中国煤田地质
- 格式:doc
- 大小:149.00 KB
- 文档页数:15
我国煤炭地质勘查技术现状与发展趋势煤炭是我国主体能源,是能源安全的基石。
煤炭地质勘查是煤炭工业健康发展的基础,贯穿于煤炭工业和国民经济社会发展的始终,它既担负着为煤炭工业发展提供资源保障的重任,又担负为煤炭开发、利用、安全和环境保护提供地质服务的责任。
煤炭地质发展必须依靠煤炭地质科技,煤炭地质科技必须围绕着煤炭工业发展而开展工作。
建立新型煤炭地质勘查体系,推进煤炭地质科技创新,是煤炭工业健康发展的需要,也是国民经济快速发展的客观要求。
一、煤炭地质勘查技术简况和主要成果我国煤田地质工作起源于19世纪中叶。
从德国李希霍芬和我国煤田地质奠基人王竹泉对中国煤炭资源的考察,到目前为止,已经经历了150多年历史。
经过我国煤田地质工作者共同努力,形成了特色鲜明的中国煤田地质理论和勘查体系。
第一,煤田地质基础研究由传统地质走向地球系统科学研究阶段。
相继组织开展了华北、华南、鄂尔多斯盆地和东北中生代断陷盆地聚煤规律和资源评价研究课题,从盆地整体高度,把握了我国主要聚煤盆地演化和煤炭资源聚集赋存规律。
创造性地将层序地层理论和方法运用于含煤地层划分、聚煤古地理和聚煤规律研究,拓宽了煤田地质研究新思路。
《中国聚煤作用系统分析》建立了聚煤作用系统和系统分析方法,并对我国聚煤作用进行了系统分析。
“中国东部煤田滑脱构造与找煤研究”丰富和发展了滑脱构造理论,实现了中国东部找煤的重大突破。
《中国洁净煤地质研究》课题取得洁净煤技术地质基础研究新进展。
对我国煤中有害微量元素赋存特征及在洗选、燃烧过程中的迁移潜势进行了系统的总结,编制了我国第一张洁净煤资源分布图。
第二,煤炭资源综合勘探技术取得突破性进展。
根据我国煤田地形地质特点,合理选择地质填图、遥感、物探、钻探、测试等技术手段,充分利用各种地质信息,综合研究煤层赋存规律和开采技术条件,建立了独具中国特色国际一流的煤炭综合勘探技术体系。
煤田三维地震技术得到迅速发展,大幅度提高了勘探精度,可查明5m的小断层和波状起伏及3m小断点;工作领域进一步拓宽,突破了复杂山区,沙漠、厚层黄土、水上、沼泽以及采空区等等地震施工禁区;勘查能力进一步增强,不仅能解释断层,对陷落柱、煤层宏观结构和厚度变化趋势也取得突破。
中国煤炭地质钻探技术介绍【大中小】我国煤炭资源丰富,开发利用历史悠久,往上可追溯到我国西汉时期。
到了近代1903年,我国已有用英国蒸汽钻机进行煤矿老窖钻探施工的记录。
1946年9月30日,地质专家谢家荣应用日本利根RL-150型钻机,在安徽淮南煤田布孔进行钻探施工。
直到新中国成立之际,煤炭地质勘探工作仍十分落后,只有工人四百余名,技术人员十几个,和日伪时期留下的57台破烂不堪的手把给进式钻机,仅在个别矿区有零星的钻探工作量。
新中国煤炭地质勘探工作得到飞速发展,先后在全国29个省区建立100多个勘探队,年开动钻机近千台。
统计至1995年,累计完成钻探工作量74,088,729m,探明煤炭储量超过10000亿t,钻月效率由解放初的87m提高到400余m,煤心采取率由35.7%提高到90%以上,为我国煤炭工业发展提供了可靠资源保证。
钻探工程作为煤炭勘探重要手段,除了从事煤炭地质勘探外,已全面进入社会地质、岩土基础工程市场,获得良好的社会效益和经济效益。
1.钻探工艺、技术不断发展1.1钻探技术发展阶段20世纪50~70年代间,煤田钻探主要采用普通硬质合金和铁砂、钢粒分层钻进工艺。
50年代前期采用的钻进参数为:轻压、慢转、少给水。
钻孔开孔直径大,一般为150mm,终孔直径为91或75mm,其钻探效率低、质量差、事故多。
随后受“大跃进、放卫星”的影响,在软地层采用的“高压大水无岩心快速钻进测井解释法”,无心钻进比例一度上升到70%~80%,曾创单机日进尺1140m、月进尺10335m记录,钻探效率显著提高,但质量直线下降。
为解决硬岩钻进效率低的问题,于1969年起步,煤田地质系统开始了人造金刚石、金刚石钻头、金刚石钻进技术的研究、制造与应用,先后建成西安、石家庄两个人造金刚石合成和钻头制作车间,年产几十万克拉人造金刚石,用于钻头制造。
为进一步提高效率与质量,煤田地质系统于1980年前后开展了绳索取心钻进技术研制试验。
煤田地质勘探及主要技术手段研究煤炭是我国最主要的能源资源之一,煤炭资源丰富、分布广泛,对我国经济社会发展具有重要意义。
而煤炭的地质勘探是煤田开发利用的重要环节,其主要任务是确定煤层的分布、厚度、品位等地质特征,为煤炭资源的开发利用提供科学依据。
本文将围绕煤田地质勘探及主要技术手段展开研究,从勘探目的、方法技术、勘探成果评价等方面进行探讨。
一、煤田地质勘探的目的煤田地质勘探的主要目的是为煤炭资源的勘探开发提供地质条件和证明,其具体包括以下几个方面:1. 煤层分布及储量估算:通过地质勘探,确定煤层的分布范围、厚度、倾角和走向,并对其储量进行合理估算,为煤炭资源的合理利用提供依据。
2. 煤层品位评价:通过地质勘探,获取煤层的品位信息,包括灰分、硫分、挥发分、发热量等指标,为煤炭品质的评价和利用提供依据。
