冲刷计算
- 格式:doc
- 大小:35.00 KB
- 文档页数:2
4.4.1自然冲刷河床演变是一个非常复杂的自然过程,目前尚无可靠的定量分析计算方法,根据《公路工程水文勘测设计规范》(JTG C30—2002)中7.2条的要求,河床的自然冲刷是河床逐年自然下切的深度。
经深入调查,桥位处河段整体无明显自然下切现象,由于泥沙淤积,河床会逐年抬高,本次计算不考虑自然冲刷的情况。
4.4.2一般冲刷大桥建成后,由于受桥墩阻水影响,桥位断面过水断面减小,从而引起断面流速增大,水流挟沙能力也随之增大,会造成桥位断面河床冲刷。
根据地质勘察报告,桥位处河床为砂卵石层,河床泥沙平均粒径为40(mm )。
按《公路工程水文勘测设计规范》(JTG C30—2002)的技术要求,非粘性土河床的一般冲刷可采用64—2简化公式计算:()max 66.029.02104.1h B B Q Q A h cc p ⎭⎬⎫⎩⎨⎧-⎪⎪⎭⎫ ⎝⎛=μλ公式中: h p ——桥下河槽一般冲刷后最大水深(m ); Q 2——桥下河槽部分通过的设计流量(m 3/s ); Q c ——天然状态下河槽流量(m 3/s );A ——单宽流量集中系数 15.0⎪⎪⎭⎫⎝⎛=H B A ;B C ——计算断面天然河床宽度(m );λ——设计水位下,桥墩阻水面积与桥下过水面积比值;μ——桥台前缘和桥墩两侧的漩涡区宽度与桥孔长度之比; B 2——桥下断面河床宽度(m ); h max ——桥下河槽最大水深(m )。
经计算:桥址处各设计频率一般冲刷深度成果见表4.4—1。
表4.4—1 XX 大桥一般冲刷计算成果表4.4.3局部冲刷根据XX 大桥桥型布置图,按《公路工程水文勘测设计规范》(JTG C30—2002)的技术要求,局部冲刷计算采用65—1修正式中的公式进行计算:当V >V 0时,10,00,'006.011,b )(K n V V V V v B K h v ⎭⎬⎫⎩⎨⎧---=ηξ h b —桥墩局部冲刷深度(m )从一般冲刷后床面算起; K ξ—墩形系数,K ξ=1.05; K η1—河床颗粒影响系数; B 1—桥墩计算宽度;V—一般冲刷后墩前行近流速(m/s);V0—河床泥沙起动流速(m/s);V,0—墩前泥沙起冲流速(m/s);n1—指数。
4.3 冲刷与淤积分析计算建桥后,由于桥墩的束水作用,桥位处河床底部将发生下切冲刷。
根据工程地质勘探报告,该桥桥址处,河床冲刷层为亚粘土。
河床的冲刷计算按粘性土河床处理。
4.3.1一般冲刷计算采用《公路桥位勘测设计规范》中8.5.4-1式85135'233.0⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=L c mc c p I h h B Q A h μ(4-3式)式中, h p --桥下一般冲刷后的最大水深(m);Q 2--河槽部分通过的设计流量(m 3/s ); μ—桥墩水流侧向压缩系数,查《公路桥位勘测设计规范》中表8.5.3-1;h m c--桥下河槽最大水深(m ); c h --桥下河槽平均水深(m );A —单宽流量集中系数,5.0⎪⎪⎭⎫⎝⎛=H B A ,B 、H 为平滩水位时河槽宽度和河槽平均水深。
A=1.0~1.2'c B --桥下河槽部分桥孔过水净宽(m ) ,当桥下河槽扩宽至全桥时'c B 即为全桥桥下过水净宽;I L --冲刷坑范围内粘性土液性指数,在本公式中I L 的范围为0.16~1.19。
根据工程地质勘探报告,牧野桥I L =0.67。
经计算得:现状河道条件下,该桥100年一遇设计洪水位为72.73m 时,一般冲刷完成后,主槽最大水深h p 为9.19m ,最大冲坑深3.58m 。
按规划整治后的河道条件下,该桥100年一遇设计洪水位为71.30m 时,一般冲刷完成后,主槽最大水深h p 为6.42m ,最大冲坑深1.26m 。
4.3.2 局部冲刷计算牧野路卫河桥设计墩宽b=2.40m ,桥墩的走向与水流方向一致,墩形计算宽度B 1=2.40m ,查《公路桥位勘测设计规范》附录16,K ξ =0.98。
