坐标系的变化与图形变换
- 格式:doc
- 大小:41.50 KB
- 文档页数:4
冀教版数学八年级下册《图形变化与图形上点的坐标之间的关系》教学设计一. 教材分析冀教版数学八年级下册《图形变化与图形上点的坐标之间的关系》这一章节主要介绍了图形在坐标系中的变换,包括平移、旋转和轴对称等,以及这些变换与图形上点的坐标之间的关系。
通过本章的学习,学生能够理解图形变换的实质,掌握图形变换的方法,并能运用坐标表示和计算图形变换后点的坐标。
二. 学情分析学生在七年级已经学习了坐标系和坐标的概念,对坐标系有一定的认识,但对于图形变换和坐标之间的关系可能还没有完全理解。
因此,在教学过程中,需要引导学生通过实际操作和思考,逐步理解图形变换与坐标之间的关系。
三. 教学目标1.理解图形变换的实质,掌握图形变换的方法。
2.能够运用坐标表示和计算图形变换后点的坐标。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.图形变换的实质和方法的掌握。
2.图形变换与坐标之间的关系的理解。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过实际操作和思考,探索图形变换与坐标之间的关系。
2.运用多媒体辅助教学,直观展示图形变换的过程,帮助学生理解和掌握。
3.采用小组合作学习,鼓励学生互相讨论和交流,提高学生的合作能力和沟通能力。
六. 教学准备1.多媒体教学设备。
2.坐标纸、直尺、圆规等学习工具。
3.教学课件和练习题。
七. 教学过程1.导入(5分钟)通过一个简单的图形变换实例,引导学生思考图形变换的过程和坐标的变化。
例如,将一个点(2,3)进行平移,让学生观察坐标的变化。
2.呈现(15分钟)利用多媒体展示各种图形变换的实例,包括平移、旋转和轴对称等,并引导学生思考这些变换与坐标之间的关系。
3.操练(15分钟)让学生分组进行实际操作,利用坐标纸和学具进行图形变换,并记录变换后点的坐标。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生独立完成一些图形变换的练习题,巩固所学知识。
教师选取部分学生的作业进行点评和讲解。
平面直角坐标系下的图形变换王建华图形变换是近几年来中考热点,除了选择题、解答题外,创新探索题往往以“图形变换”为载体,将试题设计成探索性问题、开放性问题综合考察学生的逻辑推理能力,一般难度较大。
在平面直角坐标系中,探索图形坐标的的变化和平移、对称、旋转和伸缩间的关系,是中考考查平面直角坐标系的命题热点和趋势,这类试题设计灵活平移: 上下平移横坐标不变,纵坐标改变左右平移横坐标改变,纵坐标不变对称: 关于x轴对称横坐标不变,纵坐标改变关于y轴对称横坐标不变,纵坐标不变关于中心对称横坐标、纵坐标都互为相反数旋转:改变图形的位置,不改变图形的大小和形状旋转角旋转半径弧长公式L=nπR/180一、平移例1,如图1,已知△ABC的位置,画出将ABC向右平移5个单位长度后所得的ABC,并写出三角形各顶点的坐标,平移后与平移前对应点的坐标有什么变化?解析:△ABC的三个顶点的坐标是:A(-2,5)、B(-4,3)、C(-1,2).向右平移5个单位长度后,得到的△A′B′C′对应的顶点的坐标是:A′(3,5,、B′(1,3)、C′(4,2).比较对应顶点的坐标可以得到:沿x轴向右平移之后,三个顶点的纵坐标都没有变化,而横坐标都增加了5个单位长度.友情提示:如果将△ABC沿y轴向下平移5个单位,三角形各顶点的横坐标都不变,而纵坐标都减少5个单位.(请你画画看).例2. 如图,要把线段AB平移,使得点A到达点A'(4,2),点B到达点B',那么点B'的坐标是_______。
析解:由图可知点A移动到A/可以认为先向右平移4个单位,再向上平移1个单位,∴)3,3(B经过相同的平移后可得)4,7(/B反思:①根据平移的坐标变化规律:★左右平移时:向左平移h个单位),(),(bhaba-→向右平移h个单位),(),(bhaba+→★上下平移时:向上平移h个单位),(),(hbaba+→向下平移h个单位),(),(hbaba-→二、旋转例3.如图2,已知△ABC,画出△ABC关于坐标原点0旋转180°后所得△A′B′C′,并写出三角形各顶点的坐标,旋转后与旋转前对应点的坐标有什么变化?解析:△ABC三个顶点的坐标分别是:A(-2,4),B(-4,2),C(-1,1).