3. 煤层结构与构造分析:通过地质勘探,分析煤层的构造特征和变形情况,为后续矿井设计和采煤工作提供依据。
4. 煤田水文地质条件评价:通过地质勘探,评价煤田的水文地质条件,包括地下水分布、水质状况等情况,为矿井设计和采煤工作提供依据。
5. 矿井选址和采煤工艺研究:通过地质勘探,确定矿区的选址和矿井的位置,为后续的矿井建设和采煤工作提供依据。
煤田地质勘探的方法技术主要包括地面勘探和井下勘探两种方式。
1. 地面勘探:地面勘探是指在地表进行的地质勘探工作,主要包括地质地球化学勘探、地球物理勘探和地质钻探等。
(1)地质地球化学勘探:地质地球化学勘探是通过对煤田地质构造的野外调查和采样分析,获取煤层的分布、结构和成分等信息。
包括对岩石、土壤、水质等进行取样分析,了解地下岩性情况和水文地质特征。
(2)地球物理勘探:地球物理勘探是利用地球物理方法对地下介质进行勘探,包括地震勘探、重力勘探、电磁勘探等。
通过对地质体的物理性质和构造特征进行研究,为煤层的分布和品位评价提供依据。
(3)地质钻探:地质钻探是通过对地下进行探测取芯,获取煤层的岩芯、水文地质样品等,用以分析煤层的物理、化学性质及地质构造特征,为确定煤层的地质条件提供依据。
煤田地质勘探技术及特点分析煤田地质勘探技术及特点分析煤田是指有煤矿资源并具备开展采矿活动的地质实体,在煤炭资源特征、分布和赋存方式等方面呈现出一定的规律性。
为了更好地开展煤炭资源的勘探和开发,煤田地质勘探技术起到了重要的作用。
本文将从煤田地质勘探技术及其特点进行分析。
一、煤田地质勘探技术1. 构造地质勘探技术构造地质勘探技术是指通过地质构造的研究,揭示煤矿地层中的断层、裂隙等构造特征,对煤矿的赋存条件及矿井布局等方面进行研究。
常用的构造地质勘探技术包括构造地形地貌勘探、地震地质勘探、地质断层及矿山地震预测等。
2. 煤层地质勘探技术煤层地质勘探技术是指通过对煤矿地层的煤性、厚度、赋存方式等进行详细的研究,以确定煤矿的开采方式和开采工艺。
常用的煤层地质勘探技术包括钻孔地质勘探、地球物理勘探、测量地质勘探等。
3. 水文地质勘探技术水文地质勘探技术是指通过对煤矿地下水的研究,揭示煤矿地下水的赋存特征及分布规律,为煤矿的排水和防治地下水涌水提供科学依据。
常用的水文地质勘探技术包括水文地质调查、地下水动力学研究、岩溶水文地质勘探等。
4. 应用地质勘探技术应用地质勘探技术是指通过对煤田地质条件的研究,为煤矿选址和资源预测提供科学依据。
常用的应用地质勘探技术包括煤层气地质勘探、煤矿地质工程勘探、地质环境勘探等。
二、煤田地质勘探技术的特点1. 多学科综合性煤田地质勘探技术需要涉及地质学、地球物理学、地球化学、数学等多个学科的知识,进行综合性的研究,并集成各学科的技术手段和方法。
只有通过多学科的综合研究,才能充分揭示煤炭资源的特征和赋存规律。
2. 以地质勘探为基础地质勘探是煤田地质勘探的基础,通过对煤矿地层的地质特征的研究,确定煤炭资源的分布、厚度、赋存方式等,为煤矿的开采提供数据支撑。
因此,地质勘探是煤田开发的先决条件,也是最重要的一环。
3. 技术手段更新快煤田地质勘探技术是与科技进步密切相关的,随着科技的不断发展,新的勘探技术、方法和仪器不断出现。
煤田地质勘查中存在的问题及对策随着开放与市场经济发展,经济、安全、高效的采煤就成为煤炭工业发展的关键。
但是,由于多种因素的影响,我国在开展煤田地质勘探工作方面还存在着诸多亟待解决的问题。
本文就煤田地质勘查中存在的问题进行分析,并提出相应的对策。
标签:地质勘查;问题;对策煤田地质勘查工作具有很强的技术性和一定的综合性,也是煤田地质报告编写的重要组成部分。
在对煤田勘查地质做报告工作时,为了对煤田資源进行客观评估,需要包含有煤的所有主要指标,一旦该信息缺失,则会对国家造成非常重大的损失。
因此,加强煤田地质勘查工作的技术性尤为重要。
一、煤田地质勘查中存在的主要问题1、地质勘查规划体系不健全当前,由于我国的地质勘查规划体系不健全,对于科学的宏观调控比较缺乏,以致于在一些项目方面,其经济社会发展需求还存在这差距。
某些地区的矿产勘查监督并不严格,甚至还存在严重的地方保护主义,同时,矿产勘查秩序不规范行为、无证非法探矿以及盗采勘查区内矿产资源的事件频频发生。
这样一来,不仅使得探矿投资者的经济利益受到损害,同时还会造成探矿权人探矿的积极性大大降低,甚至也会使得国家的矿产资源遭到大程度的破坏。
2、普查寻矿工作滞后就总体上来讲,寻矿普查找矿工作非常落后,在产矿业的后备勘查基地持续紧张,就当前的实践经验来看,找矿与勘查相比,找矿的工作较难,找矿具有投入大、效率低等特点。
找矿的周期较长,勘查的周期短,找矿工作细而密,流动性较大,而勘查工作常常是集中在某一区域内进行的。
由于找矿需要较大的精神投入,因此需要新兴科技的投入。
近年来勘查数字化程度越来越高,各项数字化指标在煤田评定工作中显得更加重要。
勘查工作相对集中,那么上级对其监管就会变得方便,易于抽查。
这就保证了立功授奖名额的分配,奖金分配,干部的配备,但同时这些因素也具有一定消极的影响,给煤矿普查找矿的工作带来了一定的难度,因此,也进一步说明了找矿本身艰巨和复杂的特点。
