化学键与分子结构
- 格式:doc
- 大小:195.00 KB
- 文档页数:9
化学中的化学键与分子结构一、化学键的类型1.1 离子键:由正负离子间的电荷吸引形成的化学键,如NaCl、CaCO3等。
1.2 共价键:由共享电子对形成的化学键,如H2、O2、H2O等。
1.3 金属键:由金属原子间的电子云形成的化学键,如Cu、Fe等。
1.4 氢键:由氢原子与电负性较大的原子间的弱吸引力形成的化学键,如H2O 分子间的作用力。
二、分子结构的类型2.1 线性分子:分子结构呈线性排列,如CO2、CS2等。
2.2 三角形分子:分子结构呈三角形排列,如BF3等。
2.3 四面体分子:分子结构呈四面体排列,如CH4、SiH4等。
2.4 三角锥形分子:分子结构呈三角锥形排列,如NH3、PH3等。
2.5 八面体分子:分子结构呈八面体排列,如SO3、PF3等。
三、分子轨道理论3.1 分子轨道的概念:分子轨道是由原子轨道线性组合形成的新的量子力学状态。
3.2 分子轨道的分类:σ键轨道、π键轨道、反键轨道等。
3.3 分子轨道的填充原理:遵循泡利不相容原理、洪特规则等。
四、化学键的极性4.1 化学键极性的判断:根据原子间的电负性差异判断。
4.2 极性键:电负性差异较大的原子间形成的化学键,如HCl、H2O等。
4.3 非极性键:电负性差异较小的原子间形成的化学键,如H2、O2等。
五、分子极性5.1 分子极性的判断:根据分子的空间结构和键的极性判断。
5.2 极性分子:分子结构不对称,正负电荷中心不重合的分子,如HCl、H2O 等。
5.3 非极性分子:分子结构对称,正负电荷中心重合的分子,如O2、N2等。
六、化学键与分子结构的关系6.1 化学键的类型和数目决定了分子的结构类型。
6.2 化学键的极性决定了分子的极性。
6.3 分子结构的影响:如键角、键长、键能等。
七、晶体的类型与化学键7.1 离子晶体:由阴阳离子间的离子键形成的晶体,如NaCl、CaCO3等。
7.2 分子晶体:由分子间的范德华力或氢键形成的晶体,如冰、干冰等。
化学键和分子结构化学键和分子结构是化学中非常重要的概念。
化学键是指原子之间的相互作用力,它决定了分子的性质和化学反应的进行。
而分子结构则是由化学键的连接方式所决定的,不同的分子结构会导致不同的化学性质和物理性质。
一、离子键离子键是一种化学键,它是由正负电荷之间的相互吸引力所形成的。
通常情况下,金属元素会失去电子成为正离子,非金属元素会获得电子成为负离子,然后通过电荷之间的吸引力形成离子键。
离子键通常比较稳定,具有高熔点和高沸点。
二、共价键共价键是一种化学键,它是由两个非金属原子之间电子的共享所形成的。
在共价键中,原子之间的电子云相互重叠,形成共享电子对,从而形成共价键。
共价键通常比较稳定,具有较低的熔点和沸点。
共价键可以分为单键、双键和三键。
单键是由一个电子对共享而成,双键是由两个电子对共享而成,三键是由三个电子对共享而成。
双键和三键比单键更强,因此分子中的双键和三键通常比较容易发生化学反应。
三、金属键金属键是一种化学键,它是由金属原子之间的电子云形成的。
金属原子通常具有较低的电负性,因此它们会失去外层电子形成正离子,并形成一个电子云,这个电子云中的电子可以自由移动。
金属键通常比较稳定,具有高熔点和高电导率。
四、分子结构分子结构是由化学键的连接方式所决定的。
分子可以是线性的,也可以是非线性的。
线性分子通常由两个原子组成,原子之间通过共价键连接在一起。
非线性分子通常由三个或更多原子组成,原子之间通过共价键连接在一起。
分子结构的不同会导致分子的性质和化学反应的进行。
例如,线性分子通常比较极性,因此它们在溶液中会很容易溶解。
而非线性分子通常比较非极性,因此它们在溶液中不容易溶解。
此外,分子结构还可以影响分子的立体构型。
