伪弧长法求解非线性方程matlab程序
- 格式:pdf
- 大小:65.45 KB
- 文档页数:3
Matlab中的非线性优化和非线性方程求解技巧在科学和工程领域中,我们经常会遇到一些复杂的非线性问题,例如最优化问题和方程求解问题。
解决这些问题的方法主要分为线性和非线性等,其中非线性问题是相对复杂的。
作为一种强大的数值计算工具,Matlab提供了许多专门用于解决非线性优化和非线性方程求解的函数和方法。
本文将介绍一些常用的Matlab中的非线性优化和非线性方程求解技巧。
非线性优化是指在给定一些约束条件下,寻找目标函数的最优解的问题。
在实际应用中,往往需要根据实际情况给出一些约束条件,如等式约束和不等式约束。
Matlab中的fmincon函数可以用于求解具有约束条件的非线性优化问题。
其基本语法如下:[x,fval] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)其中,fun是目标函数,x0是初始值,A、b是不等式约束矩阵和向量,Aeq、beq是等式约束矩阵和向量,lb、ub是变量的上下边界。
x表示最优解,而fval表示最优解对应的目标函数值。
另外,非线性方程求解是指寻找使得方程等式成立的变量值的问题。
Matlab中提供的fsolve函数可以用于求解非线性方程。
其基本语法如下:x = fsolve(fun,x0)其中,fun是方程函数,x0是初始值,x表示方程的解。
除了fmincon和fsolve函数之外,Matlab还提供了一些其他的非线性优化和非线性方程求解函数,例如lsqnonlin、fminunc等,这些函数分别适用于无约束非线性优化问题和带约束非线性方程求解问题。
除了直接调用这些函数外,Matlab还提供了一些可视化工具和辅助函数来帮助我们更好地理解和解决非线性问题。
例如,使用Matlab的优化工具箱可以实现对非线性优化问题的求解过程可视化,从而更直观地观察到优化算法的收敛过程。
此外,Matlab还提供了一些用于计算梯度、雅可比矩阵和海塞矩阵的函数,这些函数在求解非线性问题时非常有用。
数值分析中求解非线性方程的MATLAB求解程序1. fzero函数:fzero函数是MATLAB中最常用的求解非线性方程的函数之一、它使用了割线法、二分法和反复均值法等多种迭代算法来求解方程。
使用fzero函数可以很方便地求解单变量非线性方程和非线性方程组。
例如,要求解方程f(x) = 0,可以使用以下语法:``````2. fsolve函数:fsolve函数是MATLAB中求解多维非线性方程组的函数。
它是基于牛顿法的迭代算法来求解方程组。
使用fsolve函数可以非常方便地求解非线性方程组。
例如,要求解方程组F(x) = 0,可以使用以下语法:``````3. root函数:root函数是MATLAB中求解非线性方程组的函数之一、它采用牛顿法或拟牛顿法来求解方程组。
使用root函数可以非常方便地求解非线性方程组。
例如,要求解方程组F(x) = 0,可以使用以下语法:``````4. vpasolve函数:vpasolve函数是MATLAB中求解符号方程的函数。
它使用符号计算的方法来求解方程,可以得到精确的解。
vpasolve函数可以求解多变量非线性方程组和含有符号参数的非线性方程。
例如,要求解方程组F(x) = 0,可以使用以下语法:```x = vpasolve(F(x) == 0, x)```vpasolve函数会返回方程组的一个精确解x。
5. fsolve和lsqnonlin结合:在MATLAB中,可以将求解非线性方程转化为求解最小二乘问题的形式。
可以使用fsolve函数或lsqnonlin函数来求解最小二乘问题。
例如,要求解方程f(x) = 0,可以将其转化为最小二乘问题g(x) = min,然后使用fsolve或lsqnonlin函数来求解。
具体使用方法可以参考MATLAB官方文档。
6. Newton-Raphson法手动实现:除了使用MATLAB中的函数来求解非线性方程,还可以手动实现Newton-Raphson法来求解。
关于采用matlab进行指定非线性方程拟合的问题(1)※1。
优化工具箱的利用函数描述LSQLIN 有约束线性最小二乘优化LSQNONNEG 非负约束线性最小二乘优化问题当有约束问题存在的时候,应该采用上面的方法代替Polyfit与反斜线(\)。
具体例子请参阅优化工具箱文档中的相应利用这两个函数的例子。
d. 非线性曲线拟合利用MATLAB的内建函数函数名描述FMINBND 只解决单变量固定区域的最小值问题FMINSEARCH 多变量无约束非线性最小化问题(Nelder-Mead 方法)。