3、煤矿地质勘查程度不够目前,我国的煤炭地质勘查程度总体较低,造成这种结果的原因是我国煤田地质的背景比较复杂,而且煤炭资源分布与地区经济发达程度基本呈现互为反比的关系。
煤田地质三边工作方法简介一、前言煤田地质“三边”工作和其它矿产地质的“三边”工作没有什么本质的区别,就其实质而言,“三边”工作就是“边勘查施工、边分析研究、边修改设计”,这里的设计既是指总体勘查施工设计,也是指专项勘查设计,可以是勘查施工实施方案等。
“三边”工作中,勘查施工是手段,为完成地质任务和目的服务;分析研究是方法,是中心也是重点,贯穿整个项目勘查、原始资料收集、报告提交全过程,要求善于发现问题和解决问题;修改设计是为完成地质任务和目的必须的重要环节。
勘查施工中发现的问题,通过分析研究解决存在的问题,完善与修改设计,最后指导勘查施工。
煤田地质勘查的对象是煤层,属于层状沉积矿床,在固体矿产中比较特殊。
首先煤层本身特殊,是能源化石矿产,其硬度较围岩软;其次,煤层是产于一套含煤沉积地层中,一般为多层产出,按照现行规范要求,在预查、普查阶段需确定含煤煤层层序和划分含煤地层,初步确定和查明可采煤层层数,进行煤层对比;再次,煤层中共伴生矿产较多,特别是煤层气,煤类较多,影响矿床开采的安全因素也较多;另外,构造对煤层和含煤地层影响的研究是煤田地质的专门课题。
因此,煤田地质的“三边”工作显得尤为重要。
“三边”工作出现的问题主要表现在:1、原始资料收集不及时;2、收集的原始资料未上图和上表或未及时上图上表;3、分析、研究不及时或不分析研究;4、发现问题不记录、不处理、不汇报或不知道怎么处理;5、设计或方案不调整、不优化和不修改。
“三边”人员组成:一般情况下,地质“三边”组由野外项目组人员组成,由综合组组长或项目负责人任“三边”组组长。
组员有:地质、煤质、水文地质(工程地质)、测量、测井以及钻探安全人员等。
其主要负责野外施工过程中积累的勘查成果的整理,分析,研究与汇报。
重大问题请示,集体研究决定。
二、煤田地质“三边”工作的准备大多数煤田地质工作者都知道,“三边”工作是我们地质工作中最重要环节。
当前,煤田地质“三边”工作的好坏,直接影响着煤田地质成果质量的优劣。
关于煤田地质的分析摘要:本文讨论了中国煤田地质勘探煤样的代表性问题,从煤质分析检测项目的合理选定问题,开展地质勘探技术发展趋势动态研究等方面加以论述。
关键词:煤田地质勘探;煤质分析;煤质检测;煤样问题前言煤田地质勘探中的煤质工作是煤炭质量管理中十分重要的一个环节,根据煤田地质报告中说明的煤田地质情况和煤质指标,不仅可以对煤炭资源的开发和利用作出评价,而且是矿井采掘设计、矿井煤质计划管理、合理搭配开采保证煤炭产品质量稳定的重要依据。
一、煤样的代表性问题在煤田地质勘探中如何选取有代表性的煤样,是正确评价勘探区煤质特征及其变化规律的关键。
采集钻芯煤样时,煤芯采取率越高,煤样的代表性就越强,一般采取率在80%-92%以上为宜。
如果采取率过低(炼焦煤的采取率低于70%,动力煤的采取率低于60%),煤样代表性就会变差,其煤质检验结果与矿井开采以后的煤层煤样的检测结果会有较大差别。
例如煤的真相对密度、视相对密度对样品采取率较为敏感,当样品采取率较低时,代表性可能会很差,将会直接影响测定结果的准确性,从而导致计算其储量时产生较大偏差。
另外,在钻取煤样过程中的煤层受到钻头的摩擦而发热氧化甚至发生部分燃烧时,煤样的代表性就会更差。
例如,焦煤在采样过程中如发生部分燃烧氧化,检测后得出的牌号可能变为瘦煤甚至贫煤。
此外,在采取钻芯煤样时混入了泥浆等杂质时,煤样灰分就会增高。
反之,为了消除泥浆的影响,而把煤样用水清洗时,可能把溶于水的钾、钠等碱性矿物质冲洗掉而使煤样的灰分偏低,或把煤粉冲走而影响其它煤质指标的准确性。
所以遇到此种情况时,尽量不要用水去漂洗,可用刷子轻轻地刷去煤芯表面的泥皮。
如果煤芯完全破碎,可设法刮去明显的泥浆,即使如此处理,也难免会损失少量样品。
混入煤芯煤样中的铁砂、钢屑等必须用强磁铁吸尽,否则,不仅会影响灰分产率,而且还会影响煤灰成分和煤灰熔融性,对动力煤的煤质及其利用评价产生很大偏差。
在浅部风化带采取的煤芯煤样,检测结果只能做为确定风化带、氧化带和计算其腐植酸产率,不能作为正常煤芯煤样的计算基础。
中国煤炭地质总局成立于1953年6月,先后隶属于燃化部、煤炭部、国家煤炭工业局、中央企业工委和国务院国资委。
1998年,按照国发[1998]21号、22号文件精神,将原所属的21个省市区煤田地质局和7所院校实行属地化管理。
2001年,按照国办[2001]2号文件要求,将中国煤田地质总局及其所属的省区煤田地质局、专业局和在京单位交由中央管理,并更名为中国煤炭地质总局。
半个多世纪以来,煤炭地质单位累计查明煤炭资源储量13000多亿吨,占全国已查明煤炭资源量的90%。
累计提交可供矿井建设利用含量的90%以上,先后发现神东、准格尔等大型和特大型煤田100余处。
改革开放以来,相继发现了包括神府煤田在内的一大批新煤田。