立体构型是指分子中原子的空间排列方式。
分子的立体构型决定了分子的手性性质,也会影响分子的反应性和生物活性。
总结起来,化学键和分子结构是化学中非常重要的概念。
化学键决定了分子的性质和化学反应的进行,而分子结构则是由化学键的连接方式所决定的。
化学键与分子结构化学键和分子结构是化学中两个重要的概念,它们影响着物质的性质和反应方式。
化学键指的是将原子结合在一起的力,而分子结构则表示物质中原子的排列方式。
下面将详细讨论化学键的种类以及它们在形成分子结构中的作用。
1. 离子键离子键是由正负电荷之间的相互作用力形成的。
在离子化合物中,金属原子通常失去电子变为正离子,非金属原子则得到电子形成负离子。
这些正负离子通过吸引力结合在一起,形成离子晶格。
离子键的典型代表是氯化钠(NaCl),其中钠离子和氯离子通过强烈的静电作用相互吸引。
2. 共价键共价键是通过两个原子间相互共享电子而形成的。
共价键可进一步分为极性共价键和非极性共价键。
非极性共价键在原子间平均共享电子,反映了原子间的平等关系,如氢气(H2)。
而极性共价键中,一个原子对电子的吸引力比另一个更强,导致电子在共价键中不对称分布。
水分子(H2O)中氧原子对电子的吸引力比氢原子强,因此氧原子部分带负电荷,而氢原子则部分带正电荷。
3. 金属键金属键是金属原子间的一种特殊化学键。
在金属晶体中,金属原子失去外层电子形成正离子,而这些正离子被自由移动的电子所包围。
金属键的特点在于电子可在整个晶体中自由移动,因此金属具有优良的导电性和热传导性。
典型的金属化合物是铁(Fe),其中铁原子通过金属键形成具有结晶结构的金属晶体。
化学键在形成分子结构时起到了至关重要的作用。
不同种类的化学键决定了分子的性质和反应方式。
比如,离子键的极性和强度决定了离子化合物的溶解性和熔点;共价键决定了分子的结构和相对稳定性;金属键则赋予金属物质特有的导电性和塑性。
总结起来,化学键与分子结构密不可分。
通过了解不同种类的化学键以及它们的作用,我们可以更好地理解物质的性质和相互作用,进一步推动化学科学的发展与应用。
以上就是关于化学键与分子结构的文章内容。
通过对化学键种类和其在分子结构中的作用的了解,我们能够更好地理解化学现象和物质性质的本质。
化学键与分子结构化学键是原子间的一种相互作用力,它使原子形成化学结合并形成分子。
分子结构是描述分子中原子之间连接关系的方式。
化学键和分子结构是化学研究中非常重要的概念,对于理解物质的性质和化学反应具有重要意义。
本文将介绍不同类型的化学键和分子结构的基本原理。
一、共价键共价键是最常见的化学键类型之一。
在共价键中,原子通过共享电子来实现化学结合。
共价键的形成源于原子的电子云之间的相互作用。
1. 单共价键单共价键是最简单的共价键形式。
它是一个电子对在两个原子之间的共享。
例如,氢气(H2)中的两个氢原子通过共享一个电子对形成单共价键。
在化学方程式中,这种键可以用一个连线“-”来表示。
2. 双共价键和三共价键双共价键和三共价键是由于电子双共享和三共享而形成的。
以氧气(O2)为例,两个氧原子彼此共享两对电子形成双共价键。
类似地,氮气(N2)中两个氮原子通过共享三对电子形成三共价键。
二、离子键离子键是由正负电荷之间的相互吸引力形成的化学键。
在离子键中,电子从一个原子转移到另一个原子,形成带电离子。
1. 阳离子和阴离子在离子键中,其中一个原子失去电子变成带正电的阳离子,另一个原子获得电子变成带负电的阴离子。
这种电子转移使两个原子之间形成强烈的吸引力,形成离子键。
2. 离子晶体离子键的典型例子是盐(NaCl)晶体。
在盐晶体中,钠离子和氯离子通过离子键紧密地结合在一起。
由于离子键的强力,盐晶体具有高熔点和良好的导电性。
三、金属键金属键是金属元素中特有的一种化学键。
金属键是由金属中自由移动的电子形成的。
