光电检测器件(一般原理与种类)
- 格式:ppt
- 大小:6.74 MB
- 文档页数:35
光电二极管的工作原理、参数解析与检测方法光电二极管的工作原理光电二极管是一种特殊的二极管,它将光信号转化为电流或电压信号,其结构与传统二极管基本相同,都有一个PN结,但是光电二极管在设计和制造时,尽量使PN结的面积较大,以便于接收入射光。
它的基本原理是:当光线照射到光电二极管时,吸收的光能转化为电能。
光电二极管工作在反向电压下,只经过很弱的电流(一般小于0.1微安),称为暗电流,有光照时,带能量的光子进入PN结后,将能量传递给共价键上的电子,使某些电子脱离共价键,产生电子-空穴对,称为光生载流子,因为光生载流子的数量有限,而光照前多子的数量远大于光生载流子的数量,所以光生载流子对多子的影响很小,但少子的数量较少,有较大的影响,这就是为什么光电二极管工作在反向电压下,而非正向电压下。
在光生电子在反向电压下,在光生载流子的作用下,为促使少子参与漂流运动,在P区内,光生电子在PN区内扩散,若P区厚度小于电子扩散长度,则光生电子将能穿过P区到达PN结。
光电二极管的工作是一种吸收过程,它将光的变化转化为反向电流的变化,光电流和暗电流的合成是光电流,所以光电二极管的暗电流使器件对光的灵敏度降到最低,光的强度与光电流成正比,从而能将光信号转化为电信号。
图片来源于网络光电二极管选型中的参数解析实际上,光电二极管的“响应速度”和“探测下限”是研究中经常提到的两个参数,该参数会对光电二极管选型产生何种影响呢?今天我们主要来了解一下这两个参数。
一、响应速度通常用上升时间和截止频率来描述响应速度。
响应速度主要受以下三个主要因素影响:1、由终端电容(Ct)和负载电阻(RL)决定的电路特性;2、耗尽层外载流子的扩散时间;3、载流子在耗尽的层渡越时间。
与短波长光相比,长波长光往往激发出耗尽层外的载流子,因而扩散时间延长,响应速度变慢。
除此之外,以下三种提高光电二极管响应速度的方法更为普遍:1、选用较低端电容(Ct)的光电二极管;2、降低电路中负载电阻(RL);3、通过增加反向电压(VR),还可以降低终端电容值(Ct),最终获得更快的响应速度。
新型光电器件研究及应用1. 引言新型光电器件作为新一代信息技术的关键部件,已经成为研究热点。
它具有独特的光、电性能,可以在无源元件中实现电光、光电转换,极大地拓展了信息传输的方式和应用领域。
本文将综述当前新型光电器件的研究进展和应用现状,着重介绍了光电元件的种类、性能特点及其在通信、能源、医疗、传感等领域的应用。
2. 光电器件的种类和性能特点光电器件主要包括光电二极管、光电晶体管、光敏三极管、光电势计、光子晶体及光子晶体管、光传感器等,这些器件基本上可以实现光电转换,完成信息的传输和处理。
(1)光电二极管光电二极管是一种单一的光电转换器件,由于其体积小、成本低、响应时间快等特点,被广泛应用于电子、光纤通信、家用电器、汽车电子、航空航天等领域,同时也是目前应用最为广泛的一种光电器件之一。
光电二极管的结构一般由PN结、机械结构、光电转换模块三部分组成。
(2)光电晶体管光电晶体管是一种基于晶体管原理的光电转换器件,它的结构与晶体管相近,具有电流放大功能,同时通过光输入实现电流控制。
由于光电晶体管集成了传输和处理的功能,可以用于数字时钟、光通信等应用。
(3)光敏三极管光敏三极管是一种具有放大功能的光电转换器件,由三个PN结组成,内部光敏材料为硅或锗。
光敏三极管适用于信号放大器、稳定电源等领域。
(4)光电势计光电势计是一种测量光强度的器件,常用于光度计和光谱仪等精密仪器中。
其光电效应可以将光输入转化为电势输出,具有较高的灵敏度和精度。
(5)光子晶体及光子晶体管光子晶体及光子晶体管是一种基于光子晶体技术的高精度光电转换器件,主要应用于微波和毫米波领域的低噪声、高速收发器等器件中,具有较高的性能优势。
(6)光传感器光传感器是一种基于光电转换技术的高灵敏度传感器,常见应用于温度、压力、流量、湿度等生产制造领域,可以实现数据的采集和处理。
3. 新型光电器件的应用新型光电器件的应用已经涵盖了很多领域,这里着重介绍其在通信、能源、医疗、传感等领域的应用。
光电传感器光电传感器是一种可以将光信号转化为电信号的装置。
它具有灵敏度高、响应速度快、可靠性强等特点,广泛应用于工业控制、环境监测、医疗设备、安防系统等领域。