煤田地质勘探是新中国成立后新组建的一个新兴行业,自1953年国家煤矿管理总局地质勘探局(中国煤炭地质总局的前身)成立以来,先后经历了建国初国民经济恢复时期、“大跃进”与调整时期、“文化大革命”时期、改革开放和新世纪的大发展时期。
先后隶属于燃化部、煤炭部、国家煤炭工业局、中央企业工委和国务院国资委。
在中国共产党的正确领导下,煤炭地质职工始终坚持和继承中国工人阶级的光荣传统,自力更生,艰苦创业,为新中国煤炭工业的发展提供了资源保障,作出了巨大贡献。
牢记使命,为国家提供了煤炭资源保障。
建局五十五年来,累计提交各类地质报告9000多件;查明煤炭资源量13000多亿吨,占全国已探明资源储量的90%以上;相继发现了神东、准格尔等100多个大型、特大型煤田;寻找和探明地下水储量1000多万立方米/日,为神府、准格尔等数十个矿区建设和生产提供了地下水源基地;完成了三次全国煤田预测,预测煤炭总资源量5.57万亿吨,目前正在开展新一轮全国煤炭资源潜力评价;完成了全国煤层气资源评价,预测我国煤气资源量35万亿立方米;馆藏了55年来全国煤炭地质资料;近几年实施国土资源大调查、矿产资源补偿费等国家地质项目100多项,在东部等煤炭紧缺地区,提交煤炭资源储量300多亿吨,采用新的地质理论和勘查技术,在云南昭通、山东梁山等多个地区发现了大型煤田和煤产地。
立志当早,存高远
中国煤田地质特征概述
一、古地理构造和聚煤期早古生代继承了新元古代的古构造轮廓。
早古生代经历了加里东构造运动,在中国东南部形成北东向加里东地槽,中国东南部产生早古生代腐泥质石煤;秦岭和阴山广大地区隆起,为华北石炭二叠纪聚煤盆地形成了良好的基底条件。
早古生代末期,中国东南形成加里东期武夷云开褶皱,扬子陆块增生。
晚古生代大部分继承了早古生代的构造轮廓,华北地区仍处于隆起剥蚀状态。
泥盆纪开始海侵,到晚石炭纪,海水漫及华北陆块,形成滨海含煤建造,华南为碳酸盐岩建造。
二叠纪时,内蒙古-大兴安岭海槽闭合、隆起,华北地区成为过渡相和陆相含煤沉积体系,华南仍为广海碳酸盐岩建造。
晚古生代海西运动,中国的天山、祁连山、秦岭和大兴安岭地槽褶皱回返,形成东西走向巨大山系,秦岭-昆仑以北广大地区隆起,并转化为内陆环境;东南沿海大陆增生;形成南海北陆古地理面貌。
晚古生代末到早中生代早期的三叠纪印支运动,改变了中国南海北陆的局面,西北雪山海槽全部褶皱隆起,陆地向西南方向增生,海水退至中国西南西藏一带,长江中下游和华南大部分由浅海转为陆地,中国南北陆地连为一体。
印支运动以后,中国东部形成北北东向巨大隆起和凹陷带,以大兴安岭、太行山、武陵山为界,西部发育晚三叠纪和早中侏罗纪大型聚煤盆地,内陆湖泊相沉积;东部的华北地区发育早中侏罗纪小型凹陷煤盆地,华南发育晚三叠狭长海湾成煤环境,东北发育晚侏罗纪和早白垩纪断陷和凹陷煤盆地。
侏罗纪和白垩纪期间的燕山运动之后,北京附近的燕山褶皱隆起,大兴安岭、太行山和雪峰山以西的内陆盆地相对稳定,如鄂尔多斯、四川、准葛尔、塔里木等盆地在中生代期间连续接受河、湖相沉积,盆地外围是古生代地槽,。
第四章中国煤田地质第一节含煤地层与煤层我国地史上的聚煤期有14个,其中早石炭世、晚石炭世-早二叠世、晚二叠世、晚三叠世、早-中侏罗世、早白垩世和第三纪为主要聚煤期。
在这7个主要聚煤期中,以晚石炭世-早二叠世、晚二叠世、早-中侏罗世和早白垩世4个聚煤期更为重要,相应煤系地层中赋存的煤炭资源占我国煤炭资源总量的98%以上,煤层气资源占我国煤层气资源总量的99.5%以上。
1、主要聚煤期含煤地层(1)主要含煤地层分布晚石炭世至早二叠世晚石炭世至早二叠世的聚煤作用在我国北方形成海陆交互相石炭-二叠系含煤地层,主要赋存在华北赋煤区,含煤面积80万km2,构成了我国最主要的煤层气聚气区,即华北聚气区。
该区大地构造单元为华北地台的主体部分,地理分布范围西起贺兰山-六盘山,东临勃海和黄海,北起阴山-燕山,南到秦岭-大别山,包括了北京、天津、山东、河北、山西、河南、内蒙南部、辽宁南部、甘肃东部、宁夏东部、陕西大部、江苏北部和安徽北部的广大地区。
在华北赋煤区内,还广泛发育了早-中侏罗世含煤盆地,并见零星上三叠统和第三系含煤地层分布。
晚二叠世晚二叠世聚煤作用在我国南方十分强烈,含煤地层广泛分布于秦岭-大别山以南、龙门山-大雪山-哀牢山以东的华南赋煤区内,构成了我国华南煤层气聚气区。
该区大地构造单元属扬子地台和华南褶皱系,地理分布范围包括西南、中南、华东和华南的12个省区。
华南赋煤区内除有以龙潭组为代表的上二叠统含煤地层外,还有上石炭统、上三叠统-下侏罗统、第三系等含煤地层分布。
下-中侏罗统下-中侏罗统含煤地层主要分布在西北赋煤区,在华北赋煤区的分布也较为广泛。
西北赋煤区由塔里木地台、天山-兴蒙褶皱系西部天山段和秦祁昆仑褶皱带、祁连褶皱带、西秦岭褶皱带等大地构造单元组成,地理分布范围包括秦岭-昆仑山一线以北、贺兰山-六盘一线以西的新疆、青海、甘肃、宁夏等省区的全部或大部。
早-中侏罗世的聚煤作用在西北赋煤区广泛而强烈,所形成的煤炭资源在该区占绝对优势地位,并构成了我国西北煤层气聚气区的主体。
中国煤田地质勘探行业市场策略一、市场概况煤炭作为一种重要的能源资源,在我国具有广泛的应用和巨大的市场需求。