一、现状河道条件下,该桥100年一遇设计洪水位为72.73m 时,一般冲刷完成后,主槽最大水深h p 为9.19m ,H p /B 1=3.83>2.5,根据《公路桥位勘测设计规范》采用该规范中的8.5.4-3式V I B K h L b 25.16.0183.0ξ= (4-4式)式中,h b --桥墩局部冲刷深度(m);K ξ --墩形系数; B 1--桥墩计算宽度(m );h p--一般冲刷后最大水深 (m);d -- 河床泥沙平均粒径, d =0.0145(mm );V-- 一般冲刷后墩前行进流速(m/s)3261p h d E V = =1.43E —与汛期含沙量有关的系数,查《公路桥位勘测设计规范》中表8.5.3-2,E=0.66。
4.4.1自然冲刷河床演变是一个非常复杂的自然过程,目前尚无可靠的定量分析计算方法,根据《公路工程水文勘测设计规范》(JTG C30—2002)中7.2条的要求,河床的自然冲刷是河床逐年自然下切的深度。
经深入调查,桥位处河段整体无明显自然下切现象,由于泥沙淤积,河床会逐年抬高,本次计算不考虑自然冲刷的情况。
4.4.2一般冲刷大桥建成后,由于受桥墩阻水影响,桥位断面过水断面减小,从而引起断面流速增大,水流挟沙能力也随之增大,会造成桥位断面河床冲刷。
根据地质勘察报告,桥位处河床为砂卵石层,河床泥沙平均粒径为40(mm )。
按《公路工程水文勘测设计规范》(JTG C30—2002)的技术要求,非粘性土河床的一般冲刷可采用64—2简化公式计算:()max 66.029.02104.1h B B Q Q A h cc p ⎭⎬⎫⎩⎨⎧-⎪⎪⎭⎫ ⎝⎛=μλ公式中: h p ——桥下河槽一般冲刷后最大水深(m ); Q 2——桥下河槽部分通过的设计流量(m 3/s ); Q c ——天然状态下河槽流量(m 3/s );A ——单宽流量集中系数 15.0⎪⎪⎭⎫⎝⎛=H B A ;B C ——计算断面天然河床宽度(m );λ——设计水位下,桥墩阻水面积与桥下过水面积比值;μ——桥台前缘和桥墩两侧的漩涡区宽度与桥孔长度之比; B 2——桥下断面河床宽度(m ); h max ——桥下河槽最大水深(m )。
经计算:桥址处各设计频率一般冲刷深度成果见表4.4—1。
表4.4—1 XX 大桥一般冲刷计算成果表4.4.3局部冲刷根据XX 大桥桥型布置图,按《公路工程水文勘测设计规范》(JTG C30—2002)的技术要求,局部冲刷计算采用65—1修正式中的公式进行计算:当V >V 0时,10,00,'006.011,b )(K n V V V V v B K h v ⎭⎬⎫⎩⎨⎧---=ηξ h b —桥墩局部冲刷深度(m )从一般冲刷后床面算起; K ξ—墩形系数,K ξ=1.05; K η1—河床颗粒影响系数; B 1—桥墩计算宽度;V —一般冲刷后墩前行近流速(m/s );V0—河床泥沙起动流速(m/s);V,0—墩前泥沙起冲流速(m/s);n1—指数。
二.顺坝及平顺护岸冲刷深度计算
1.水流平行于岸坡产生的冲刷深度计算计算公式
式中:
h B -局部冲刷深度(m),从水面算起;
h p -冲刷处的水深(m),以近似设计水位最大深度代替;V cp -平均流速(m/s);
V 允-河床面上允许不冲流速(m/s);
n-与防护岸坡在平面上的形状有关,一般取n=1/4;
2.水流斜冲防护岸坡长生的冲刷深度计算公式
式中:
Δh p
-从河底算起的局部冲深(m);α-水流流向与岸坡交角(度);m-防护建筑物迎水面边坡系数;
d-坡脚处土壤计算粒径(cm)。
对非粘性土,取大于15%(按重量计)的筛孔直径;对粘性土,取表D.22-1的当量V j -水流的局部冲刷流速(m/s);
V j 的计算
计算公式
式中:
B 1-河滩宽度(m),从河槽边缘至坡脚距离;Q 1-通过河滩部分的设计流量(m 3/s);H 1-河滩水深(m);
堤岸冲刷深度计算
η-水流流速分配不均匀系数,根据α角查表D.2.2-2;
计算公式
式中:
Q-设计流量(m 3/s);