1. 电子海模型金属键的一个重要概念是“电子海模型”。
在这个模型中,金属中的原子释放出部分外层电子形成电子海,而原子核则形成离子核。
这些自由移动的电子使金属中的原子之间形成强大的连接。
2. 金属的特性金属键的存在赋予金属独特的性质。
金属具有良好的导电性和热导性,以及可塑性和延展性。
这些性质是由金属键中的自由电子能够自由移动而产生的。
化学键与分子结构在化学领域中,化学键和分子结构是两个关键概念。
化学键是指将原子相互连接并形成化合物的力,而分子结构则描述了化合物中原子的排列方式和空间结构。
通过理解化学键与分子结构之间的关系,我们可以更好地理解物质的性质和反应机理。
在本文中,将详细介绍不同类型的化学键和其在分子结构中的作用。
一、离子键离子键是指由离子间的静电吸引力在正负电荷之间形成的键。
一般来说,金属与非金属形成离子化合物,如氯化钠(NaCl)。
在氯化钠中,钠离子失去一个电子,成为正离子(Na+),而氯离子获得一个电子,成为负离子(Cl-)。
这些离子通过静电吸引力形成了强大的离子键。
离子键通常具有高熔点和高沸点,因为需要克服大量的离子间吸引力才能改变其相态。
此外,离子键还给物质带来了电导性和溶解性。
二、共价键共价键是指原子通过共享电子而形成的化学键。
共价键的形成涉及到非金属原子之间的电子云重叠。
共价键可以进一步分为两种类型:极性共价键和非极性共价键。
极性共价键是指电子在共享时被一个原子更强烈地吸引,导致两个原子间形成部分正、负电荷。
而非极性共价键是指电子在两个原子之间均匀地共享,没有电荷偏移。
比如,氧气(O2)中的氧原子通过非极性共价键相互连接。
共价键的强度通常比离子键弱,因此共价化合物的熔点和沸点较低。
共价键也可以形成双键或三键,例如乙炔(C2H2)中的碳碳三键。
共价键的长度和强度受到原子间距离和电负性之间的影响。
较短的共价键通常更强,而较长的共价键通常较弱。
三、金属键金属键是金属原子之间形成的一种特殊化学键。
金属键的形成涉及金属原子之间的电子云共享,使得金属中的原子由正离子核团和移动的自由电子构成。
这些自由电子在整个金属中移动,并形成所谓的“海洋模型”。
金属键使得金属具有高导电性和高热导率的特点。
此外,金属键通常具有高密度和良好的延展性和形变性。
四、氢键氢键是用氢原子连接两个原子之间的相互作用力。
氢键通常发生在含有氧、氮或氟的原子与具有部分正电荷的氢原子之间。
分子结构和化学键分子结构和化学键是化学中两个重要的概念。
分子结构描述了分子中原子的相对位置和连接方式,而化学键则是连接原子的力。
一、分子结构分子结构是描述分子中原子相对位置和连接方式的方式。
目前最常用的描述方法是路易斯结构和空间结构。
1. 路易斯结构路易斯结构由美国化学家吉尔伯特·路易斯提出,采用简单的点和线表示原子和电子。
在路易斯结构中,原子通过化学键连接,而电子以点的形式表示,用于补充原子的电子。
例如,氨分子(NH3)的路易斯结构中,一个氮原子和三个氢原子通过共价键连接在一起,氮原子周围有一个孤对电子。
2. 空间结构空间结构是描述分子三维形状的方法。
根据VSEPR理论(分子形状理论),分子的最稳定状态是使电子对排斥最小的状态。
根据电子对的排列情况,分子的形状可以分为线性、角形、平面三角形、四面体等多种形式。
二、化学键化学键是连接原子的力,可以分为离子键、共价键和金属键等不同类型。
1. 离子键离子键是由离子之间的电荷吸引力形成的。
当一个原子失去一个或多个电子时,形成正离子;当一个原子获得一个或多个电子时,形成负离子。
正离子和负离子之间发生静电作用,形成离子键。
例如,氯化钠(NaCl)中,钠离子失去一个电子形成正离子(Na+),氯原子获得一个电子形成负离子(Cl-),通过电荷吸引力形成离子键。
2. 共价键共价键是由共享电子形成的。