然而,随着环保意识的增强和能源结构的转型,煤炭产业面临着诸多挑战。
为了有效开拓煤田地质勘探市场,需要制定合理的市场策略。
二、目标市场首先,需要确定目标市场。
煤田地质勘探的市场主要包括煤炭企业和相关的地质勘探机构。
具体来说,我们的目标市场是国内的煤炭企业,尤其是在新矿区开发阶段的企业。
三、竞争分析在制定市场策略之前,需要进行竞争分析,了解行业的竞争格局和竞争对手的优势弱势。
通过对竞争对手的市场份额、技术实力、服务水平等方面进行综合评估,可以制定出更有针对性的市场策略。
四、定位策略基于竞争分析的结果,我们可以确定自己的定位策略。
煤田地质勘探市场需要提供高质量的地质勘探服务,因此我们可以定位为高端、专业型的地质勘探服务提供商。
通过提供优质的服务和专业的技术支持,赢得客户的信任和认可。
五、市场推广策略市场推广策略是营销活动的核心。
我们可以采取以下策略来推广我们的地质勘探服务: - 建立良好的口碑:通过口碑传播和客户推荐,提高公司知名度和美誉度。
-参加行业展会:积极参与国内煤炭行业的展览和论坛,展示公司的技术实力和市场竞争力。
- 发布技术白皮书:撰写相关技术白皮书,展示公司的专业知识和技术能力,提高市场认可度。
- 建立合作关系:与煤炭企业建立长期合作关系,提供定制化的服务和技术支持,增强竞争优势。
六、服务优化策略除了市场推广策略,我们还需要关注服务的优化。
通过提供一流的服务,增加客户的满意度和忠诚度,从而提升市场竞争力。
具体的服务优化策略包括: - 定期技术培训:为员工提供定期的技术培训,保持公司的技术实力和竞争力。
- 制定服务标准:建立完善的服务流程和标准,确保服务的质量和高效性。
- 提供补充性服务:除了地质勘探服务,还可以提供其他补充性的服务,如地质咨询、工程设计等,增加客户的利益价值。
结论针对煤田地质勘探市场的需求和竞争格局,制定合理的市场策略是公司取得成功的关键。
煤⽥地质勘探规范⽬录⽬录 (1)⼀、钻探⼯程质量标准表1—1 (3)⼆、钻孔测井⼯程质量标准表2—1 (6)三、钻孔抽⽔试验质量 (8)其他规范要求 (13)⼀、中国煤炭分类国家标准(GB5751—86)(1986年10⽉1⽇起试⾏) (14)⼆、煤层厚度分级 (16)三、煤炭粒度分级(GB189—63)(摘要) (16)四、煤灰成分的分类 (16)五、煤的⾃燃倾向性等级分类表 (17)六、焦渣特征 (17)七、各⼯业部门对煤质的特定要求 (18)⼋、国际显微组分分类及类型 (20)九、变质阶段的划分和命名 (22)⼗、不同⽤途煤的媒质要求或评价标准⼀览表 (23)⼗⼆、矿井沼⽓及⽡斯分带 (24)⼗三、⼯程地质岩⽯强度分类 (24)⼗四、评价煤层稳定性的主、辅指标 (25)⼗五、我国⼭地⾼度分类表 (26)⼗六、我国不同牌号煤的主要煤质指标的⼀般范围 (27)⼗七、各种元素在地壳中的重量百分数 (28)⼗⼋、其它相关知识 (29)⼗九、煤质评价常⽤符号及各种基准换算公式 (31)⼆⼗、关于发热量的计算 (32)⼆⼗⼀、地质填图及勘查阶段要求 (34)⼆⼗⼆、资源/储量分类 (35)⼆⼗三、有关服务年限的规定 (35)⼆⼗四、钻孔⽔泥封闭⽤料参数计算 (37)为了进⼀步提⾼煤⽥地质勘探⼯程质量,保证基础资料的准确可靠,使地质报告编制和地质研究建⽴在可靠的基础上,更好地为煤炭⼯业建设服务,在认真总结实践经验和⼴泛征求意见的基础上,对⼀九七⼋年三⽉颁发的《煤⽥勘探钻孔质量标准》进⾏了修订。
这次修订,要求⽐以前严格。
本标准是衡量全国煤⽥勘探钻孔⼯程质量的统⼀标准。
各公司(队)可根据当地的具体情况,制定本标准的实施细则。
实施细则不得低于本标准的规定,并应报部地质局备案。
本标准包括钻探⼯程质量标准、测井⼯程质量标准、钻孔抽⽔试验质量标准和验收办法等四部分,并附执⾏说明。
⼀、钻探⼯程质量标准表1—1打煤报告书,以便逐层进⾏验收评级。
2024年煤田地质勘探市场发展现状引言煤是我国主要的能源资源之一,具有巨大的经济和社会价值。
为了有效利用煤炭资源,煤田地质勘探成为必要的过程。
本文将探讨煤田地质勘探市场的发展现状。
现状分析1. 煤田地质勘探的重要性煤田地质勘探是确定煤炭资源储量和品质的关键步骤,对煤炭产业的发展具有重要意义。
通过地质勘探可以找到新的煤炭矿层和储量,为煤炭企业提供可持续的发展基础。
2. 市场规模和潜力我国煤炭资源丰富,煤田地质勘探市场庞大且潜力巨大。
根据不完全统计,目前我国已探明、预测和探明探矿资源量约为5000亿吨,但仍存在很大的未勘探开发的煤炭资源。
这为煤田地质勘探市场提供了广阔的发展前景。
3.技术进步和应用随着科学技术的不断进步,煤田地质勘探技术也在不断提高。
目前,我国地质勘探技术已能够实现精细化、数字化和智能化,提高勘探效率和准确性。
例如,利用地质雷达、无人机和遥感技术等设备,可以更好地获取煤层的地质信息,实现对煤田资源的精确勘探。
4.行业竞争和发展趋势目前,我国煤田地质勘探市场竞争激烈,许多企业都加大了对该市场的投入。
国内外的煤炭资源勘探企业通过技术创新、市场营销和项目管理等手段提高自身竞争力。