W -原河道过水断面面积(m 2);W p -河道缩窄部分的断面面积(m 2);
土,取表D.22-1的当量粒径值;
V jαd△H P
(m/S)(º)(m)(m)
平直堤
段1.7642679950.50.0060.105278455
转湾堤
段1.76426799100.50.0060.391646627
桩号m 要求堤基埋深(m)。
一般冲刷计算公式:cm cg cc d p h B B Q Q A h 66.090.02)1(04.1⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛=μλ12t c cQ Q Q Q +=15.0⎪⎪⎭⎫⎝⎛=z z d H B A式中:h p ——桥下一般冲刷后的最大水深(m); Q p ——频率为P %的设计流量(m 3/s);Q 2——桥下河槽部分通过的设计流量(m 3/s),当河槽能扩宽至全桥时取用Q p ; Q c ——天然状态下河槽部分设计流量(m 3/s); Q t1——天然状态下桥下河滩部分设计流量(m 3/s);B cg ——桥长范围内的河槽宽度(m),当河槽能扩宽至全桥时取用桥孔总长度; B z ——造床流量下的河槽宽度(m),对复式河床可取平滩水位时河槽宽度; λ——设计水位下,在B cg 宽度范围内,桥墩阻水总面积与过水面积的比值; μ——桥墩水流侧向压缩系数; h cm ——河槽最大水深(m);A d ——单宽流量集中系数,山前变迁、游荡、宽滩河段当A d >1.8时,A d 值可采用1. 8;H z ——造床流量下的河槽平均水深(m),对复式河床可取平滩水位时河槽平均水深。
②非粘性土河床桥墩局部冲刷计算桥渡冲刷的产生是由于桥墩阻碍了水流,使水流形态发生变化,一般在墩前两侧发生集中现象,引起动能增加;另一方面水流受阻后部分动能转化为位能,由于水流形态变化,桥墩附近水流冲刷能力加大,在桥墩处产生冲刷坑。
局部冲刷计算公式当V ≤V 0时,⎪⎪⎭⎫ ⎝⎛-=0015.06.012'V V V h B K K h pb ηε当V >V 0时,20015.06.012'n pb V V V h B K K h ⎪⎪⎭⎫ ⎝⎛-=ηε24.02.22375.00023.0d dK +=η5.00)7.0(28.0+=d V 55.00)5.0(12.0'+=d Vd V Vn lg 19.023.002)(+=式中:h b ——桥墩局部冲刷深度(m): K ξ——墩形系数; B1——桥墩计算宽度(m); h p ——一般冲刷后的最大水深(m); d ——河床泥沙平均粒径(mm); K η2——河床颗粒影响系数;V ——一般冲刷后墩前行近流速(m/s), V o ——河床泥沙起动流速(m/s); V ,0——墩前泥沙起冲流速(m/s); n 2 ——指数。
参考资料
《城市防洪工程设计规范》(CJJ50-92)《防洪标准》(GB50201-94)
《堤防工程设计规范》(GB50286-98)1、护岸冲刷深度计算
依据《堤防工程设计规范》(GB50286—98)①顺坝及平顺护岸冲刷深度计算:
式中:h S
H p —冲刷处的水深(m);
U cp —近岸垂线平均流速(m/s);
U C —泥沙的启动流速(m/s);粘性与沙质河床采用张瑞瑾公式计算,卵石
n—与防护岸坡在平面上的形状有关,一般取n=1/4-1/6.河床采用长江科学院公式计算;
d 50—河床的中值粒径(m);H 0—行进水流水深(m);
r s ,r分别为泥沙与水的重度(KN/m 3),g为重力加速度(m/s 2).U cp 的计算应符合下列规定:
式中:
U—行近流速(m/s);
η—水流流速分配不均匀系数,根据水流流向与岸坡交角α角查表采用。
②某河道冲刷深度计算书。