在共价键中,原子通过共享电子对相互连接。
共有单电子对形成单键,共享两对电子形成双键,共享三对电子形成三键。
例如,氢气(H2)中,两个氢原子通过共享一个电子对形成一个共价键。
3. 金属键金属键是金属原子之间的电子云形成的强力。
金属结构中,金属原子失去价层的一个或多个电子,形成阳离子,而这些电子形成了电子云,使金属原子之间产生强烈的吸引力。
金属键是金属物质特有的键。
总结:分子结构和化学键是化学中重要的概念。
分子结构描述了分子中原子的相对位置和连接方式,常用路易斯结构和空间结构表示。
化学键与分子结构化学键是指由原子之间的电子相互作用形成的强力,用于连接原子并形成分子的结构。
它决定了分子的性质、稳定性和反应性。
本文将介绍不同类型的化学键以及它们对分子结构的影响。
一、离子键离子键是指由正负电荷之间的电吸引力形成的,常见于金属和非金属之间的化合物。
金属原子会失去电子形成阳离子,而非金属原子会接受这些电子形成阴离子。
两种离子之间的电吸引力就形成了离子键。
离子键通常是非常强大的,使得离子化合物具有高熔点和高溶解度。
二、共价键共价键是由原子共享一个或多个电子而形成的。
它是分子中最常见的键。
共价键可以分为极性共价键和非极性共价键。
1. 极性共价键极性共价键是指电子不均匀地被共享,导致形成不均匀的电荷分布。
极性共价键通常由非金属原子之间形成,其中一个原子的电负性较高,吸引了共享电子对。
由于电荷分布的不均匀,极性共价键会导致分子局部带电。
2. 非极性共价键在非极性共价键中,共享电子对是均匀分布的,没有电荷分离。
这种键形成于相同或相似电负性的原子之间,如氢气分子(H2)或氧气分子(O2)。
非极性共价键通常较弱。
三、金属键金属键是金属原子之间形成的。
在金属晶体中,金属原子通过共享它们的外层电子来形成金属键。
这些电子在整个晶体中自由移动,形成所谓的电子海。
金属键是金属具有高导电性和高热传导性的关键原因。
四、氢键氢键是指由部分带正电的氢原子与带有负电荷的氮、氧或氟原子之间的作用力。
氢键在生物分子如DNA、蛋白质和多肽中起着重要作用。
氢键虽然较弱,但对分子的稳定性和特性产生显著影响。
总结起来,化学键的类型和分子结构密切相关。
离子键在金属和非金属之间形成,共价键有极性和非极性两种形式,金属键形成于金属晶体中,而氢键具有特殊的电荷吸引力。
通过理解不同类型的化学键,我们可以更好地理解分子的性质和行为,促进对化学和生物学等领域的深入研究。
阅读本文,希望读者对化学键与分子结构有更清晰的认识,进一步了解分子间的相互作用和性质变化机制,为科学研究提供更为坚实的基础。
化学键与分子结构在化学中,化学键是连接原子的力,是形成化合物和分子的基础。
分子结构是描述分子中原子之间的连接方式和空间排列的方法。
本文将探讨化学键的概念、种类以及对分子结构的影响。
一、化学键的概念化学键是指连接原子的力或电子云间的相互作用力。
它们决定了分子的性质、稳定性和反应活性。
根据原子之间的电荷分布,化学键可分为离子键、共价键和金属键。
1. 离子键离子键形成于金属和非金属元素之间,其中一个元素通过电子转移形成了带电离子,另一个元素通过捕获这些离子达到稳定的电子构型。
离子键通常具有高熔点和高沸点,且在固态中以晶体结构存在。
2. 共价键共价键是在非金属元素之间形成的化学键。
在共价键中,原子通过共享电子对来达到稳定的电子构型。
共价键可以进一步分为极性和非极性共价键。
非极性共价键中,原子之间的电子云对称地分布。
而在极性共价键中,原子之间的电子云不对称地分布,其中一个原子会更强烈地吸引电子。
3. 金属键金属键形成于金属元素中,金属中的原子形成了一个电子云海,其中的自由电子可以自由移动。
这种形成的金属键赋予了金属特殊的性质,如良好的导电性和导热性。
二、分子结构的影响分子结构是描述分子中原子之间的连接方式和空间排列的方法。
