铸造新技术
- 格式:ppt
- 大小:2.86 MB
- 文档页数:26
目前世界最先进的的铝铸造技术大全本文由全球铝业网 () 编辑,转载请注明出处,十分感谢!美国Wagastaff(瓦格斯塔夫)公司是世界著名铝材铸造设备公司,以向全球铝工业提供DC铸造设备而闻名全世界,不但如此,而且它还拥有许多先进的铝材铸造技术。
1.AirSlip气滑铸造技术AirSlip气滑铸造技术是Wagastaff公司最重要工艺,于1982年开发并投入市场。
到目前为止,全球的铸造车间大约拥有800条气滑铸造生产线,由于采用该技术生产出的产品质量好,一直是铝材生产厂家的首选技术。
AirSlip还有壳区小的特点,与使用传统铸造技术生产的产品相比,铸造速度更快,生产成本更有竞争力,产品晶粒结构均匀,缩短了均质化周期时间,在环保方面的优势是油耗最小,降低了冷却水流速。
2.LHC铝板坯铸造技术LHC铝板坯铸造技术是Wagastaff公司研究开发的新技术,其质量可以和电磁铸造技术生产的板坯质量相比,但生产成本却比电磁铸造生产板坯低一些。
LHC铸造的板坯具有产品质量优异、成品率高、产生废料少、能耗低、性能可靠的特点,并且由于冷却水流速低,节省能源。
LHC铝板坯铸造技术的突出特点是在板坯模上采用了油保持系统(oilretentionsystem),在铸造过程中主要省去了到达冷却水系统的模润滑油。
油保持系统的连续润滑降低了处理冷却水的相关成本。
油保持系统在采用模台倾斜系统时停止了模润滑油的滴流,降低了铸造台周围的“油喷溅”,并使进入冷却水系统的油较少,从而使在铸造台周围的工作人员减少走路打滑的现象。
3.保证铸造安全的StopCast技术为保证在铸造过程中操作人员的安全,Wagastaff公司开发研制出铝水池漏探测系统一StopCast系统,该系统在挤压坯铸造过程中探测到有铝水泄漏时会自动断开连续铝水流,所需时间仅仅为几秒;没有安装StopCast系统,则关断连续铝水流则要几分钟,甚至更长时间。
对于采用AirSlip挤压铸造技术和StopCast技术生产线的进一步开发仍在进行中。
铸造技术的发展现状与前景探究铸造技术是一种广泛应用的金属加工工艺,其发展对于工业生产具有重要意义。
随着现代制造业的不断发展和需求的不断增加,铸造技术也得到了迅速的发展并取得了较大的成就。
本文将对铸造技术的发展现状进行探究,并展望其未来的发展前景。
一、铸造技术的发展现状1. 传统铸造技术传统铸造技术主要包括砂型铸造、金属型铸造、压力铸造等。
这些技术在工业生产中应用广泛,具有成本低、工艺简单等优点。
但是传统铸造技术也存在一些问题,如生产效率低、能源消耗大、材料利用率低等,不能完全满足现代工业对高质量、高效率、节能环保的需求。
随着科技的不断进步,先进铸造技术不断涌现,如精密铸造技术、数字化铸造技术、快速凝固铸造技术等。
这些新技术在提高铸造件的精度、降低能耗、改善材料利用率等方面具有明显优势。
先进铸造技术也在发展中遇到了一些挑战,例如技术成熟度不高、设备投资大等问题,需要不断进行技术改进和创新。
随着人工智能、大数据、云计算等技术的不断发展,智能化铸造技术也逐渐走进人们的视野。
智能化铸造技术通过智能装备、智能控制系统等手段,实现铸造过程的自动化、智能化,极大地提高了生产效率和产品质量,降低了生产成本。
智能化铸造技术的发展将有效推动铸造行业向数字化、智能化方向转变。
数字化铸造技术是近年来的热门发展方向,它通过数字化建模、仿真分析等手段,对铸造过程进行全面监控和优化。