△A′B′C′三个顶点的坐标分别是:图2图1B/图2图1A′(2,-4),B′(4,-2),C′(1,-1).比较对应点的坐标可以发现:将△ABC沿坐标原点旋转180°后,各顶点的坐标分别是原三角形各顶点坐标的相反数.例3如图,在直角坐标系中,△ABO的顶点A、B、O的坐标分别为(1,0)、(0,1)、(0,0).点列P1、P2、P3、…中的相邻两点都关于△ABO的一个顶点对称:点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O 对称,….对称中心分别是A、B,O,A,B,O,…,且这些对称中心依次循环.已知点P1的坐标是(1,1),试求出点P2、P7、P100的坐标.分析:本题是一道和对称有关的探索题,是在中心对称和点的坐标知识基础上的拓宽题,由于是规律循环的对称,所以解决问题的关键是找出循环规律.如图,标出P1到P7各点,可以发现点P7和点P1重合,继续下去可以发现点P8和点P2循环,所以6个点循环一次,这样可以求出各点的坐标.解:如图P2(1,-1),P7(1,1),因为100除以6余4,所以点P100和点P4的坐标相同,所以P100的坐标为(1,-3).三、对称例4.如图3,已知△ABC,画出△ABC关于x轴对称的△A′B′C′,并写出各顶点的坐标.关于x轴对称的两个三角形对应顶点的坐标有什么关系?解析:△ABC三个顶点的坐标分别是:A(1,4),B(3,1),C(-2,2).△A′B′C′三个顶点的坐标分别是:A′(1,-4),B′(3,-1),C′(-2,-2).观察各对应顶点的坐标可以发现:关于x轴对称两个三角形的对应顶点的横坐标不变,纵坐标互为相反数.友情提示:关于y轴对成的两个图形,对称点的纵坐标不变,横坐标互为相反数.在直角坐标系中,ABC△的三个顶点的位置如图3所示.(1)请画出ABC△关于y轴对称的A B C'''△(其中A B C''',,分别是A B C,,的对应点,不写画法);(2)直接写出A B C''',,三点的坐标:(_____)(_____)(_____)A B C''',,.析解:如图4,根据关于y轴对称的点的纵坐标不变,横坐标为原横坐标的相反数,即横坐标乘以1-,故可得(2)(23)A',,(31)B',,(12)C'--,反思:★关于x轴对称的点的横坐标不变,纵坐标为原纵坐标的相反数,即纵坐标乘以1-★关于y轴对称的点的纵坐标不变,横坐标为原横坐标的相反数,即横坐标乘以1-★关于原点成中心对称的点的,横坐标为原横坐标的相反数,纵坐标为原纵坐标的相反数,即横坐标、纵坐标同乘以1-四、位似例4 如图4,已知△ABC,画出△ABC以坐标原点0为位似中心的位似△A′B′C′,使△A′B′C′在第三象限,与△ABC 的位似比为21,写出三角形各顶点的坐标,位似变换后对应顶点发生什么变化?解析:△ABC三个顶点的坐标分别是:A(2,2),B(6,4),C(4,6).△A′B′C′三个顶点的坐标分别是:A′(-1,-1),B′(-3,-2),C′(-2,-3).图31 2 xO1-1ABCy1 2 xO1-1ABCA'B'C'y图3 图4C B AA 2C 2A 1B 1C 1O观图形可知,△A ′B ′C ′各顶点的坐标分别是△ABC对应各顶点坐标21的相反数.友情提示: △ABC 以坐标原点0为位似中心的位似△A ′B ′C ′,当△A ′B ′C ′与△ABC 的位似比为21,且△A ′B ′C ′在第一象限时, △A ′B ′C ′各顶点的坐标分别是△ABC 各顶点坐标的21.课前练习:在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC 的三个顶点都在格点上(每个小方格的顶点叫格点). ⑴画出△ABC 向下平移4个单位后的△A 1B 1C 1;⑵画出△ABC 绕点O 顺时针旋转90°后的△A 2B 2C 2,并求出A 旋转到A 2所经过的路线长.解:⑴画出△A 1B 1C 1;⑵画出△A 2B 2C 2, ,连接OA 1、OA 2,OA=2223+=13点A 旋转到A 2,所经过的路线长为:ι=9013131802ππ⋅=点评:图形的变换可以转化为点的问题,即找到顶点变换后的对应点,再顺次连接这些点即可得到图形.旋转变换要明确旋转中心、旋转方向、旋转半径、旋转角度;平移变换要明确平移的方向和距离;作一个图形关于某点的中心对称图形要明确对应点的连线经过对称中心,且对应点到对称中心的距离相等;作一个图形关于某一条直线的的对称图形,要明确对应点的连线被对称轴平分,且对应点到对称轴的距离相等。