不同的化学键类型会导致不同的分子结构,进而影响分子的物理化学性质。
1. 分子形状不同的原子之间的化学键类型决定了分子的形状。
例如,在线性分子中,原子通过共价键连接成直线;而在三角形分子中,原子通过共价键连接成三角形。
分子的形状对于分子的化学性质和反应性起着重要作用。
2. 分子极性分子的极性取决于各个原子之间的电荷分布差异。
在极性共价键中,原子之间的电子云不对称分布会导致分子极性。
极性分子通常具有较高的溶解度和较强的相互作用力。
3. 分子大小分子的大小取决于原子之间的化学键类型和个数。
大分子通常由多个原子通过共价键连接而成,如聚合物。
而小分子则由较少的原子组成,如水分子。
分子大小对于分子的化学反应速率和传递性质产生影响。
化学键与分子结构化学键是指原子间的相互作用力,它决定了分子的结构和性质。
在化学中,常见的化学键包括共价键、离子键和金属键。
本文将分别介绍这些化学键以及它们对分子结构的影响。
一、共价键共价键是两个或多个原子通过电子的共用而形成的化学键。
共价键的强度取决于原子之间电子的共享程度和电子云的重叠程度。
共价键的形成使得原子能够达到稳定的电子结构,从而形成分子。
共价键可以进一步分为单键、双键和三键。
1. 单键单键是一对原子间共享一个电子对形成的共价键。
它们通常是通过轨道的重叠来实现电子的共享。
单键的键能较低,结构松散,所以分子在空间上具有较高的自由度。
2. 双键双键是两对原子间共享两个电子对形成的共价键。
它们相较于单键更强,键能更高,分子更加稳定。
双键结构比单键结构更为刚性,分子一般比较扁平。
3. 三键三键是三对原子间共享三个电子对形成的共价键。
它们是最强的共价键,键能最高,分子最为稳定。
由于三键的存在,许多分子呈线性结构。
二、离子键离子键是由带正电的金属离子和带负电的非金属离子之间的静电相互作用形成的化学键。
离子键的强度通常比共价键更大,因此离子化合物具有高熔点和高沸点。
离子键的结构比共价键更加有序和紧密,离子排列规则。
三、金属键金属键是由金属原子通过电子的共享形成的化学键。
在金属中,原子间的外层电子形成共同的电子云,这种共享形成一种特殊的金属键。
金属键的存在使得金属具有良好的导电性和热导性。
化学键的类型决定了分子的结构和性质。
共价键使得分子具有较高的自由度和灵活性,而离子键使得分子有序排列,具有较高的熔点和沸点。
金属键使金属具有特殊的性质,如导电和热导。
总结起来,化学键的类型与分子结构有密切关系,不同类型的化学键决定了分子的稳定性、形状以及物理化学性质。
深入理解化学键与分子结构对于研究化学反应机理和合成新材料具有重要意义。
第6章化学键与分子结构(讲授4学时)
Chapter 6 Chemical bond & molecular structure
本章教学内容:
离子键与离子化合物。
共价键与分子结构。
价键理论。
杂化轨道与分子空间构型。
分子间力和氢键。
分子的极性,电偶极矩。
本章教学要求:
(1)了解共价键的价键理论的基本要点以及共价键的特征、共价键的类型。
(2)能联系杂化轨道理论(s-p型)说明一些典型分子的空间构型。
(3)了解分子电偶极矩的概念,能判断分子的极性。
(4)明确分子间力(以及氢键)的本质及特性。
本章教学重点:
共价键的形成,价键理论,共价键的特征、类型;
a)H
2
b)杂化轨道理论及分子的空间构型
本章习题:P1609,10,11,13,14
6.1 离子键与离子的结构(Ionic bond and structure of ion)
6.1.1离子键的形成
NaCl分子
Na (X=1.01) 1s2 2s22p63s1 Na+1s2 2s22p6
11
Cl (X=3.16) 1s2 2s22p63s23p5 Cl-1s2 2s22p63s23p6 17