数字化铸造技术的发展将引领铸造行业向数字化制造方向转变,实现生产智能化、灵活化、高效化。
2. 绿色铸造技术的推广随着环保意识的增强,绿色铸造技术也受到了越来越多的关注。
各种新型的绿色铸造材料和清洁生产技术不断涌现,有力地推动了铸造行业向绿色化转型。
绿色铸造技术的发展将有效解决传统铸造技术存在的环境污染和资源浪费等问题。
3. 智能化铸造技术的应用铸造技术发展现状良好,同时面临的挑战和机遇也在不断增加。
只有不断进行技术创新和提高,才能更好地满足现代制造业对高质量、高效率、节能环保的需求,铸造技术必将迎来更加美好的未来。
新型铸造技术的研究及应用随着工业化的不断发展,铸造技术作为制造行业的重要基石,在技术的持续改进和创新中也得到了长足的发展。
近年来,新型铸造技术的研究和应用,为铸造行业带来了新的发展机遇。
一、新型铸造技术的研究1.1 数字化铸造技术数字化铸造技术是一种集成了数字化设计、数字化模拟、数控加工等多种先进技术的铸造生产方式。
主要通过对铸造工艺进行数字化仿真,优化铸造参数设置,提高生产效率和产品质量。
其中,CAD/CAM技术和虚拟样机技术是数字化铸造技术的核心。
1.2 新材料铸造技术新材料铸造技术是指应用新材料和新工艺技术进行铸造。
这种技术能够满足特定材料的需求,如高性能合金、超导材料等,同时还可以降低能耗和环境污染。
1.3 先进成形技术先进成形技术是一种通过快速成形技术制造金属原型的铸造技术。
它采用了激光喷粉和激光熔化成形、电子束烧结和光敏树脂快速成型等多种技术手段,可以实现一次成形,并且工艺稳定可靠,能够有效改善金属成形的精度和质量。
二、新型铸造技术的应用2.1 轻量化汽车零部件铸造随着汽车工业和环保意识的不断提高,轻量化汽车零部件的需求也越来越大,而新型铸造技术的应用,则可以有效地解决这一问题。
比如,采用先进的高强度铝材料,或采用热成型、注压成型等先进技术生产部件,可以将汽车的重量减轻15%-20%。
2.2 航空航天领域铸造航空航天领域对铸造技术的要求尤为高。
而数字化铸造技术和新材料铸造技术则可以为航空航天领域带来更高的科技含量。
比如,使用高强度合金材料,采用虚拟样机技术进行设计和仿真,可以有效的提高飞机的安全性和性能。
2.3 家电产品铸造家电产品作为大众化产品,对铸造的要求较高。
而先进成型技术的应用,则可以大幅提高产品的生产效率和质量。
比如,使用激光喷粉和激光熔化成形技术代替传统的生产方式,可以有效地提高家电产品的质量和生产效率。
三、新型铸造技术未来的发展趋势随着科技的不断推进,新型铸造技术也在不断的发展和创新。
铸造是现代机械制造工业的基础工艺之一。
铸造作为一种金属热加工工艺,在我国发展逐步成熟。
铸造机械就是利用这种技术将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件的能用到的所有机械设备,又称铸造设备。
新的铸造技术,可举出下述七个方面:(1)向轻量化挑战,超微细化和超薄壁化。
很多采用砂型铸件,在于砂子有适当的耐火性、砂型有使瓦斯通过的通气性、价格便宜、可反复利用,砂型毕竟是原始的,但依然是铸造法的主流。
通常砂型的铸造技术,在砂粒空隙(0.1mm)以下是不行。
历来代表小型铸件是加牙齿的齿套。
中川公司等利用精铸技术试制成音盘,使声音可以再生。
野口公司制作出如蚂蚁大小的铸件,用0.7微米的铝氧粉造型用离心铸造,蚂蚁的义眼模样也可以再生出来。
这方面铸造的开展会引起新的需求。
薄壁化是以压铸为中心而发展起来的,是利用高压的压铸法。
例如平均为1.0mm以下音频箱壳就是用1200吨压铸机高速铸造法制造出来的。