小学生数学问题的图形变换与坐标系认知在小学生的数学学习中,图形变换与坐标系认知是两个非常重要的概念。
它们不仅能够帮助孩子们更好地理解数学知识,还能培养他们的空间思维和逻辑推理能力。
图形变换,简单来说,就是图形的位置、形状或大小发生了改变。
常见的图形变换包括平移、旋转和对称。
对于小学生来说,理解这些概念可能一开始会有些困难,但通过生动有趣的例子和实际操作,他们能够逐渐掌握。
平移,就像是一个物体在平面上沿着直线滑动。
比如说,一辆小汽车在笔直的公路上行驶,它的位置发生了改变,但形状和大小没有变化,这就是平移。
我们可以让孩子们用手中的图形卡片,在纸上进行平移的操作,感受图形在平移过程中的特点。
旋转呢,则是图形围绕一个点转动。
比如家里的风扇,叶片不停地绕着中心轴转动,这就是旋转。
在教学中,可以让孩子们自己制作一个小风车,观察风车转动时的情况,从而理解旋转的概念。
对称,是指图形沿着某条直线对折后,两边能够完全重合。
我们生活中有很多对称的例子,像蝴蝶的翅膀、人的脸等。
让孩子们通过折纸的方式,找出对称轴,能够更直观地感受对称的美。
图形变换在解决数学问题中有着广泛的应用。
例如,在计算一些复杂图形的面积时,通过将图形进行平移或旋转,可以将其转化为我们熟悉的简单图形,从而更容易计算。
而坐标系则是一个用来确定位置的工具。
想象一下,我们在一个大广场上,如果没有坐标,要描述一个人的位置会非常困难。
但如果有了坐标系,我们就可以准确地说出这个人在第几行第几列。
在小学阶段,孩子们通常先接触到的是简单的平面直角坐标系。
它由两条互相垂直的数轴组成,水平的数轴叫做 x 轴,垂直的数轴叫做 y 轴。
坐标轴上的刻度就像是一个个“地址”,通过这些刻度,我们可以确定一个点的位置。
为了让孩子们更好地理解坐标系,我们可以用教室的座位来举例。
把教室的横排看作 x 轴,纵排看作 y 轴,那么每个同学的座位就可以用一个坐标来表示。
比如,小明坐在第 3 排第 4 列,我们就可以用(4,3)来表示他的位置。
图形与坐标变换在数学和计算机图形学中,图形的展示离不开坐标变换。
坐标变换是一种将图形从一个坐标系转换到另一个坐标系的方法,在处理图形的旋转、平移和缩放等操作时起到了至关重要的作用。
本文将介绍常见的图形坐标变换方法及其应用。
一、平移变换平移变换是指将图形沿着坐标轴的方向平移一定的距离。
平移变换的数学表示为:```(x', y') = (x + dx, y + dy)```其中,(x,y)是原始点的坐标,(x',y')是平移后的点的坐标,dx和dy分别是平移的水平和垂直距离。
平移变换在图形处理中常用于移动对象、实现图像的滚动以及图形的布局调整等。
通过修改坐标偏移量,可以将图形相对于原始位置进行任意平移。
二、旋转变换旋转变换是指将图形绕一个旋转中心点旋转一定的角度。
旋转变换的数学表示为:```x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ```其中,(x,y)是原始点的坐标,(x',y')是旋转后的点的坐标,θ是旋转的角度。
旋转变换常用于图像的翻转、旋转效果的实现以及物体在平面内的旋转变化等。
通过调整旋转角度,可以改变图形的朝向和角度。
三、缩放变换缩放变换是指将图形按照比例因子进行放大或缩小。
缩放变换的数学表示为:```x' = x * sxy' = y * sy```其中,(x,y)是原始点的坐标,(x',y')是缩放后的点的坐标,sx和sy分别是水平和垂直方向的缩放比例因子。
缩放变换常用于图像的放大和缩小、图形的形变效果实现以及物体的大小调整等。
通过调整缩放因子,可以改变图形的大小比例。
四、矩阵变换矩阵变换是一种将多种变换方法结合起来进行处理的方式,常用的矩阵变换包括平移、旋转、缩放和剪切等。
矩阵变换的数学表示为:```[x'] [a b c] [x][y'] = [d e f] * [y][1] [g h i] [1]```其中,(x,y)是原始点的坐标,(x',y')是变换后的点的坐标,矩阵[A]是变换矩阵。
