线性代数1-2
- 格式:ppt
- 大小:641.50 KB
- 文档页数:35
习题1-2解答1. 求下列排列的逆序数: ⑴ 4132;解:42110)4132(=+++=N 。
⑵ 2413;解:31200)2413(=+++=N 。
⑶ 36715284;解:1340423000)36715284(=+++++++=N 。
⑷ 3712456;解:71112200)3712456(=++++++=N 。
⑸ 13…24)12(-n …)2(n ;分析:逆序数的计算方法有两种,一般来讲用下述方法较多:=)(21n i i i N 1i 后面比1i 小的数的个数2i +后面比2i 小的数的个数+…1-+n i 后面比1-n i 小的数的个数。
其中)(21n i i i N 代表排列n i i i 21的逆序数,因此求排列的逆序数只要从第一个元素起依次用上述方法来计算即可。
解一:排列:1 3 5 … 12-n 2 4 6 … n 2↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 逆序:0 0 0 0 1-n 2-n 3-n 013[N ...24)12(-n (2))1(01)2()1()]2(-=++-+-=n n n n n 。
解二:对于1来讲,后面无比1小的数,对于3来讲,后面有1个数2比它小,对于5来讲,后面有2个数比它小,…,而对于)12(-n 来讲,后面有)1(-n 个数比它小,故13[N ...24)12(-n (2))1(13210)]2(-=-+++++=n n n n 。
⑹ 13…)22)(2)(12(--n n n …2。
解:13[N …)22)(2)(12(--n n n …)1(0)1()1(210]2-=++-+-++++=n n n n 。
2. 写出四阶行列式中含有因子2311a a 的项。
分析:由行列式的定义知,43214321)1(i i i i la a a aD ∑-=,其中4321i i i i 是1,2,3,4的某个排列,本题中11=i ,32=i ,所以3i ,4i 分别为2,4,故4321i i i i 是为1324或1342。
线性代数1-2章精选练习题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(线性代数1-2章精选练习题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为线性代数1-2章精选练习题的全部内容。
第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( )。
(A) 24315 (B ) 14325 (C ) 41523 (D )24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( )。
(A )k (B )k n - (C)k n -2! (D)k n n --2)1(3。
n 阶行列式的展开式中含1122a a 的项共有( )项。
(A ) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( )。
(A) 0 (B)1- (C ) 1 (D ) 25. =0001100000100100( )。
(A) 0 (B )1- (C ) 1 (D) 26.在函数10323211112)(x x x xx f ----=中3x 项的系数是( )。
(A) 0 (B)1- (C) 1 (D ) 27。
若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ).(A) 4 (B ) 4- (C ) 2 (D ) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( )。
第一章 线性方程组的消元法和矩阵的初等变换一、 判断题(对的打√,错的打×)1.消元法求解线性方程组时只有系数参与运算,未知元并未进行运算。
( × )2.消元法求解线性方程组时也可以用初等列变换,因为初等列变换也不会改变方程组的解。
( × )3.一个矩阵的行阶梯形不唯一,但行最简形唯一。
(√ )4.行最简形是矩阵经过初等变换能变到的最简单的形式。
(× )5.矩阵与其行最简形和标准形等价。
(√ )6.如果两个矩阵等价,它们一定是同型矩阵。
( √ )7.求解线性方程组时所用的变换只有三种。
(√ )8.同一个矩阵的行阶梯形和行最简形的非零行的行数相同。
( √ )二、计算题1.将矩阵23137120243283023743--⎛⎫⎪-- ⎪⎪-⎪-⎝⎭化为行最简形矩阵和标准形。
1221314143213141232232231371202412024120242313701111328303283008891223743237430778111202401111000140014r r r r r r r r r r r r r r r r ↔-------------⎛⎫⎛⎫⎛⎫⎪⎪⎪----- ⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪---⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭--⎛⎫ ⎪- ⎪→→ ⎪ ⎪⎝⎭132321202412004011110110300014000140000000000r r r r +---⎛⎫⎛⎫⎪⎪--- ⎪ ⎪→ ⎪ ⎪⎪⎪⎝⎭⎝⎭1222(1)10202011030001400000r r r +⨯--⎛⎫⎪- ⎪→ ⎪⎪⎝⎭-------行最简形3132515122310202100001000001103011030100000014000140001400000000000000c c c c c c c c -++--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭543441000010000010000100000010001000000000000c c c c -↔⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭------标准形 2.用矩阵的初等变换解下列线性方程组。