这种薄壁化的进展会加速铸件取代板金件。
在压铸中有效地利用芯子,从而由于中空而达到轻量化的目的。
例如增压器的叶轮过去都用重力铸造法生产的,在压铸法上用可旋转的金属芯子的方法开发出中空的叶轮。
用压铸法代替重力铸造从而取近净型的产品提高了效益。
(2)复杂形状部件的整体化;铸件一般多用于单体物件,最近已开始向复杂形状的部件发展。
例如将蜗轮增压器和排气岐管两种铸件合成整体,用耐热高速钢的减压吸引铸造法而铸成的最薄壁厚只有2mm的整体铸件。
(3)铸件焊接:迄今可焊接的都是钢件,最近铸铁件在具表面经过脱碳处理等工艺后也可以焊接了。
汽车用的铸件排气歧管和高速钢管焊接在一起,从面解决了由于铸铁件耐热性不足而采用了高速钢管的焊接结构以适应燃烧温度。
今后为达到廉价,性能好的目的分别制造焊接到一起的工艺也会有发展。
(4)触变铸造(半熔融铸造)液体固体在共存的状态下用高压方法进行铸造的一种方法。
铸造技术有哪些及应用铸造技术是制造业中非常重要的一项技术,它通过将熔化的金属或其他材料注入到模具中,然后冷却固化,最终得到所需的零件或产品。
铸造技术由于其灵活性、高效性和成本效益,在各行各业都得到了广泛的应用。
铸造技术根据其工艺和原理的不同,可以分为多种类型,下面将介绍几种常见的铸造技术及其应用。
1. 砂型铸造砂型铸造是最常见的铸造技术之一,也是历史最久远的铸造方法。
它的原理是利用湿砂模具将熔融金属注入,再通过冷却和固化得到所需的零件。
砂型铸造适用于生产大批量的零件,成本较低,适用于各种大小和形状的工件。
它广泛应用于汽车、航空航天、机械制造等领域。
2. 精密铸造精密铸造是一种高精度、高要求的铸造技术,通常适用于生产精密零件和复杂结构的产品。
与砂型铸造不同,精密铸造采用金属模具,可以实现更高的精度和表面质量。
精密铸造技术广泛应用于航空航天、国防、医疗器械等领域。
3. 压铸压铸是一种通过高压将金属或合金注入到模具中,以实现快速充填和高精度的铸造技术。
压铸适用于生产尺寸精度高、表面质量好的复杂结构零件,广泛应用于汽车零部件、电子设备、家用电器等领域。
4. 精密铸造精密铸造技术是一种高精度的铸造工艺,适用于生产精密的、复杂的零件。
精密铸造通常采用金属模具,具有高精度和表面质量的优势,广泛应用于航空航天、国防和医疗器械等领域。
5. 液态金属注射成型液态金属注射成型技术是一种先进的铸造技术,它通过将金属融化后注入到模具中,实现高精度、高表面质量的成型。
该技术适用于生产高精度的复杂结构零件,广泛应用于汽车、航空航天、电子设备等行业。
6. 冷室压铸冷室压铸是一种在金属液态温度较低的情况下进行压铸成型的铸造技术。
它适用于生产具有高强度和高硬度要求的零件,广泛应用于汽车、摩托车、航空航天、船舶等领域。
这些铸造技术各有特点,适用于不同的生产需求和行业。
铸造技术在制造业中起着举足轻重的作用,它可以实现从小型零件到大型零件的生产,满足了各种工业领域对于材料和零件的需求。
铸造技术创新及其应用实践总结铸造技术作为一种重要的制造工艺,在工业生产中发挥了不可替代的作用。
然而,随着时代的变迁,铸造技术也面临着不断的挑战与改进。
为此,不断进行创新是铸造技术得以发展壮大的关键。
随着现代化的要求不断提高,铸造行业不断推进技术的升级和创新,以便更好地满足市场的需求。
铸造技术创新已经取得了显著的成果。
一方面,新型铸造材料,如高温合金、高强度铝合金等不断涌现;另一方面,各类新式铸造工艺像微射线束铸造、准分子激光铸造等也被引入了实际生产中。