图形的变换与坐标教案第一章:图形的认识与坐标系的建立1.1 平面直角坐标系的认识讲解平面直角坐标系的定义和构成演示坐标轴上的点与实际物体的对应关系让学生通过实例理解坐标系在几何中的应用1.2 坐标与图形的关系解释点的坐标表示方法分析直线、三角形等基本图形在坐标系中的表示让学生通过实例掌握坐标与图形之间的关系第二章:图形的平移变换2.1 平移变换的概念讲解平移变换的定义和特点演示平移变换对图形的影响让学生通过实例理解平移变换的性质2.2 平移变换的坐标表示讲解平移变换的坐标表示方法分析平移变换对点的坐标的影响让学生通过实例掌握平移变换的坐标表示方法第三章:图形的旋转变换3.1 旋转变换的概念讲解旋转变换的定义和特点演示旋转变换对图形的影响让学生通过实例理解旋转变换的性质3.2 旋转变换的坐标表示讲解旋转变换的坐标表示方法分析旋转变换对点的坐标的影响让学生通过实例掌握旋转变换的坐标表示方法第四章:图形的缩放变换4.1 缩放变换的概念讲解缩放变换的定义和特点演示缩放变换对图形的影响让学生通过实例理解缩放变换的性质4.2 缩放变换的坐标表示讲解缩放变换的坐标表示方法分析缩放变换对点的坐标的影响让学生通过实例掌握缩放变换的坐标表示方法第五章:图形变换的应用5.1 图形变换在几何中的应用讲解图形变换在几何问题中的应用分析实例问题,让学生理解图形变换对几何问题的重要性让学生通过练习题巩固图形变换在几何中的应用5.2 图形变换在实际问题中的应用讲解图形变换在实际问题中的应用分析实例问题,让学生理解图形变换在实际问题中的作用让学生通过练习题巩固图形变换在实际问题中的应用第六章:组合图形的变换6.1 组合图形变换的概念讲解组合图形变换的定义和特点演示组合图形变换对图形的影响让学生通过实例理解组合图形变换的性质6.2 组合图形变换的坐标表示讲解组合图形变换的坐标表示方法分析组合图形变换对点的坐标的影响让学生通过实例掌握组合图形变换的坐标表示方法第七章:坐标与图形变换的综合应用7.1 坐标与图形变换在几何问题中的应用讲解坐标与图形变换在几何问题中的应用分析实例问题,让学生理解坐标与图形变换对几何问题的重要性让学生通过练习题巩固坐标与图形变换在几何中的应用7.2 坐标与图形变换在实际问题中的应用讲解坐标与图形变换在实际问题中的应用分析实例问题,让学生理解坐标与图形变换在实际问题中的作用让学生通过练习题巩固坐标与图形变换在实际问题中的应用第八章:计算机辅助几何设计8.1 计算机辅助几何设计的基本概念讲解计算机辅助几何设计的基本概念和特点演示计算机辅助几何设计在图形变换中的应用让学生通过实例理解计算机辅助几何设计的基本原理8.2 计算机辅助几何设计软件的使用讲解计算机辅助几何设计软件的基本操作分析实例问题,让学生掌握计算机辅助几何设计软件的使用方法让学生通过练习题熟练使用计算机辅助几何设计软件第九章:图形变换与坐标系的拓展9.1 非平面直角坐标系中的图形变换讲解非平面直角坐标系中的图形变换方法演示非平面直角坐标系中图形变换对图形的影响让学生通过实例理解非平面直角坐标系中图形变换的性质9.2 变换群与图形变换讲解变换群的基本概念和性质分析变换群在图形变换中的应用让学生通过实例理解变换群与图形变换的关系第十章:复习与拓展10.1 复习本章所学内容复习本章所学的基本概念、方法和技巧分析典型问题,让学生巩固本章所学知识让学生通过练习题检验自己的学习成果10.2 拓展图形变换的应用领域讲解图形变换在其他学科领域中的应用分析实例问题,让学生了解图形变换的广泛应用激发学生对图形变换在实际问题中应用的兴趣重点和难点解析重点环节一:平面直角坐标系的认识重点关注学生对坐标系的理解和实际物体的对应关系。
知识点01:轴对称变换【高频考点精讲】1、轴对称图形把一个图形沿一条直线折叠,直线两边的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,折叠后重合的对应点,叫做对称点。
常见的轴对称图形:等腰三角形,矩形,正方形,等腰梯形,圆等。
2、轴对称性质(1)关于直线对称的两个图形是全等图形。
(2)对称轴是对应点连线的垂直平分线。
(3)如果两个图形的对应点连线被同一直线垂直平分,那么这两个图形关于这条直线对称。
3、关于x轴、y轴对称的点的坐标(1)关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y);(2)关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y)。
4、最短路线问题在直线l上方有两个点A、B,确定直线l上到A、B的距离之和最短的点,可以通过轴对称来确定,即作出其中一点关于直线l的对称点,对称点与另一点的连线与直线l的交点即为所求。