本文将介绍光电传感器的工作原理、分类、应用领域以及未来发展方向。
一、工作原理光电传感器的工作原理基于光电效应。
简单来说,当光照射到光电传感器的光敏元件上时,光子的能量将导致光电子的产生。
光敏元件一般由半导体材料制成,如硅、镓化合物等。
当光电子被产生出来后,它们会在半导体材料内部发生电子迁移,并将导致电荷分布的变化。
这个变化可被传感器中的电路所检测到,并转换为相应的电信号输出。
二、分类根据工作原理的不同,光电传感器可以分为多种类型。
常见的光电传感器有光电开关、光电二极管、光电三极管、光电二极管阵列等。
1. 光电开关光电开关是一种能够检测物体存在与否的传感器。
它通常由光源、发射器、接收器和电路组成。
光源将光照射到被检测物体上,然后由接收器接收反射回来的光信号。
当有物体遮挡光线时,反射光信号会变弱或消失,接收器中的电路会产生相应的响应信号,从而实现对物体存在与否的检测。
2. 光电二极管光电二极管又称为光敏二极管,是利用半导体材料的光电效应工作的传感器。
它具有响应速度快、结构简单、体积小等优点,在光电传感领域中得到广泛应用。
光电二极管可以将光信号转换为电信号输出,并且根据光信号的强弱可以实现对光强度的测量。
3. 光电三极管光电三极管是一种具有放大作用的光电器件。
它除了具有光电二极管的特点外,还可以放大光电信号。
这种传感器通常由光电二极管和共射放大电路组成。
光电信号通过光电二极管产生后,经过共射放大电路放大,最终输出一个相应的电信号。
4. 光电二极管阵列光电二极管阵列是一种由多个光电二极管组成的传感器。
它可以实现对多个光源的检测,广泛应用于图像识别、光学测量等领域。
光电二极管阵列的每个光电二极管相互之间独立工作,可以同时对多个光源进行测量,提高了测量效率和准确性。
光电探测器原理及应用光电探测器种类繁多,原则上讲,只要受到光照后其物理性质发生变化的任何材料都可以用来制作光电探测器.现在广泛使用的光电探测器是利用光电效应工作的,是变光信号为电信号的元件.光电效应分两类,内光电效应和外光电效应。
他们的区别在于,内光电效应的入射光子并不直接将光电子从光电材料内部轰击出来,而只是将光电材料内部的光电子从低能态激发到高能态。
于是在低能态留下一个空位——空穴,而高能态产生一个自由移动的电子,如图二所示.硅光电探测器是利用内光电效应的.由入射光子所激发产生的电子空穴对,称为光生电子空穴对,光生电子空穴对虽然仍在材料内部,但它改变了半导体光电材料的导电性能,如果设法检测出这种性能的改变,就可以探测出光信号的变化.无论外光电效应或是内光电效应,它们的产生并不取决于入射光强,而取决于入射光波的波长λ或频率ν,这是因为光子能量E只和ν有关:E=hν(1)式中h为普朗克常数,要产生光电效应,每个光子的能量必须足够大,光波波长越短,频率越高,每个光子所具有的能量hν也就越大。
光强只反映了光子数量的多少,并不反映每个光子的能量大小。
目前普遍使用的光电探测器有耗尽层光电二极管和雪崩光电二极管,是由半导体材料制作的。
半导体光电探测器是很好的固体元件,主要有光导型,热电型和P-N结型.但在许多应用中,特别是在近几年发展的光纤系统中,光导型探测器处理弱信号时噪声性能很差;热电型探测器不能获得很高的灵敏度。
而硅光电探测器在从可见光到近红外光区能有效地满足上述条件,是该波长区理想的光接收器件. 一、耗尽层光电二极管在半导体中,电子并不处于单个的分裂能级中,而是处于能带中,一个能带有许多个能级。
如图三所示。
能带与能带间的能量间隙称为禁带,禁带中没有电子,电子从下往上填,被电子全部填满的能带称为满带,最高的满带称为价带,紧靠在价带上面的能带称为导带,导带只有部分被电子填充,或是全部空着。
内光电效应发生在导带与价带之间。
1.简述光电检测系统的基本组成,各部分的主要作用。
光电检测系统的基本组成包括:光源、被检测对象及光信号的形成、光信号的匹配处理、光电转换、电信号的放大与处理、微机、控制系统和显示等部分。
各部分的主要作用:(1)光源:光源是广义的,可以是人工光源,也可以是自然光源。