这些新技术不仅在提高产品质量、缩短生产周期、降低生产成本等方面起到了重要的推动作用,而且还赋予了铸造行业更多的创新能力。
进入新时代,我国政府提出了提高制造业创新能力的战略,这对于铸造技术的发展也提出了更高的要求。
创新技术的引入、研发和应用,不仅有利于提高铸造产品的质量,还可以提升行业的技术含量,推动行业的转型升级。
首先,铸造仿真技术在铸造行业得到了广泛使用,如计算机模拟辅助受力分析、热流场仿真、注塑模流分析等。
通过真实模拟物理环境,铸造仿真技术可以快速预测铸件在生产过程中出现的问题,并给出优化方案。
这样可以减少人工试验的时间和成本,降低生产风险,提高了产品的一致性和稳定性。
其次,新一代数字制造技术的快速发展使得先进的成形制造技术,如增材制造技术、数控加工技术、数控铣削等正逐渐取代原有的铸造制造技术。
同样数字制造技术的运用在铸造行业也得到了与日俱增的应用,打造了智能、高精度、自动化的铸造生产线,提高了生产效率和生产质量。
此外,新型的表面导向制造技术、高能密度表面制备技术、表面纳米处理等新技术也正带动着铸造生产的迈向高效化和高附加值的方向。
表面处理技术在提高产品表面性能、增大材料表面能、加速反应速率等方面具有广泛的应用。
在铸造加工中,表面处理技术特别适用于提高表面粗糙度、硬度和耐磨性,促进产品的耐用度。
总的来说,铸造行业在技术创新与升级过程中,应重视提高创新能力,加速科技创新的步伐,走向高品质产品制造。
新铸造工艺技术
新铸造工艺技术是指使用先进的工艺和技术对铸造过程进行改进和优化的一种方法。
通过应用新的工艺技术,可以提高铸件的质量和性能,降低生产成本,提高生产效率。
一种重要的新铸造工艺技术是数字化铸造技术。
数字化铸造技术是利用计算机技术对整个铸造过程进行模拟和优化,以实现自动化和智能化的铸造过程。
利用数字化铸造技术,可以进行铸型设计、铸件结构优化和工艺模拟等工作,从而提高铸件的质量和性能。
此外,数字化铸造技术还可以实现对铸件生产过程的自动化控制和监控,提高生产效率和产品一致性。
另一种新铸造工艺技术是凝胶模铸造技术。
凝胶模铸造技术是利用凝胶状材料(如聚丙烯酸钠凝胶)作为铸型材料,通过凝胶化、硬化和烧结等工艺过程,制造出具有复杂几何形状和高精度的铸件。
相比传统的砂型铸造技术,凝胶模铸造技术具有模具精度高、铸件质量好、尺寸稳定性强等优点。
凝胶模铸造技术适用于生产复杂零件和高精度零件,广泛应用于航空、航天、汽车和能源等领域。
此外,利用先进的液态金属铸造技术,也可以实现高效、快速的铸造过程。
液态金属铸造技术是利用金属液体在高温下的流动性和可塑性,通过模具的充型和凝固过程,制造出具有高精度和复杂形状的金属铸件。
液态金属铸造技术包括压力铸造、重力铸造和低压铸造等多种方法。
这些方法可以大大缩短生产周期,提高生产效率,并且可以生产出质量较高的铸件。
总之,新铸造工艺技术的应用,不仅可以提高铸件的质量和性能,还可以降低生产成本,提高生产效率。
随着科技的不断发展和进步,新的铸造工艺技术将不断涌现,推动整个铸造行业向更加智能化、高效化的方向发展。
国外熔模铸造新材料和新工艺的发展概况一、熔模铸造技术概述熔模铸造是一种传统的金属铸造技术,它通过将金属加热到液态,然后倒入预先制作好的熔模中进行成型。
这种技术具有成型精度高、表面光洁度好等优点,广泛应用于汽车、航空航天、电子设备等领域。
二、国外熔模铸造新材料和新工艺的发展概况1. 新材料的应用在熔模铸造中,新材料的应用可以提高产品的性能和质量。
例如,在航空航天领域,采用高温合金材料可以提高部件的耐高温性能;在汽车领域,采用铝合金可以降低车身重量。
