边界的任意曲面:S 2:以L 为边界的任意曲面:⎰=⋅1S CC I S d j⎰=⋅2S C0S d j? 位移电流麦克斯韦大胆假设:思路: 非稳态→q 变化→电场E.D 变化变化的电场也产生磁场!?=q 传导电流S q dSσ=⋅⎰⎰2D σ=d dq I dt=S q D dS=⋅⎰⎰22S =⎰⎰S D dSdt⋅=⎰⎰2——非稳恒情况下,安培环路定理不成立2P 12r Lσ+σ-Ep 12 r 2归纳麦克斯韦方程组的积分形式:⎰⎰⎰⎰⎰=⋅V0SVd 1S d E ρε 0S d B S=⋅⎰⎰S d tBt d d l d E SL⋅∂∂-=-=⋅⎰⎰⎰Φ]S d tDS d j [l d B SSC 0L⋅∂∂+⋅=⋅⎰⎰⎰⎰⎰μ通量11.3.2 麦克斯韦方程组麦克斯韦方程组积分形式和微分形式dVS d D V0S⎰⎰=⋅ρS d t D S d J l d H SS 0L⋅+⋅=⋅⎰⎰⎰∂∂S d t B l d E SL ⋅-=⋅⎰⎰∂∂0S d B S=⋅⎰积分形式一有限区域∇∇∇⨯∇微分形式位移电流与涡旋电场的假设导致麦克斯韦提出电磁波的预言,20年后赫兹用实验证实了电磁波的存在.电磁波的能流密度--玻印廷矢量:HE S ⨯=E xH可确定传播方向u11.3 电磁波简述一基本性质1. 电磁波是横波2. E与H同步变化(同相位)二电磁波波谱无线电波和微波:用于远洋长距离通讯。
麦克斯韦方程组关于热力学的方程,详见“麦克斯韦关系式”。
麦克斯韦方程组(英语:Maxwell's equations)是英国物理学家麦克斯韦在19世纪建立的描述电磁场的基本方程组。
它含有四个方程,不仅分别描述了电场和磁场的行为,也描述了它们之间的关系。
麦克斯韦方程组是英国物理学家麦克斯韦在19世纪建立的描述电场与磁场的四个基本方程。
在麦克斯韦方程组中,电场和磁场已经成为一个不可分割的整体。
该方程组系统而完整地概括了电磁场的基本规律,并预言了电磁波的存在。
麦克斯韦提出的涡旋电场和位移电流假说的核心思想是:变化的磁场可以激发涡旋电场,变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激发组成一个统一的电磁场(也是电磁波的形成原理)。
麦克斯韦进一步将电场和磁场的所有规律综合起来,建立了完整的电磁场理论体系。
这个电磁场理论体系的核心就是麦克斯韦方程组。
麦克斯韦方程组,是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一组描述电场、磁场与电荷密度、电流密度之间关系的偏微分方程。
从麦克斯韦方程组,可以推论出光波是电磁波。
麦克斯韦方程组和洛伦兹力方程是经典电磁学的基础方程。
从这些基础方程的相关理论,发展出现代的电力科技与电子科技。
麦克斯韦1865年提出的最初形式的方程组由20个等式和20个变量组成。
他在1873年尝试用四元数来表达,但未成功。
现在所使用的数学形式是奥利弗·赫维赛德和约西亚·吉布斯于1884年以矢量分析的形式重新表达的。
麦克斯韦方程组的地位麦克斯韦方程组在电磁学中的地位,如同牛顿运动定律在力学中的地位一样。
以麦克斯韦方程组为核心的电磁理论,是经典物理学最引以自豪的成就之一。
它所揭示出的电磁相互作用的完美统一,为物理学家树立了这样一种信念:物质的各种相互作用在更高层次上应该是统一的。
另外,这个理论被广泛地应用到技术领域。
1845年,关于电磁现象的三个最基本的实验定律:库仑定律(1785年),安培—毕奥—萨伐尔定律(1820年),法拉第定律(1831-1845年)已被总结出来,法拉第的“电力线”和“磁力线”概念已发展成“电磁场概念”。
麦克斯韦方程组麦克斯韦方程组(英语:Maxwell's equations),是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一组描述电场、磁场与电荷密度、电流密度之间关系的偏微分方程。
它由四个方程组成:描述电荷如何产生电场的高斯定律、论述磁单极子不存在的高斯磁定律、描述电流和时变电场怎样产生磁场的麦克斯韦-安培定律、描述时变磁场如何产生电场的法拉第感应定律。
从麦克斯韦方程组,可以推论出电磁波在真空中以光速传播,并进而做出光是电磁波的猜想。
麦克斯韦方程组和洛伦兹力方程是经典电磁学的基础方程。
从这些基础方程的相关理论,发展出现代的电力科技与电子科技。
麦克斯韦1865年提出的最初形式的方程组由20个等式和20个变量组成。
他在1873年尝试用四元数来表达,但未成功。
现在所使用的数学形式是奥利弗·赫维赛德和约西亚·吉布斯于1884年以矢量分析的形式重新表达的。
历史背景麦克斯韦诞生以前的半个多世纪中,人类对电磁现象的认识取得了很大的进展。
1785年,C.A.库仑(Charles A.Coulomb)在扭秤实验结果的基础上,建立了说明两个点电荷之间相互作用力的库仑定律。
1820年H.C.奥斯特(HansChristian Oersted)发现电流能使磁针偏转,从而把电与磁联系起来。
其后,A.M.安培(Andre Marie Ampere)研究了电流之间的相互作用力,提出了许多重要概念和安培环路定律。
M.法拉第(Michael Faraday)的工作在很多方面有杰出贡献,特别是1831年发表的电磁感应定律,是电机,变压器等设备的重要理论基础。
在麦克斯韦之前,关于电磁现象的学说都以超距作用观念为基础。
认为带电体、磁化体或载流导体之间的相互作用,都是可以超越中间媒质而直接进行,并立即完成的。
即认为电磁扰动的传播速度是无限大。
在那个时期,持不同意见的只有法拉第。
他认为上述这些相互作用与中间媒质有关,是通过中间媒质的传递而进行的,即主张间递学说。