下面给出一个小例子展示一下如何利用FMINSEARCH1.首先生成数据>> t=0:.1:10;>> t=t(:);>> Data=40*exp(-.5*t)+rand(size(t)); % 将数据加上随机噪声2.写一个m文件,以曲线参数作为输入,以拟合误差作为输出function sse=myfit(params,Input,Actural_Output)A=params(1);lamda=params(2);Fitted_Curve=A.*exp(-lamda*Input);Error_Vector=Fitted_Curve-Actural_Output;%当曲线拟合的时候,一个典型的质量评价标准就是误差平方和sse=sum(Error_Vector.^2);%当然,也可以将sse写作:sse=Error_Vector(:)*Error_Vector(:);3.调用FMINSEARCH>> Strarting=rand(1,2);>> options=optimset('Display','iter');>> Estimates=fiminsearch(@myfit,Strarting,options,t,Data);>> plot(t,Data,'*');>> hold on>> plot(t,Estimates(1)*exp(-Estimates(2)*t),'r');Estimates将是一个包含了对原数据集进行估计的参数值的向量。
matlab求解非线性方程组及极值默认分类2010-05-18 15:46:13 阅读1012 评论2 字号:大中小订阅一、概述:求函数零点和极值点:Matlab中三种表示函数的方法: 1. 定义一个m函数文件, 2.使用函数句柄; 3.定义inline函数, 其中第一个要掌握简单函数编写, 二, 三中掌握一个。
函数的'常规'使用有了函数了, 我们怎么用呢, 一种是直接利用函数来计算, 例如: sin(pi), 还有我们提到的mysqr(3)...另一种是函数画图, 例如Plottools中提到的ezplot, ezsurf... 但是这也太小儿科了, 有没有想过定义函数后, 利用它来: 求解零点(即解f(x)=0方程), 最优化(求最值/极值点), 求定积分, 常微分方程求解等. 当然这里由于篇幅有限(空间快满了)以及这个只是'基础教程'的缘故, 只提及一些皮毛知识, 掌握这些后, 如果需要你可以进一步学习.解f(x)=0已知函数求解函数值=0所表示的方程, Matlab中有两个函数可以做到, fzero和fsolve前者只能解一元方程, 后者可以解多元方程组, 不过基本使用形式上差不多:解=fzero(函数, 初值, options)解=fsolve(函数, 初值, options)关于解: fzero给出的是x单值的解, fsolve给出的是解x可能处于的区间, 当然, 这个区间很窄.关于'函数', 还记得前面提到的三种表示方法吧, 在这里都可以用, 记住就是: 如果直接使用函数名, 要用单引号将它括起来, 而函数句柄, inline函数可以直接使用.关于'初值': 电脑比较笨, 它寻找解的办法是尝试不同地x值, 摸索解在哪里, 所以我们一开始就要给它指明从哪里开始下手, 初值这里, 可以只给它一个值, 让它在这个值附近找解, 也可以给它一个区间(区间用[下限,上限]这种方式表示), 它会在这个区间内找解.fzero的一些局限, 如果你给定的初值是区间, 而恰好函数在区间端点处同号, fzero会出错, 而如果你只给一个初值, fezro又有可能'走错方向', 例如给初值2让它解mysqr这个函数方程就出错了, FT!寻找函数极值/最值Matlab中也有两个函数可以做到, 是: fminbnd: 寻找一元函数极小值; fminsearch: 寻找多元函数极小值(当然一元也行). 别问我怎么没有找极大值的Matlab函数, 你把原函数取负数, 寻找它的极小值不就行了. 相关语法:x=fminbnd(函数, 区间起始值, 区间终止值)x=fminsearch(函数, 自变量初值)相关说明: fminbnd中指定要查找极小值的自变量区间, 好像不指定也行, 不过那样的话, 如果函数有多个极小值就可能比较难以预料结果了.fminsearch中要给定一个初值, 这个初值可以是自变量向量(将自变量依次排在一起组成向量)的初值, 也可以是表示向量初值区间的一个矩阵.函数: 那三种形式都适用, 但是记住, 直接使用函数名称需要加单引号!cite from:/qq529312840/blog/item/3687e4c7e7e2d6d9d0006049.html二、实例+讲解(1)非线性方程数值求解:1 单变量非线性方程求解在MATLAB中提供了一个fzero函数,可以用来求单变量非线性方程的根。
非线性方程求解摘要:利用matlab软件编写程序,分别采用二分法、牛顿法和割线法求解非线性方程,0 2= -x ex的根,要求精确到三位有效数字,其中对于二分法,根据首次迭代结果,事先估计迭代次数,比较实际迭代次数与估计值是否吻合。
并将求出的迭代序列用表格表示。
对于牛顿法和割线法,至少取3组不同的初值,比较各自迭代次数。
将每次迭代计算值求出,并列于表中。
关键词:matlab、二分法、牛顿法、割线法。
引言:现实数学物理问题中,很多可以看成是解方程的问题,即f(x)=0的问题,但是除了极少简单方程的根可以简单解析出来。
大多数能表示成解析式的,大多数不便于计算,所以就涉及到算法的问题,算法里面,具体求根时,一般先寻求根的某一个初始近似值,然后再将初始近似值逐步加工成满足精度要求为止,但是,我们知道,人为计算大大的加重了我们的工作量,所以大多用计算机编程,这里有很多可以计算的软件,例如matlab等等。
正文:一、二分法1 二分法原理:对于在区间[,]上连续不断且满足·<0的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。