此外,还有一些新型材料如钛合金、镍基合金等也得到了广泛应用。
2. 新工艺的发展随着科技不断进步,新工艺也不断涌现。
其中最具代表性的是快速凝固技术和数控加工技术。
快速凝固技术是利用高速冷却来制备非晶态或细晶粒材料,提高材料的强度和硬度。
这种技术可以应用于熔模铸造中,制备出更加高性能的铸件。
数控加工技术则是通过计算机控制机床进行加工,可以实现高精度、高效率、低成本的生产方式。
这种技术可以应用于熔模铸造中,提高产品的加工精度和生产效率。
三、国外熔模铸造新材料和新工艺的应用案例1. 高温合金材料在航空领域的应用高温合金材料具有优异的耐腐蚀性和耐高温性能,在航空领域得到了广泛应用。
例如,美国通用电气公司采用了一种名为“单晶涡轮叶片”的部件,该部件采用了先进的熔模铸造技术,结合快速凝固技术制备出非晶态合金材料,从而实现了更好的性能。
2. 铝合金在汽车领域的应用铝合金具有轻质、强度高等特点,在汽车领域得到广泛应用。
例如,德国宝马公司采用了一种名为“i3”的电动车型,该车身采用了铝合金材料,从而实现了更轻量化的设计。
四、国外熔模铸造新材料和新工艺的未来发展趋势1. 绿色环保随着环保意识的不断提高,绿色环保已经成为了未来发展的重要趋势。
在熔模铸造中,采用可再生材料和节能减排技术将成为未来发展的方向。
2. 数字化制造数字化制造是将数字技术应用于制造业中,可以实现高效率、高精度、低成本的生产方式。
最新锻造冲压铸造的区别锻造、冲压和铸造是金属加工领域中常见的三种工艺,它们在产品制造过程中扮演着不同的角色。
本文将分析并比较最新锻造、冲压和铸造三者的区别。
锻造是一种通过对金属进行加热、锻打和成形的工艺。
最新锻造技术采用了现代先进的设备和技术,以满足日益复杂的产品需求。
锻造的优点包括材料的强度高、表面光滑以及对内部缺陷的敏感度低。
这使得锻造成为制造高强度、高质量和高可靠性产品的理想选择。
例如,航空航天和汽车行业常使用锻造工艺来制造发动机零件和悬挂系统。
冲压是一种通过将金属材料置于模具中,然后施加高压力将其压制成形的工艺。
冲压广泛应用于制造汽车零件、家用电器和电子设备等领域。
最新冲压技术利用了先进的自动化和控制系统,提高了生产效率和质量。
相比于锻造,冲压的优点包括生产速度快、成本低、重复性好以及适用于大规模生产。
然而,冲压的缺点是对材料的硬度和强度要求较高,并且难以处理薄壁、复杂形状的产品。
铸造是一种通过将熔化的金属注入模具中,然后冷却凝固成形的工艺。
铸造可用于制造各种形状和尺寸的产品,例如汽车零件、船舶零件和建筑构件。
最新铸造技术包括压铸、砂型铸造和失重铸造等多种方法,以满足不同产品的要求。
铸造的优点是制造过程简单、成本低、能够制造大型产品,并且能够使用各种金属合金。
然而,铸造的表面质量和精度较锻造和冲压稍差,且对材料的性能均匀性要求较高。
综上所述,最新锻造、冲压和铸造在金属加工领域中各有优缺点。
锻造适用于制造高强度和高质量产品,冲压适用于大规模生产,而铸造适用于制造各种形状和大型产品。
选择适当的工艺取决于产品的需求和使用环境。
随着技术的不断进步,这三种工艺将继续发展,并为各行业的产品提供更好的解决方案。
块范法和合范铸造-概述说明以及解释1.引言1.1 概述概述在金属铸造领域,块范法和合范铸造是两种常见的铸造方法。
块范法是一种传统的铸造方式,而合范铸造是一种相对较新的铸造技术。
这两种方法在工艺流程、适用领域等方面存在一些差异。
块范法是一种常见的铸造方法,它使用块状的砂型作为铸造模具。