知识点02:平移变换【高频考点精讲】1、把一个图形整体沿某一直线方向移动一定的距离,得到一个新的图形,图形的这种移动,叫做平移。
2、平移的两个要素:(1)图形平移的方向;(2)图形平移的距离。
3、平移性质:对应点所连线段平行且相等。
4、平移变换与坐标变化(1)坐标点P(x,y)向右平移a个单位,得出P(x+a,y);(2)坐标点P(x,y)向左平移a个单位,得出P(x﹣a,y);(3)坐标点P(x,y)向上平移b个单位,得出P(x,y+b);(4)坐标点P(x,y)向下平移b个单位,得出P(x,y﹣b)。
知识点03:旋转变换【高频考点精讲】1、将一个图形绕一个定点沿某个方向转动一定的角度,这样的图形变换叫做旋转,这个定点叫做旋转中心,转动的角度叫做旋转角。
2、旋转性质(1)对应点到旋转中心的距离相等.(2)对应点与旋转中心所连线段的夹角等于旋转角。
坐标系的变化与图形变换
private void Form1_Paint(object sender, PaintEventArgs e)
{
Graphics g = e.Graphics;
g.FillRectangle(Brushes.White, this.ClientRectangle);
g.DrawRectangle(Pens.Black, 10, 10, 50, 50);
g.DrawEllipse(Pens.Black,10,10,10,10);
g.ScaleTransform(2.0f, 3.0f);
g.DrawRectangle(Pens.Black, 10, 10, 50, 50);
g.DrawEllipse(Pens.Black, 10, 10, 10, 10);
g.ScaleTransform(0.5f, 0.3333333f);
g.DrawRectangle(Pens.Red, 20, 30, 100, 150);
g.DrawEllipse(Pens.Red, 20, 30, 20, 30);
}
private void button1_Click(object sender, EventArgs e)
{
Graphics g = this.CreateGraphics();
g.FillRectangle(Brushes.White, this.ClientRectangle);
Font f = new Font("Times New Roman", 24);
g.DrawString("Traslation",f,Brushes.Black,0,0);
g.TranslateTransform(150, 75);
g.DrawString("Traslation", f, Brushes.Black, 0, 0); }
private void button2_Click(object sender, EventArgs e)
{
Graphics g = this.CreateGraphics();
g.FillRectangle(Brushes.White, this.ClientRectangle);
for (int i = 1; i <= 5; ++i)
{
g.DrawRectangle(Pens.Black, 10, 10, 30, 50);
g.TranslateTransform(2, 10);
}
}
private void button3_Click(object sender, EventArgs e)
{
Graphics g = this.CreateGraphics();
g.FillRectangle(Brushes.White, this.ClientRectangle);
g.DrawEllipse(Pens.Black, 20, 20, 30, 50);
g.TranslateTransform(-15, 0);
g.DrawEllipse(Pens.Black, 20, 20, 30, 50);
g.ResetTransform();
g.TranslateTransform(0, 30);
g.DrawEllipse(Pens.Black, 20, 20, 30, 50);
}
private void button4_Click(object sender, EventArgs e)
{
Graphics g = this.CreateGraphics();