2 二分法求根步骤:(1)确定区间,,验证·<0,给定精确度;(2)求区间,的中点;(3)计算。
若=,则就是函数的零点;若·<0,则令=;若·<0,则令=。
(4)判断是否达到精确度;即若<,则得到零点近似值(或);否则重复步骤2-4.3 二分法具体内容:精度要求为5e-6,,解得实际迭代次数与估计值基本吻合,迭代如下表。
n=2 c=0.000000 fc=-1.000000 n=11 c=-0.705078 fc=0.003065 n=3 c=-0.500000 fc=-0.356531 n=12 c=-0.704102 fc=0.001206 n=4 c=-0.750000 fc=0.090133 n=13 c=-0.703613 fc=0.000277 n=5 c=-0.625000 fc=-0.144636 n=14 c=-0.703369 fc=-0.000187 n=6 c=-0.687500 fc=-0.030175 n=15 c=-0.703491 fc=0.000045 n=7 c=-0.718750 fc=0.029240 n=16 c=-0.703430 fc=-0.000071 n=8 c=-0.703125 fc=-0.000651 n=17 c=-0.703461 fc=-0.000013 n=9 c=-0.710938 fc=0.014249 n=18 c=-0.703476 fc=0.000016n=10 c=-0.707031 fc=0.006787 n=19 c=-0.703468 fc=0.0000024 二分法程序:eps=5e-6;delta=1e-6;a=-1;b=1;fa=f(a);fb=f(b);n=1;while (1)if(fa*fb>0)break;endc=(a+b)/2;fc=f(c);if(abs(fc)<delta)break;else if(fa*fc<0)b=c;fb=fc;elsea=c;fa=fc;endif(b-a<eps)break;endn=n+1;fprintf('n=%d c=%f fc=%f\n',n,c,fc);endEnd(在同一目录下另建文件名为“f”的文件,内容为“function output=f(x)output=x*x-exp(x);”)5 二分法流程图:流程图二:牛顿法1 牛顿迭代法原理:设已知方程0)(=x f 的近似根0x ,则在0x 附近)(x f 可用一阶泰勒多项式))((')()(000x x x f x f x p -+=近似代替.因此, 方程0)(=x f 可近似地表示为0)(=x p .用1x 表示0)(=x p 的根,它与0)(=x f 的根差异不大.设0)('0≠x f ,由于1x 满足,0))((')(0100=-+x x x f x f 解得)(')(0001x f x f x x -=重复这一过程,得到迭代格式)(')(1k k k k x f x f x x -=+2 牛顿法具体内容:近似精度要求为5e-6,带入不同初值结果如下表。
matlab解非线性方程MATLAB求解非线性方程一、Matlab求解非线性方程的原理1. 非线性方程是指当函数中的变量出现不同的次方数时,得出的方程就是非线性的。
求解非线性方程的准确性决定于得出的解集是否丰富,以及解的精度是否符合要求。
2. Matlab是一款多功能的软件,可以快速求解工程中的数学方程和模型,包括一元非线性方程。
Matlab 具有非线性解析计算能力,可以极大地提高求解效率。
二、Matlab求解非线性方程的方法1. 使用数值解法求解:包括牛顿法、割线法、共轭梯度法、梯度下降法等,可以采用Matlab编写程序,来计算满足一元非线性方程的解。
2. 使用符号解法求解:在Matlab中,可以直接使用solve函数来解决一元非线性方程。
3. Matlab求解非线性方程的技巧:1)定义区间:对非线性方程给出一个精确定义的区间,matlab会将该区间分成若干区间,在这些区间内搜索解;2)多给出初始值:可以给出若干个初始值,令matlab均匀搜索多个解;3)改变算法:可以更改matlab中不同的求解算法;4)换元法:可以通过改变不同的元变量,将非线性方程变成多个简单的线性方程,然后利用matlab求解。
三、Matlab求解非线性方程的特点1. 高效:Matlab求解的方式高效有效,性能优异,可以节省大量的求解时间。
2. 准确:Matlab采用符号解法时,解的准确度精度更高,可以满足大部分要求。
3. 节省资源:Matlab求解非线性方程节省计算机资源,可以很好地利用资源,提高工作效率。
四、 Matlab求解非线性方程的步骤1. 对结构表达式编写程序;2. 设定相应的条件;3. 优化程序;4. 运行程序;5. 分析结果;6. 测试代码;7. 验证学习结果。
五、Matlab求解非线性方程的事例例1:已知一元非线性方程f ( x ) = x^3 - 4x - 9 = 0,求精度范围在[-5,5]之间的实根解法:使用Matlab符号解法求解solX = solve('x^3-4*x-9 = 0','x');输出结果为:solX =3-31运行程序,即可得到由-5到5的实根。