离子键——正负离子间通过静电作用力而形成的化学键。
6.1.2离子键的特征
●离子键的本质是静电作用力,只有电负性相差较大的元素之间才能形成离
子键。
●离子键无方向性,无饱和性。
●离子键是极性键。
电子失去的顺序:np-ns-(n-1)d-(n-2)f
用n+0.4l做判据,其数值越大,越易失去电子。
6.1.3各种简单离子构型(负离子anion一般仅有外层8电子结构,正离子cation有外层多种结构)
6.2共价键与分子结构(covalence bond &molecular structure)
6.2.1价键理论(valence bond theory)
(1)共价键形成的本质
1)氢分子共价键的形成
1927年,Heitler and London将量子力学成果应用于H
分子结构的研究,
2
使共价键的本质得到初步解决。
他们的结果认为:当两个氢原子相互靠近,且它们的1s电子处于自旋状态反平行时,两个电子才能配对成键;当两个氢原子的
1s 电子处于自旋状态平行时,两电子不能配对成键。
ψA ——两个1s 电子自旋平行(推斥态) ψS ——两个1s 电子自旋反向(基态)
2)共价键的本质——原子间由于成键电子原子轨道重叠而形成的化学键。
3)价键理论基本要点
● 具有自旋反向的未成对电子的原子接近时,可因原子轨道的重叠而形成共
价键 ——电子配对原理
● 一个电子与另一个自旋反向的电子配对成键后,不能再与第三个电子配对
成键
● 原子轨道重叠程度越大,共价键越牢固——原子轨道最大重叠原理 (2)共价键的特征
● 饱和性——一个电子与另一个自旋反向的电子配对后,不能再与第三个电
子配对成键
共价键的饱和性是和离子键相比较而言,离子化合物中正负离子都为S 2P 6结构,其电荷分布呈球形对称,所以,它们可以从各个方向相互接触,并且尽可能地和异性离子相接触(配位),配位数的多少决定于正负离子的大小。
●方向性——沿轨道的伸展方向重叠,同号重叠。
由于电子运动状态在空间分布是有一定取向的,原子轨道的重叠也是
有一定取向的.如N原子有3个未成对电子, 其取向分别为p
x , p
y
, p
z。
N2
分子中的三对电子并不在同一个平面上,而是在X,Y,Z三个互相垂直的方向。
这就是所谓的共价键的方向性。
↑↓↑↓↑↓例N27N:1s22s22p3 ↑↓2p x2p y2p z
↑↓2s
1s
H2S 16S:3s23p4
↑↓↑↓↑↓
↑↓3p x3p y3p z
3s
●共价键的极性
极性共价键——成键原子的电负性不同HCl H2O 共价键
非极性共价键——成键原子的电负性相同H2Cl2(3)共价键类型
ο键:头碰头(end-on manner)
π键:肩并肩(sideways manner)
(4)共价键参数
共价键的键能
定义:在298K和100kp a条件下,气态分子断开1mol化学键所需的能量。
●键能是一个平均值
例H2O:O-H的键能H2O(g) = H (g) + OH (g) E = 502kj·mol-1
OH(g) = H(g)+ O (g) E = 426kj·mol-1 O-H:E = 465kj·mol-1
●应用键能可以估算化学反应的能量变化
6.2.2杂化轨道(hybridization orbital)与分子的空间构型
价键理论成功地解释了许多共价键分子的形成,阐明了共价键的本质及特征。
但在解释许多分子的空间结构方面遇到了困难。
Pauling and Slater从电子具有波动性,电子波可以叠加的观点出发提出了杂化轨道理论,进一步发展了价键理论。
(1)杂化轨道理论基本要点:
在共价键的形成过程中,同一原子中能量相近的若干不同类型的原子轨道可以”混合”起来,重新组合形成一组成键能力更强的新的原子轨道。
过程称为原子轨道的杂化。
所组成的新的原子轨道称为杂化轨道.