第四章线性方程组§1 消元法在实际问题中,我们经常要研究一个线性方程组的解,解线性方程组最常用的方法就是消元法,其步骤是逐步消除变元的系数,把原方程组化为等价的三角形方程组,再用回代过程解此等价的方程组,从而得出原方程组的解.例1 解线性方程组解 将第一个方程加到第二个方程,再将第一个方程乘以(-2)加到第三个方程得在上式中交换第二个和第三个方程,然后把第二个方程乘以-2加到第三个方程得再回代,得.分析上述例子,我们可以得出两个结论:(1) 我们对方程施行了三种变换:① 交换两个方程的位置;② 用一个不等于0的数乘某个方程;③ 用一个数乘某一个方程加到另一个方程上.我们把这三种变换叫作线性方程组的初等变换.由初等代数可知,以下定理成立.定理1 初等变换把一个线性方程组变为一个与它同解的线性方程组.(2) 线性方程组有没有解,以及有些什么样的解完全决定于它的系数和常数项,因此我们在讨论线性方程组时,主要是研究它的系数和常数项.定义1 我们把线性方程组的系数所组成的矩阵叫做线性方程组的系数矩阵,把系数及常数所组成的矩阵叫做增广矩阵.设线性方程组则其系数矩阵是增广矩阵是显然,对一个方程组实行消元法求解,即对方程组实行了初等变换,相当于对它的增广矩阵实行了一个相应的初等变换.而化简线性方程组相当于用行初等变换化简它的增广矩阵,这样,不但讨论起来比较方便,而且能够给予我们一种方法,利用一个线性方程组的增广矩阵来解这个线性方程组,而不必每次把未知量写出.例2 解线性方程组解 增广矩阵是,交换矩阵第一行与第二行,再把第一行分别乘以和(-2)加到第二行和第三行,再把第二行乘以(-2)得,在中将第二行乘以2加到第三行得,相应的方程组变为三角形(阶梯形)方程组:回代得.§2 线性方程组有解判别定理上一节我们讨论了用消元法解方程组(4.1)这个方法在实际解线性方程组时比较方便,但是我们还有几个问题没有解决,就是方程组(4.1)在什么时候无解?在什么时候有解?有解时,又有多少解?这一节我们将对这些问题予以解答.首先,由第三章,我们有下述定理定理2 设A是一个m行n列矩阵,通过矩阵的初等变换能把A化为以下形式这里r≥0,r≤m,r≤n.注:以上形式为特殊标准情况,不过,适当交换变元位置,一般可化为以上形式.由定理2,我们可以把线性方程组(4.1)的增广矩阵进行初等变换化为:(4.2)与(4.2)相应的线性方程组为:(4.3)由定理1知:方程组(4.1)与方程组(4.3)是同解方程组,要研究方程组(4.1)的解,就变为研究方程组(4.3)的解.① 若dr+1,dr+2,…,dm中有一个不为0,方程组(4.3)无解,那么方程组(4.1)也无解.② 若dr+1,dr+2,…,dm全为0,则方程组(4.3)有解,那么方程组(4.1)也有解.对于情形①,表现为增广矩阵与系数矩阵的秩不相等,情形②表现为增广矩阵与系数矩阵的秩相等,由此我们可以得到如下定理.定理3 (线性方程组有解的判别定理)线性方程组(4.1)有解的充分必要条件是系数矩阵与增广矩阵有相同的秩r.① 当r等于方程组所含未知量个数n时,方程组有惟一的解;② 当r<n时,方程组有无穷多解.线性方程组(4.1)无解的充分必要条件是:系数矩阵A的秩与增广矩阵B的秩不相等.在方程组有无穷多解的情况下,方程组有n-r个自由未知量,其解如下:其中是自由未知量,若给一组数就得到方程组的一组解例3 研究线性方程组解 写出增广矩阵对进行初等行变换可化为由此断定系数矩阵的秩与增广矩阵的秩不相等,所以方程组无解.例4 在一次投料生产中,获得四种产品,每次测试总成本如下表:生产批次产品(公斤)总成本(元)ⅠⅡⅢⅣ12001001005029002500250200100705031004002013604400180160605500试求每种产品的单位成本.解 设Ⅰ、Ⅱ、Ⅲ、Ⅳ四种产品的单位成本分别为,由题意得方程组:化简,得写出增广矩阵对其进行初等行变换,化为由上面的矩阵可看出系数矩阵与增广矩阵的秩相等,并且等于未知数的个数,所以方程组有唯一解:例5 解线性方程组解 这里的增广矩阵是对其进行初等行变换,化为由上式可看出系数矩阵与增广矩阵的秩相等,所以方程组有解,对应的方程组是把移到右边,作为自由未知量,得原方程组的一般解为给自由未知量一组固定值:,我们就得到方程组的一个解.事实上,在例5中,也可作为自由未知量.我们同样可考察.。
线性代数1和线性代数2
线性代数是数学领域中一种非常重要的分支,它是研究数学中各种解决问题的理论和方法,为科学研究和工程应用提供基础。
线性代数1和线性代数2是完成数学学习必备的两门线性代数课程,本文将对这两门课程进行介绍并对它们新学习者感兴趣的方面加以说明。
线性代数1是研究线性系统、向量空间、矩阵等一般形式的线性方程的概念的一门课程。
它的内容涉及到向量空间的定义和运算、矩阵的表示和求解、矩阵的特征值、行列式的求解、方程组的求解、线性变换等。
这门课程有助于学生对线性系统和线性变换有更加深刻和系统的认识。
线性代数2是深入研究线性可加性、线性无线性性能、线性函数的研究的一门课程。
它的内容涉及到矢量分析、线性函数的微积分、线性变换的基础知识、内积空间等,其中,最关键的是内积空间的理解和使用。
这门课程有助于学生掌握线性无线性性能,加深对线性变换的理解,能够更好地解决线性函数类型的问题。
线性代数1和线性代数2是数学中必修的两门课程,它们具有重要的实际意义和抽象理论价值,掌握它们可以帮助科学技术和工程实践中的解决问题。
在学习这两门课程时,除了学习本身的知识外,学习者还应该努力提高自己的数学思维能力,更好地分析解决复杂的问题。
总之,线性代数1和线性代数2是受到学习者的普遍重视的两门重要的数学课程,在研究科学和工程技术的解决问题时,其概念和方
法都是必不可少的。
如果想要更好地学习和掌握这两门课程,学习者除了学习本身的知识外,还需要在解决复杂问题时灵活运用所学知识,从而提高自己的数学思维能力。