砂型通常由一种特殊的铸造砂混合物制成,该砂能够承受高温和压力。
通过在砂型中倒入熔融金属,待金属冷却凝固后,就可以得到所需的铸件。
块范法具有制造复杂形状的能力,可以应用于各种金属铸件的制造。
与之相比,合范铸造是一种使用合范(也称为永磁模)的铸造方法。
合范是一种由永磁材料制成的特殊模具,具有较高的磁力。
在合范铸造中,通过在合范的磁场作用下,将金属液倒入模具中进行铸造。
合范铸造具有优秀的液态金属流动性,能够制造出高质量的铸件。
块范法和合范铸造在应用领域上也有一些区别。
块范法适用于中小型铸件的制造,特别是对于需求量较小、形状复杂、精度要求较高的铸件而言,块范法是一种较为理想的选择。
而合范铸造主要适用于大型和超大型铸件的制造,例如航空航天、能源、交通等领域的发动机零部件。
综上所述,块范法和合范铸造是两种常见的铸造方法。
块范法借助砂型制造复杂形状的铸件,适用于中小型铸件的制造;而合范铸造利用合范模具,具有较好的流动性,适用于大型和超大型铸件的制造。
随着技术的不断发展和创新,这两种铸造方法在未来可能会有更广泛的应用和发展。
1.2 文章结构本文主要探讨了块范法和合范铸造两种不同的铸造方法。
文章结构如下:2. 正文2.1 块范法2.1.1 特点2.1.2 应用领域2.2 合范铸造2.2.1 定义2.2.2 工艺流程3. 结论3.1 对比分析3.2 未来发展在正文部分,我们将首先介绍块范法,包括其特点和应用领域。
然后,我们将详细讨论合范铸造,包括其定义和工艺流程。
最后,在结论部分,我们将进行对比分析这两种铸造方法,并展望它们未来的发展方向。
层叠铸造技术
层叠铸造技术是一种新型的铸造方法,它使用多层次的粉末堆叠来构建复杂的三维结构。
该技术通常涉及以下步骤:
1. 设计和制造模型:使用计算机辅助设计软件创建产品的三维模型,并将其划分为多个薄层。
2. 准备粉末材料:选择合适的金属或陶瓷粉末材料,并将其处理成可用于层叠铸造的形式。
3. 层叠构建:将粉末材料层层堆叠放置在铸造台或底座上,每一层都要精确地定位。
4. 粉末结团:使用粉末结团技术(例如激光束或粘合剂)将每一层的粉末结合在一起。
5. 重复层叠:重复以上步骤,逐渐堆叠更多的层次,直到最终形成完整的三维结构。
6. 烧结或熔化:将堆叠好的粉末材料烧结或熔化,以使其成为坚固的实体。
7. 后处理:对烧结或熔化后的产品进行必要的后处理,例如清理、抛光、涂层等。
层叠铸造技术具有许多优点,包括可以制造复杂的形状和结构,
减少材料浪费,提高生产效率以及实现个性化定制。
它在航空航天、医疗器械、汽车制造和艺术品等领域有广泛的应用前景。
铸造技术的创新与应用铸造技术的创新与应用铸造技术作为一种重要的制造工艺技术,在工业领域具有广泛的应用。
随着科技的进步和社会的发展,铸造技术也在不断创新与改进,以满足不同行业的需求,并提高产品的质量和生产效率。
一、传统铸造技术的创新传统的铸造技术主要包括砂型铸造、金属型铸造和压力铸造等。
这些传统的铸造技术在实际应用中存在一些问题,比如制作周期长、生产效率低、产品质量难以保证等。
为了解决这些问题,人们对传统的铸造技术进行了创新和改进。
首先,在砂型铸造方面,人们引入了数控技术和三维打印技术,可以通过计算机辅助设计和模具制造,快速实现砂型的制作,大大缩短了生产周期。
同时,利用三维打印技术可以实现复杂零件的快速制造,提高了铸件的精度和质量。
其次,在金属型铸造方面,人们利用高温合金材料和先进的涂层技术,提高了金属型的耐高温、抗氧化和抗侵蚀性能,延长了模具的使用寿命。