光源具有一定辐射功率、一定光谱范围及一定的发光空间分布,同时发出的光束作为携带待测信息的物质,光源本身也可以作为待测对象;(2)被检测对象及光信号的形成:光源所发出的光束携带利用各种光学效应,如发射、吸收、折射、干涉、衍射等,是光束携带上被检测对象的特征信息,形成待检测的光信号;(3)光信号的匹配处理:使光源发出的光或产生携带各种待测信号的光与光电检测器等环节间实现合理的匹配,即通过对光信号的处理或调制满足后面光电转换的需要;(4)光电转换:将光信号转换为电信号,以利于采用目前最为成熟的电子技术进行信号的放大、处理、测量和控制等;(5)电信号的放大与处理:为实现各种检测目的,可按需要采用不同功能的电路来完成对具体系统的具体分析;(6)微机及控制系统:通过反馈、分析、计算或判断等方式实现对信号的利用,从而控制整个光电检测装置更加精确,符合人性化的需求;(7)显示:将处理好的待测量电信号直接经显示系统显示。
2.试述辐射度量与光度量的联系和区别。
辐射度量是用能量单位描述辐射能的客观物理量;光度量是光辐射能为平均人眼接受所引起的视觉刺激大小。
光通量 V 和辐射通量 e 可通过人眼视觉特性进行转换,即式中,Km 最大光谱光视效能,V( )是平均人眼光谱光视效率(或称视见函数)3. 朗伯辐射体是怎样定义的?其有哪些主要特性?朗伯辐射源:某些自身发射辐射的辐射源,其辐射量度与方向无关,即辐射源各个方向的福亮度不变,这类的辐射源称为朗伯辐射源。
其主要的性质(1)亮度不随辐射角变化(2)其单位表面积向空间规定方向单位里提交内发射(或反射)的辐射通量和该方向与表面法线方向的夹角α的余弦成正比(3)辐射亮度与辐射出射度的关系。
光电二极管阵列检测器工作原理(一)光电二极管阵列检测器工作原理•简介光电二极管阵列检测器是一种常用于光学领域的传感器,通过将多个光电二极管组成阵列,可以实现对光强的高速、高精度采集和检测。
本文将从浅入深地介绍光电二极管阵列检测器的工作原理。
•光电二极管基本原理光电二极管是一种将光能转换为电能的器件,其基本原理是光生电压效应。
当光线照射到光电二极管的PN结上时,光子激发了半导体中的电子,使其跃迁到导带,从而产生一个电流。
该电流与光线的强度成正比。
•光电二极管阵列结构光电二极管阵列由多个光电二极管按照一定规律排列组成。
每个光电二极管都有一个独立的接收电路,可以单独采集和处理光信号。
光电二极管阵列的结构使其能够在较大范围内对光信号进行高效检测。
•光电二极管阵列检测器工作原理光电二极管阵列检测器的工作原理是将光信号转化为电信号,经过放大、滤波等处理后,得到与原始光信号相对应的电信号。
1.光信号进入光电二极管阵列后,被各个光电二极管接收;2.每个光电二极管将光信号转化为对应的电流;3.通过电流放大器对电流进行放大;4.经过滤波电路去除噪声,得到干净的电信号;5.数字转换器将模拟信号转换为数字信号;6.数字信号经过处理后,可以进行存储、显示等操作。
•光电二极管阵列检测器的优势光电二极管阵列检测器具有以下优势:–高速采样:光电二极管阵列可以同时采集多个光信号,大大提高了采样速度。
–高精度测量:光电二极管阵列可以进行高精度的光强测量,对于光照强度的变化可以进行准确的监测和记录。
–多路信号处理:每个光电二极管都可以独立地接收和处理光信号,可以实现多路信号的处理和控制。
•应用领域光电二极管阵列检测器广泛应用于各个领域,包括但不限于:–光通信:光电二极管阵列检测器可用于接收和解调光通信中的光信号。
–光谱分析:光电二极管阵列检测器可以实现对物质的光谱分析,广泛用于化学、生物等领域。
–医学影像:光电二极管阵列检测器可以用于医学影像中的光信号采集和检测。
要正确选择光电探测器,首先要对探测器的原理和参数有所了解。
1.光电探测器光电二极管和普通二极管一样,也是由PN结构成的半导体,也具有单方向导电性,但是在电路中它不作为整流元件,而是把光信号转变为电信号的光电传感器件。
普通二极管在反向电压工作时处于截止状态,只能流过微弱的反向电流,光电二极管在设计和制作时尽量使PN结的面积相较大,以便接收入射光。
光电二极管在反向电压工作下的,没有光照时,反向电流极其微弱,叫暗电流;有光照时,反向电流迅速增加到几十微安,称为光电流。
光的强度越大,反向电流也越大。
光的变化引起光电二极管电流变化,这就可以把光信号转换为电信号,称为光电传感器件。
2.红外探测器光电探测器的应用大多集中在红外波段,关于选择红外波段的原因在这里就不再冗余了,需要特别指出的是60年代激光的出现极大地影响了红外技术的发展,很多重要的激光器件都在红外波段,其相干性便于移用电子技术中的外差接收技术,使雷达和通信都可以在红外波段实现,并可获得更高的分辨率和更大的信息容量。