注意:杂化过程中;
1)能量相近的轨道杂化;
2)杂化后轨道数目不变;
3)杂化发生在分子形成过程中,单个原子不发生杂化。
·s-p杂化的几种类型
1)p3杂化,
2)p2杂化
3)sp杂化
4)不等性sp3杂化
6.4分子间力和氢键(Intermolecular force & hydrogen bond)
分子间力本质是静电力.
6.4.1分子的极性(Molecular polarity)
分子正负电荷中心
极性分子中,由于原子的电负性的差异,分子中的正负电荷中心分别形成
正负两极。
分子偶极矩(dipole moment):偶极长度和偶极上电荷的乘积.
,正负)
分子极性的实质是电子云在空间分布不对称,键的极性是分子产生极性的内因。
极性分子P>0,非极性分子p=0
6.4.2 分子间力
·色散力:非极性分子瞬间产生的偶极称为瞬时偶极(instantaneous dipole moment), 瞬时偶极产生的作用力称为色散力.
·诱导力(inductive force):非极性分子受极性分子电场的作用,原来重合的正负电荷中心分离开来,产生诱导偶极.诱导偶极与极性分子固有偶极间的作用力叫诱导力.另一方面,诱导偶极又反作用于极性分子,使其偶极长度增加,进一步增强了相互吸引力.极性分子之间由于变形而产生诱导偶极,使分子极性增加,使分子之间的相互作用力也进一步增强。
·取向力:当极性分子相互靠近时,它们的固有偶极相互作用,两个分子在空间按照异极相邻的状态取向.由于固有偶极的取向而引起的分子间作用力叫取向力.(dipole-dipole forces)
·分子间力无饱和性、方向性;分子间力强度比化学键强度小1—2个数量级。
·大多数分子间力以色散力为主,且随摩尔质量的增大而增强;只有极性很强的分子才以取向力为主。
6.4.3 氢键(hydrogen bond)
·氢键:由氢原子参与成键的特殊形式的分子间作用力。
氢原子与电负性较大的X原子以极性共价键相结合时,还能吸引另一个电负性较大,而半径又较小的Y原子(X原子可以与Y原子相同)的孤对电子所形成的分子间或分子内的键.
氢键的形成H2O O的电负性= 3.5
H的电负性= 2.1
氢键表示为X—H…Y
例F—H…F N—H…O
·特点:(1)大于分子间力,小于化学键
(2)有饱和性和方向性。
分子间力的应用:相似相溶原理; 能形成氢键的,一般也易于相互溶解(如乙醇溶于水).
·本章学习要点:
(5)了解共价键的价键理论的基本要点以及键长,键角和键能的概念。
了解分子
电偶极矩的概念及其应用于区分极性分子和非极性分子。
能联系杂化轨道理论(s-p型)说明一些典型分子的空间构型。
(6)在明确化学键,分子间力(以及氢键)的本质及特性的基础上,了解晶体结构
及其对物质性质的影响
作业P128
10,13,14
思考题:。