此外,还引入了真空铸造和低压铸造技术,可以减少气孔和夹杂物的产生,提高铸件的紧密性和表面质量。
最后,在压力铸造方面,人们引入了先进的压铸设备和自动化控制技术,实现了生产过程的高度智能化和自动化。
同时,还采用了新的压力铸造工艺,如半固态压力铸造和胶模压铸等,可以提高产品的组织结构和力学性能。
二、铸造技术的应用案例铸造技术的创新为各个行业的发展提供了支持,以下是一些铸造技术在不同行业的应用案例。
1. 汽车行业:汽车是铸造技术的主要应用领域之一。
利用铸造技术可以制造发动机缸体、曲轴、传动箱、悬挂系统等重要零部件。
通过创新的铸造技术,可以实现这些零部件的轻量化、高强度和高精度,提高整车的性能和燃油经济性。
2. 能源与电力行业:在能源和电力领域,铸造技术被广泛应用于制造汽轮机叶片、燃烧器、热交换器等关键部件。
通过采用高温合金材料和复杂结构设计,可以提高这些关键部件的抗高温和抗腐蚀性能,提高能源转换的效率和可靠性。
3. 航空航天行业:航空航天领域对铸件材质的要求极高,同时还需要实现零部件的轻量化和高强度。
熔模精密铸造新技术新工艺一、概述熔模精密铸造是我国的一种古老的传统工艺。
早在2400多年以前,我国就采用失蜡法铸造出精美的工艺品。
在此基础上运用现代技术发展成为无余量熔模精密铸造这一新的铸造技术,这种方法可以铸造出几何形状非常复杂的零件,而且,除装配面需经机械加工外,其它内外表面均不需加工,节约了大量的设备和人力,大大缩短了制造周期。
五十年代初,我国已将熔模铸造用于机械制造,特别是航空涡轮发动机叶片的生产。
而西方国家六十年代已出现了无余量精密铸造技术。
我国运用、掌握这一技术是在七十年代末期以引进英国R·R公司斯贝发动机制造技术专利为标志的。
随后,在航空发动机制造厂(410、420、430、331厂、航材院)内得到了迅速的推广应用和发展,大大提高了我国航空发动机制造工艺水平,提高了产品的质量,明显降低了产品的制造成本。
随着现代航空发动机涡轮前进口温度的不断提高,单靠提高材料的性能来满足发动机性能的提高已不可能,于是从发动机的设计结构和制造工艺的结合上力争找到突破点,表现在无余量精密铸造上的突破点就是:(1)将涡轮工作叶片和导向叶片由实心设计成空心,采用严格的强制冷却技术,这样就使得精铸叶片的内腔越来越复杂,这就是无余量精铸空心叶片。
(2)人为改变晶粒的生长方向,让一个叶片的晶粒,全部沿着叶片受力的主应力轴方向平行生长,甚至整个叶片就是一个晶粒,没有第二个晶粒,这就是定向凝固叶片或叫单晶叶片,这种技术就叫定向凝固(单晶)技术。
如果和第一个结合起来,它就叫“无余量(精铸)定向(单晶)空心叶片”。
与这个方法相比,第1种方法又叫“无余量(精铸)等轴晶空心叶片”。
(3)将多个单个零件分别加工出来或若干个单元体制造出来再组装成一个整体组件,而改为整体铸造出来,原来需经加工的型面而改为直接铸出,这就是无余量整体精密铸件,这种技术就是无余量整铸技术。
上述技术已在我国航空、航天发动机制造技术上得到充分的体现:无余量精铸空心叶片技术在FWS9发动机、WP13发动机、FS-2发动机上得以应用。
铸造技术的发展现状与前景探究铸造技术是一项古老而重要的制造工艺,广泛应用于各个工业领域。
随着科技的进步和需求的增加,铸造技术也在不断发展,不断涌现出新的成果和应用。
本文将探究铸造技术的现状和前景,并对其未来的发展进行展望。
1.1 传统铸造技术传统铸造技术是指基于传统模具和工艺的铸造过程。
它使用沙土、石膏等材料作为模具,在模具中注入熔融金属或合金,经过冷却后取出成品。
传统铸造技术简单、成本低,广泛应用于冶金、机械、汽车等行业。