此外,随着国家环保政策的制定和实施,煤炭产业将向清洁和高效的方向发展,这也对煤田地质勘探市场提出了更高的要求。
发展前景分析1. 国家政策支持我国政府高度重视煤炭资源勘探工作,在政策层面为煤田地质勘探提供了良好的环境。
政府鼓励企业加大技术研发和工程勘探投入,提供财政和税收支持,并推动企业间的合作与共赢。
2. 煤炭产业升级为了应对能源结构调整和环保要求,煤炭产业正在发生转型升级。
高效清洁利用煤炭的需求增加,对煤田地质勘探市场提出了更高的要求。
未来市场发展的重点将放在绿色勘探技术和资源综合利用上。
3. 国际合作机遇中国煤炭资源丰富,具有较高的国际竞争力。
通过与国外企业和机构的合作,可以引进国际先进技术和管理经验,提升煤田地质勘探水平。
中国煤田水文地质基本特征及主要水文地质问题中国煤炭资源丰富,从寒武纪石煤至第四纪泥炭沉积,共有十个聚煤期,其中,以石炭二叠纪和侏罗纪为主要的聚煤期。
大地构造控制了煤田的分布、成煤时期、沉积环境、构造特征,也形成了不同的水文地质条件。
天山——阴山纬向构造带以北的东北和内蒙东部沉积早侏罗纪——晚白垩纪含煤地层;以南至昆仑山——祁连山纬向构造带以北,贺兰山经向构造带以东的广阔地区,沉积了海陆交互相的石炭——二叠纪含煤地层;昆仑山——祁连山纬向构造带以南,康黔古陆以东则沉积了晚二叠纪含煤地层;西北地区则在侏罗纪形成了一些大型陆相煤盆地;此外,云南——西藏及台湾地区在中生代和新生代分别沉积了含煤地层。
以上聚煤区的地质和水文地质条件各不相同,在此基础上,结合矿井防治水的需要,可以将中国煤田划分为六个水文地质类型区,即东北侏罗纪孔隙——裂隙水类型区,华北石炭二叠纪孔隙——岩溶水类型区,西北侏罗纪裂隙水类型区,华南晚二叠纪岩溶水类型区,云南——西藏中生代裂隙水类型区及台湾第三纪裂隙——孔隙水类型区(图1)。
其中,以华北石炭二叠纪煤田和华南晚二叠纪煤田的水文地质条件最为复杂,矿井水害严重。
主要的水文地质问题有三个。
即:华北煤系底盘中奥陶统马家沟灰岩水害问题;黄淮平原新生界松散层水害问题;华南煤系底盘下二叠统茅口灰岩水害问题及顶板上二叠统长兴灰岩水害问题。
西北侏罗纪裂隙水类型区纬向构造带华南晚二迭纪岩溶水类型区昆仑山—祁连山云南—西藏中生代裂隙水类型区天山—阴山纬向构造带东北侏罗纪孔隙—裂隙水类型区华北石炭二迭纪孔隙—岩溶水类型区贺兰山经向构造带康 滇 古 陆台湾第三纪裂隙—孔隙水类型区图1 中国煤田水文地质类型区划分图图1 中国煤田水文地质类型区划分图华北石炭——二叠纪煤田主要可采煤层赋存于海陆交互相的太原统和陆相的山西统中,其底盘为中奥陶统马家沟灰岩。
太原统中的夹层灰岩在华北煤田有广泛的分布(图2),总的趋势是,由西北向东南,海水逐渐加深,灰岩层数由2~3层,增加到14层以上,灰岩总厚度由5m 以下,增加到60m 以上,皖北可达70m 。
煤田地质勘探技术及特点分析摘要:由于煤炭资源是国家最关键的基本燃料,在开发煤炭资源地区的时候,就必须运用到相应的科学技术手段率先对煤田地区开展勘察工作,对该区域的地质特点、煤层状况等有个较全面的掌握。
唯有如此,方可确保更有效和安全的进行开采。
关键词:煤田;地质勘探技术;特点日前,国家统计局数据显示,8月全国原煤产量为37044.0万吨,同比增长8.1%;1-8月累计产量292933.9万吨,同比增长11.0%,煤田资源是国家重要能源之一。
煤矿产业曾是民用经济中的组成部分,但现在由于科技的发展,各类新能源相继被研制和使用,中国煤矿产业正面临着前所未有的市场竞争问题。
为推动煤炭资源板块的建设,使之在严峻的市场竞争中取得有利优势,需要对煤田地质的有关科技加以革新。
一、煤田地质勘探技术的原理简述煤田地质的研究主要是指勘查地质的二个方面特征,一是煤田地质构造是否稳定,另一是煤田地质构造的复杂性。
对煤田地质结构的稳定性由低至高一般分成了四个层次,在进行研究过程中,通常需要从煤田深部的变化,煤田支撑构造的稳定性,以及煤炭资源的数量和质量等角度加以研究。
在复杂性层面上,则需要从煤田的岩浆存量,延伸方式,倾斜范围,以及是否存在断裂等方面对复杂度加以研究。
而当前政府在开展煤田地质勘查研究项目时,也通常把勘查项目分成了三个层次。
首先进入预测阶段,需要地质勘探员通过以往的经历和有关书籍的案例做出推测,一旦预测了煤炭资源,就必须对煤炭的位置做出深入的勘察,并对开发的难度做出判断。
然后就是进行价值探讨过程,价值探讨过程必须对煤田开发造成的经济效益,开发成本,生态损害等做出判断,并提出勘探报告,给出是否应该开发的结果。
最后就是详查过程,必须对煤田所在区域的地质现状做出详查,并最后制定出正确详实的开发方案[1]。
二、煤田地质勘探技术的特点1、直接为采掘生产服务煤层的地质管理工作也有着很明显的实际工作目的,它一般是为后期的煤炭开发服务。
中国煤田地质(一)、含煤地层与煤层我国地史上的聚煤期有14个,其中早石炭世、晚石炭世-早二叠世、晚二叠世、晚三叠世、早-中侏罗世、早白垩世和第三纪为主要聚煤期。