在此之前,红外技术仅仅能探测非相干红外辐射,外差接收技术用于红外探测,使探测性能比功率探测高好几个数量级。
另外,由于这类应用的需要,促使出现新的探测器件和新的辐射传输方式,推动红外技术向更先进的方向发展。
红外线根据波长可以分为近红外,中红外和远红外。
近红外指波长为—3微米的光波,中红是指3—20微米的光波,远红外是指20—1000微米的波段。
但是由于大气对红外线的吸收,只留下三个重要的窗口区,即1—3,3—5和8—14可以让红外辐射通过。
因为有这三个窗口,所以可以被应用到很多方面,比如红外夜视,热红外成像等方面。
红外探测器的分类:按照工作原理可以分为:红外红外探测器,微波红外探测器,玻璃破碎红外测器,振动红外探测器,激光红外探测器,超声波红外探测器,磁控开关红外探测器,开关红外探测器,视频运动检测报警器,声音探测器等。
按照工作方式可以分为:主动式红外探测器和被动式红外探测器。
光电开关光电开关(光电传感器)是光电接近开关的简称,它是利用被检测物对光束的遮挡或反射,由同步回路选通电路,从而检测物体有无的。
物体不限于金属,所有能反射光线的物体均可被检测。
光电开关将输入电流在发射器上转换为光信号射出,接收器再根据接收到的光线的强弱或有无对目标物体进行探测。
| 4339268 光电开关简介光电开关(光电传感器:photoelectric switch )是光电接近开关的简称,它是利用被检测物对光束的遮挡或反射,由同步回路选通电路,从而检测物体有无的。
物体不限于金属,所有能反射光线的物体均可被检测。
光电开关将输入电流在发射器上转换为光信号射出,接收器再根据接收到的光线的强弱或有无对目标物体进行探测。
安防系统中常见的光电开关烟雾报警器,工业中经常用它来记数机械臂的运动次数。
接触式行程开关存在响应速度低、精度差、接触检测容易损坏被检测物及寿命短等缺点,而晶体管接近开关的作用距离短,不能直接检测非金属材料。
但是,新型光电开关则克服了它们的上述缺点,而且体积小、功能多、寿命长、精度高、响应速度快、检测距离远以及抗光、电、磁干扰能力强。
这种新型的光电开关已被用作物位检测、液位控制、产品计数、宽度判别、速度检测、定长剪切、孔洞识别、信号延时、自动门传感、色标检出、冲床和剪切机以及安全防护等诸多领域。
此外,利用红外线的隐蔽性,还可在银行、仓库、商店、办公室以及其它需要的场合作为防盗警戒之用。
工作原理图1所示是反射式光电开关的工作原理框图。
图中,由振荡回路产生的调制脉冲经反射电路后,由发光管GL辐射出光脉冲。
当被测物体进入受光器作用范围时,被反射回来的光脉冲进入光敏三极管DU并在接收电路中将光脉冲解调为电脉冲信号,再经放大器放大和同步选通整形,然后用数字积分或RC积分方式排除干扰,最后经延时(或不延时)触发驱动器输出光电开关控制信号光电开关一般都具有良好的回差特性,因而即使被检测物在小范围内晃动也不会影响驱动器的输出状态,从而可使其保持在稳定工作区。
光电传感器工作原理及分类
光电传感器是一种小型电子设备,各种光电检测系统中实现光电转换的关键元件。
它主要是利用光的各种性质,检测物体的有无和表面状态的变化等的传感器。
光电式传感器具有非接触、响应快、性能可靠等特点,因此在工业自动化装置和机器人中获得广泛应用。
光电传感器光电传感器一般由光源、光学通路和光电元件三部分组成。
把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。
光电效应原理光电元件是光电传感器中最重要的组成部分,它的核心工作原理是不同类型的光电效应。
根据波粒二象性,光是由光速运动的光子所组成,当物体受到光线照射时,其内部的电子吸收了光子的能量后改变状态,自身的电性质也会发生改变,这样的现象称为光电效应。
根据电属性状态的不同变化,将光电效应分为以下三种:
1)外光电效应
在光线作用下使电子逸出物体表面的现象称为外光电效应。
基于外光电效应的光电元件有光电管,光电倍增管等
2)光电导效应
半导体内的电子吸收光子后不能跃出半导体,使物体的电导率发生变化,或产生光生电动势的现象称为内光电效应。
内光电效应按其工作原理可分为光电导效应和光生伏特效应。
基于光电导效应的光电元件有光敏电阻,光敏晶体管等
3)光生伏特效应
在光线作用下,物体产生一定方向电动势的现象称为光生伏特效应。
基于光生伏特效应的光电元件有光电池和光敏二极管、三极管等。