g.FillRectangle(Brushes.White, this.ClientRectangle);
Font f = new Font("Times New Roman", 24);
g.DrawString("Rotation", f, Brushes.Black, 0, 0);
g.RotateTransform(45);
g.TranslateTransform(100, 10);
g.DrawString("Rotation", f, Brushes.Black, 0, 0);
}
private void button5_Click(object sender, EventArgs e)
{
Graphics g = this.CreateGraphics();
g.FillRectangle(Brushes.White, this.ClientRectangle);
Font f = new Font("Times New Roman", 16);
for (float angle = 0; angle < 360; angle += 45)
{
g.ResetTransform();
g.TranslateTransform(ClientRectangle.Width / 2, ClientRectangle.Height / 2);
g.RotateTransform(angle);
g.DrawString("Hello World", f, Brushes.Red, 50, 0);
}
}
private void button6_Click(object sender, EventArgs e)
{
Graphics g = this.CreateGraphics();
g.FillRectangle(Brushes.White, this.ClientRectangle);
Font f = new Font("Times New Roman", 24);
g.TranslateTransform(175, 50);
g.DrawString("BOBUI.DH", f, Brushes.Black, 0, 0);
g.ScaleTransform(-1, 1);
g.DrawString("BOBUI.DH", f, Brushes.Black, 0, 0);
}
private void button7_Click(object sender, EventArgs e)
{
Graphics g = this.CreateGraphics();
g.FillRectangle(Brushes.White, this.ClientRectangle);
Matrix m = new Matrix();
m.Shear(0.6f, 0);
g.DrawRectangle(Pens.Black, 10, 10, 50, 50);
g.MultiplyTransform(m);
g.DrawRectangle(Pens.Black, 70, 10, 50, 50);
}
Form1_Paint:这里里面实现了一个图形的放缩
ScaleTransform:将指定的缩放操作应用于此 Graphics 的变换矩阵,方法是将该对象的变换矩阵左乘该缩放矩阵
button1_Click:坐标系平移实现图像位置的变化
TranslateTransform:通过使此 Graphics 的变换矩阵左乘指定的平移来更改坐标系统的原点。
button2_Click:坐标原点的变换,这个例子说明TranslateTransform变换坐标是连续的
button3_Click:还原系统原点
ResetTransform:将此 Graphics 的世界变换矩阵重置为单位矩阵
button4_Click:图像的旋转
RotateTransform:指定旋转应用于此 Graphics 的变换矩阵
button5_Click:坐标系变换与旋转综合示例
button6_Click:图形的变换
ScaleTransform:指定的缩放操作应用于此 Graphics 的变换矩阵,方法是将该对象的变换矩阵左乘该缩放矩阵
button7_Click:图形的变换
MultiplyTransform:将此 Graphics 的世界变换乘以指定的 Matrix
Shear:通过预先计算切变向量将指定的切变向量应用到此 Matrix。