在这7个主要聚煤期中,以晚石炭世-早二叠世、晚二叠世、早-中侏罗世和早白垩世4个聚煤期更为重要,相应煤系地层中赋存的煤炭资源占我国煤炭资源总量的98%以上,煤层气资源占我国煤层气资源总量的99.5%以上。
1、主要聚煤期含煤地层(1)主要含煤地层分布晚石炭世至早二叠世晚石炭世至早二叠世的聚煤作用在我国北方形成海陆交互相石炭-二叠系含煤地层,主要赋存在华北赋煤区,含煤面积80万km2,构成了我国最主要的煤层气聚气区,即华北聚气区。
该区大地构造单元为华北地台的主体部分,地理分布范围西起贺兰山-六盘山,东临勃海和黄海,北起阴山-燕山,南到秦岭-大别山,包括了北京、天津、山东、河北、山西、河南、内蒙南部、辽宁南部、甘肃东部、宁夏东部、陕西大部、江苏北部和安徽北部的广大地区。
在华北赋煤区内,还广泛发育了早-中侏罗世含煤盆地,并见零星上三叠统和第三系含煤地层分布。
晚二叠世晚二叠世聚煤作用在我国南方十分强烈,含煤地层广泛分布于秦岭-大别山以南、龙门山-大雪山-哀牢山以东的华南赋煤区内,构成了我国华南煤层气聚气区。
该区大地构造单元属扬子地台和华南褶皱系,地理分布范围包括西南、中南、华东和华南的12个省区。
华南赋煤区内除有以龙潭组为代表的上二叠统含煤地层外,还有上石炭统、上三叠统-下侏罗统、第三系等含煤地层分布。
下-中侏罗统下-中侏罗统含煤地层主要分布在西北赋煤区,在华北赋煤区的分布也较为广泛。
西北赋煤区由塔里木地台、天山-兴蒙褶皱系西部天山段和秦祁昆仑褶皱带、祁连褶皱带、西秦岭褶皱带等大地构造单元组成,地理分布范围包括秦岭-昆仑山一线以北、贺兰山-六盘一线以西的新疆、青海、甘肃、宁夏等省区的全部或大部。
早-中侏罗世的聚煤作用在西北赋煤区广泛而强烈,所形成的煤炭资源在该区占绝对优势地位,并构成了我国西北煤层气聚气区的主体。
此外,该区局部地带尚有石炭-二叠系和上三叠统含煤地层赋存。
下早白垩统下早白垩统含煤地层主要分布在东北赋煤区,是我国东北煤层气聚集区煤层气赋存的主要地层。
其大地构造单元为兴蒙褶皱系东段、华北地台东北缘及滨太平洋褶皱系,地理范围包括黑龙江、吉林、辽宁中部和北部以及内蒙东部。
此外,本区内还有石炭-二叠系、第三系等含煤地层分布。
滇藏赋煤区的聚煤期多,台湾赋煤区以第三纪聚煤作用为主,但两地区的煤层气资源意义不大,故含煤地层分布状况不再赘述。
2)主要聚煤期含煤地层划分华南赋煤区二叠系含煤地层在杭州-鹰潭-赣州-韶关-北海一线以南的东南地层分区,二叠系含煤地层主要形成于早二叠世晚期,在闽西南、粤东、粤中称童子岩组,在浙西称礼贤组,在赣东一带称上绕组。
在连云港-合肥-九江-株州-百色一线以南的江南地层分区,二叠系含煤地层主要为海陆交互相的龙潭组,其次是以碳酸盐为主的合山组。
在龙门山-洱海-哀牢山一线以东、秦岭-大别山以南的扬子地层分区,上二叠统含煤地层以碳酸盐沉积为主的称吴家坪组,以海陆交互相为主的称龙潭组和汪家寨组,以玄武岩屑为主的陆相沉积称宣威组。
上二叠统含煤地层存在明显的穿时现象,含煤层位由东向西抬高,在东南分区为下二叠统,在江南分区为下二叠统上部的茅口阶(龙潭组下部),在扬子分区为上二叠统龙潭阶和长兴阶(均为龙潭组)。
华北赋煤区石炭-二叠系含煤地层华北石炭-二叠系含煤地层属典型的地台沉积,按沉积特征可归纳为四种类型。
在北纬41°以北的阴山、大青山、燕山、辽西的阴山-燕辽地层分区,石炭-二叠系属陆缘山间盆地沉积,在阴山、大青山称为拴马桩组,在辽西地区称为红螺岘组。
在北纬35°~41°之间的华北地层分区,石炭-二叠系由老至新划分为本溪组、太原组、山西组、下石盒子组、上石盒子组和石千峰组,主要含煤地层为太原组和下二叠统山西组。
在北纬35°以南(豫西及两淮)的南华北地层分区,含煤地层主要为下二叠统山西组、下石盒子组和上二叠统上石盒子组。
在鄂尔多斯西缘的贺兰山地层分区,石炭-二叠系从下至上划分为红土洼组、羊虎沟组、太原组、山西组、下石盒子组、上石盒子组和石千峰组,主要含煤地层为太原组和山西组,其次为羊虎沟组。
在中国煤田地质总局第三次煤田预测工作中(1997年),石炭系和二叠系均采用二分方法,上石炭统与下二叠统之间的分界位于太原组内马平阶与龙呤阶之间。
华北石炭-二叠系含煤地层存在东西分异、南北分带现象,含煤层位由北向南逐渐抬高。
北方下-中侏罗统含煤地层我国北方下-中侏罗统含煤地层分属新疆地层分区、北山-燕辽地层分区、柴达木-秦祁地层分区和鄂尔多斯地层分区。
在新疆分区的北疆地区,下-中侏罗统含煤地层为水西沟群,自下而上划分为八道湾组、三工河组和西山窑组,八道湾组和西山窑组为主要含煤地层。
在北山-燕辽分区的西段,下-中侏罗统自下而上分为艿艿沟组和青土井群,后者为主要含煤地层;在中段的大青山一带,含煤地层主要为五当沟组和召沟组;在东段地区,主要含煤地层为海房沟组和红旗组。
在柴达木-秦祁地层分区,现有木里、阿干镇、窑街、靖远等主要矿区,中侏罗统木里组、阿干镇组和窑街组为主要含煤地层。
鄂尔多斯分区包括陕、甘、宁、蒙诸省区的鄂尔多斯盆地和晋西、豫西等地区,主要含煤地层为中侏罗统延安组。
下白垩统含煤地层下白垩统含煤地层主要分布于东北赋煤区,地层分区主要包括二连-海拉尔分区、吉东分区和三江-穆棱河分区。