随着科技的进步,先进铸造技术不断涌现。
其中包括精密铸造技术、快速凝固铸造技术、数字化铸造技术等。
精密铸造技术利用先进的模具制造技术和精确的铸造工艺,生产出高精度、高质量的铸件。
快速凝固铸造技术通过控制金属凝固速度,优化铸件的内部结构,提高铸件的性能。
数字化铸造技术利用计算机辅助设计和制造技术,实现铸件的快速设计和生产。
智能化铸造技术是指运用传感器、自动化控制和人工智能等技术,实现铸造过程的自动化和智能化。
智能化铸造技术可以提高生产效率和产品质量,减少人工操作和能源消耗。
目前,智能化铸造技术已经在一些大型铸造企业得到应用,并取得了良好的效果。
2.1 优化设计和模拟仿真随着计算机技术的发展,优化设计和模拟仿真技术在铸造领域的应用越来越广泛。
优化设计和模拟仿真可以通过数学模型和仿真软件,对铸件的几何形状、工艺参数等进行优化和模拟。
这将大大提高铸造过程的效率和产品的质量,降低成本和能源消耗。
2.2 精密铸造和材料创新精密铸造技术可以生产出高精度、高质量的铸件,广泛应用于航空、航天等高端领域。
随着科技的进步,新型材料不断涌现,对铸造技术提出了更高的要求。
材料创新和精密铸造技术的结合,将推动铸造技术的进一步发展。
2.3 绿色铸造和资源循环利用绿色铸造是指在铸造过程中减少环境污染和资源浪费的铸造技术。
绿色铸造技术可以通过节能、减排等手段,降低能源消耗和环境污染。
铸造过程中产生的废料和废渣可以通过资源循环利用进行再生利用。
新技术新工艺细晶铸造细晶铸造国外近二十年来集中力量进展了高温合金定向铸造与单晶铸造技术,要紧是为了提高航空发动机高压涡轮叶片的高温工作能力,从而增大发动机的推力,并延长其工作寿命。
与此同时,航空发动机的恶劣工况对在中低温条件下工作的低压涡轮叶片、整体叶盘与涡轮机匣等高温合金铸件的低周疲劳寿命提出了更高要求。
但是这类铸件在普通熔模精铸工艺生产条件下,通常为粗大的树枝晶或者柱状晶,晶粒平均尺寸大于4mm,较典型的为4~9mm。
由于晶粒粗大及组织、性能上的各向异性,很容易导致铸件在使用过程中疲劳裂纹的产生与进展,这关于铸件的疲劳性能特别是低周疲劳性能极为不利,同时造成铸件力学性能数据过于分散,降低了设计容限。
随着对发动机的整体寿命与性能要求的进一步提高,改善铸件的中低温疲劳性能及其他力学性能显得十分重要。
这便导致了细晶铸造技术的产生与进展。
工业发达国家,特别是美国与德国,早在20世纪70年代末就开展了高温合金细晶铸造技术的研究与应用,在20世纪80年代中后期该项技术进展趋于成熟,目前正在航空、航天工业领域中扩大其应用范围,如美国Howmet公司利用细晶铸造技术成功地制造了Mod5A、Mar-M247、IN713C、1N718等高温合金整体涡轮,使涡轮的低周疲劳寿命提高了2~3倍。
德国、法国在新型号航空发动机上也使用了细晶整体涡轮铸件。
国内对高温合金细晶铸造技术的研究从20世纪80年代末开始起步,通过“八五”与“九五”期间的研究与应用,我国航空制造业建立了专门的细晶铸造设备,对高温合金细晶铸造工艺进行了较系统的试验,研制了一批镍基高温合金细晶铸件,并已应用于航空发动机中,在细晶铸造研究领域内取得了重要的进展。
1 细晶铸造的特点与工艺方法1.1 细晶铸造的特点细晶铸造技术或者工艺(FGCP)的原理是通过操纵普通熔模铸造工艺,强化合金的形核机制,在铸造过程中使合金形成大量结晶核心,并阻止晶粒长大,从而获得平均晶粒尺寸小于1.6mm的均匀、细小、各向同性的等轴晶铸件,较典型的细晶铸件晶粒度为美国标准ASTM0~2级。