二连-海拉尔分区位于内蒙东部锡林格勒、呼伦贝尔、哲里木等盟,包括百余个内陆断陷盆地,含煤地层为乐巴花群、霍林河群或扎赉诺尔群。
松辽-吉东分区发育了阜新、铁法、康平、元宝山等含煤盆地,主要含煤地层为沙海组和阜新组,或沙河子组与营城组。
三江-穆棱河分区位于黑龙江佳木斯隆起以东,含煤地层为鸡西群,鸡西群是东北最主要的含煤地层,自下而上依次划分为城子河组和穆棱组。
2、主要聚煤期煤层我国各聚煤期均有可采煤层形成,从早石炭世到第三纪富煤面积缩小,煤层稳定性变差,煤层层数减少,单一煤层厚度增大。
聚煤范围最广、煤层连续性最好的是华北赋煤区,其次为华南赋煤区,单层煤层厚度最大的是西北赋煤区和东北赋煤区。
(1)华北赋煤区煤层发育特征华北赋煤区的主要聚煤期为石炭-二叠纪与早-中侏罗世,局部地段发育下石炭统、上三叠统和第三系可采煤层。
上石炭统可采煤层分布于北纬35o以北的地区,下二叠统可采煤层遍及整个华北盆地,含煤系数4.8~15.6%,含煤5~10层,含煤性好(表1-1)。
石炭-二叠系主要可采煤层厚度具有北厚南薄的总体展布趋势,南北分带明显。
北纬38°以北存在一个厚煤带,厚度一般在15m以上,最厚可达30余m,该带进一步发生东西分异,呈现出厚薄相间的南北向条带。
表1-1 华北赋煤区上石炭统一下二叠统煤层对比一览表注:据中国煤田地质总局(1997)简化。
在北纬35-38o之间,煤层厚度10->15m,大于15m者呈席状、片状分布,小于5m者零星展布在肥城、晋城、邯郸等地区。
在北纬35o以南的南华北地区,煤层厚度多在10m以下,且有向南变薄的趋势。
华北赋煤区的上二叠统煤层仅局限于南华北地区,含煤系数0.9~3.3%,含煤15~25层,以中厚煤层为主,煤层北薄南厚,呈东西走向的条带状分布,煤层总厚度在安徽淮南和河南确山一带可达20m 以上,且有向南增厚的趋势。
华北赋煤区下-中侏罗统煤层主要赋存于鄂尔多斯盆地及大同、京西、大青山、蔚县、义马、坊子等小型山间湖盆内。
鄂尔多斯盆地延安组共含煤10~15层,主要可采层5~7层,累计可采厚度15-20m,煤层集中分布于盆地的西部和东北部,煤层厚度具有由北向南、自西向东减薄的趋势,煤层层数多,分布面积广,横向较为稳定,累计厚度大,局部可达40余m。
在延安、延川、延长一带出现无煤区。
(2)华南赋煤区煤层发育特征在华南赋煤区西部,上二叠统煤层厚度呈现出中部厚、向四周变薄的总体展布趋势,周边煤层厚度一般小于5m,中部煤层的发育特征在黔北-川南隆起带、黔中斜坡带、黔西断陷区和滇东斜坡区有所不同。
黔北-川南隆起带上分布着川南、南桐、华蓥山、桐梓和毕节等煤田或矿区,含煤3-53层,平均16层。
煤层总厚0.45-28.12m,平均6.24m。
可采煤层总厚1.90-23.25m,平均4.33m。
局部可采煤层14层,大多为薄煤层,有1-2层为中厚煤层。
黔中斜坡带分布有贵阳、织纳、威宁等煤田或矿区,含煤8-82层,平均26层,煤层总厚1.51-45.03m,平均16.35m;可采煤层总厚3.04-38.0m,平均9.98m;局部可采煤层16层,多为薄煤层。
黔西断陷区主要为六盘水煤田,是华南西部的重要富煤地区,含煤13-90层,平均37层,煤层总厚7.02-69.75m,平均总厚28.88m,可采总厚4.68-45.79m,平均可采厚度15.27m,可采煤层14层,以中厚煤层为主,单层厚均在1.35m左右。
滇东斜坡区包括宣威和恩洪两个矿区,煤层层数及厚度均向西减少,含煤4-80层,平均36层,煤层总厚3.54-50.53m,平均18.54m,可采总厚2.72-42.13m,平均可采总厚11.11m,局部可采煤层17层,多为薄煤层,有1-2层中厚煤层发育。
在华南赋煤区东部,煤层发育于下石炭统测水组和上二叠统龙潭组。
下石炭统测水组富煤带分布于湘中和粤北地区。
湘中含煤3-7层,其中3号煤为主要可采煤层,2号和5号煤为局部可采煤层。
3号煤层厚度0-19.71m,平均1.5m左右,以渣渡矿区发育较好,平均厚度可达3.55m左右,煤层结构简单至复杂。
在金竹山矿区西北部及芦毛江矿区,下石炭统煤层以煤组出现,最多可达10个分层,煤层较稳定到不稳定,5号煤层厚度0-21.0m,平均1.3m左右,在金竹山一带发育较好,平均厚达2.28m,且结构简单,3号煤与5号的间距为0-10m。
此外,在粤北地区含可采或局部可采煤层2层,2号煤层厚度0-6.0m,平均1m左右,3号煤层厚度0-42.5m,平均3.00m,结构极为复杂,煤层极不稳定,两煤层之间间距在18m左右。
华南东部上二叠统龙潭组含煤沉积被古陆和水下隆起所分隔,各聚煤坳陷内含煤性差异较大,龙潭组普遍含有可采煤层,由南向北大致可分为三个聚煤带:南带位于赣南-粤北-湘南一带。
赣南信丰、龙南含B24、B26、B28等不稳定可采煤层,单层厚度在1m左右;粤北韶关含煤10余层,其中11号煤层全区稳定可采,厚约2m;湘南郴州含煤10层,其中5号和6号煤层稳定可采,厚度小于2m。
中带展布于湘中-赣东-皖东南-浙西北-苏南一带,是华南东部龙潭组的主要富煤地带。