一般冲刷计算公式:cm cg cc d p h B B Q Q A h 66.090.02)1(04.1⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛=μλ12t c cQ Q Q Q +=15.0⎪⎪⎭⎫⎝⎛=z z d H B A式中:h p ——桥下一般冲刷后的最大水深(m); Q p ——频率为P %的设计流量(m 3/s);Q 2——桥下河槽部分通过的设计流量(m 3/s),当河槽能扩宽至全桥时取用Q p ; Q c ——天然状态下河槽部分设计流量(m 3/s); Q t1——天然状态下桥下河滩部分设计流量(m 3/s);B cg ——桥长范围内的河槽宽度(m),当河槽能扩宽至全桥时取用桥孔总长度; B z ——造床流量下的河槽宽度(m),对复式河床可取平滩水位时河槽宽度; λ——设计水位下,在B cg 宽度范围内,桥墩阻水总面积与过水面积的比值; μ——桥墩水流侧向压缩系数; h cm ——河槽最大水深(m);A d ——单宽流量集中系数,山前变迁、游荡、宽滩河段当A d >时,A d 值可采用1. 8;H z ——造床流量下的河槽平均水深(m),对复式河床可取平滩水位时河槽平均水深。
②非粘性土河床桥墩局部冲刷计算桥渡冲刷的产生是由于桥墩阻碍了水流,使水流形态发生变化,一般在墩前两侧发生集中现象,引起动能增加;另一方面水流受阻后部分动能转化为位能,由于水流形态变化,桥墩附近水流冲刷能力加大,在桥墩处产生冲刷坑。
局部冲刷计算公式当V ≤V 0时,⎪⎪⎭⎫ ⎝⎛-=0015.06.012'V V V h B K K h pb ηε当V >V 0时,20015.06.012'n p b V V V h B K K h ⎪⎪⎭⎫ ⎝⎛-=ηε 24.02.22375.00023.0d dK +=η 5.00)7.0(28.0+=d V 55.00)5.0(12.0'+=d VdVV n lg 19.023.002)(+= 式中:h b ——桥墩局部冲刷深度(m): K ξ——墩形系数; B1——桥墩计算宽度(m); h p ——一般冲刷后的最大水深(m); d ——河床泥沙平均粒径(mm); K η2——河床颗粒影响系数;V ——一般冲刷后墩前行近流速(m/s), V o ——河床泥沙起动流速(m/s); V ,0——墩前泥沙起冲流速(m/s); n 2 ——指数。
取水工程冲刷计算
取水工程冲刷计算是为了确定水流对开挖工程的冲刷力,以便选择合适的挖掘方式和保护措施。
以下是一般的计算流程:
1.确定水流流速:根据水文资料或现场测量,确定水流速度。
2.计算冲刷力:利用万斯压力公式或其他适当的公式计算水流对于开挖工程的冲刷力。
公式如下:
F = ρ × A × V2 × Cf
其中,F为冲刷力,ρ为水的密度,A为挖掘截面积,V为水流速度,Cf为冲刷系数。
3.比较冲刷力和岩土稳定性:将计算得到的冲刷力与开挖工程所在的岩土稳定性参数进行比较,确定是否需要采取保护措施。
需要注意的是,实际的情况往往比理论计算复杂,计算结果仅供参考,具体的取水工程冲刷计算应根据实际情况进行综合分析。
涵洞冲刷计算一、涵洞冲刷计算的重要性涵洞作为桥梁、道路、隧道等工程的重要组成部分,其稳定性直接影响到整个工程的安全。
而在涵洞的施工和运营过程中,冲刷现象是一个不容忽视的问题。
涵洞冲刷计算就是为了预测和评估涵洞在不同条件下遭受冲刷的影响,从而采取相应的措施确保涵洞的稳定性和安全性。
二、涵洞冲刷计算方法1.冲刷公式涵洞冲刷计算主要依据冲刷公式进行,冲刷公式为:Q = K × I × A,其中Q表示冲刷量,K表示冲刷系数,I表示水流速度,A表示冲刷面积。
2.冲刷系数的确定冲刷系数K是衡量冲刷作用的一个重要参数,其值与土壤类型、水流速度、涵洞结构等因素密切相关。
通常需要通过现场试验或经验公式来确定。
3.土壤类型的影响不同的土壤类型对涵洞冲刷的影响程度不同。
一般来说,砂质土壤和砾质土壤的冲刷作用较强,粘性土壤的冲刷作用较弱。
在实际计算中,需要根据土壤类型调整冲刷系数。
三、涵洞冲刷计算实例以某高速公路涵洞为例,首先获取涵洞所在地的土壤类型、水流速度等基本参数,然后根据冲刷公式和经验公式确定冲刷系数K。
接着,将相关数据代入公式,计算出涵洞在不同水位、不同降雨强度下的冲刷量,从而评估涵洞的稳定性。
四、提高涵洞冲刷计算精度的措施1.完善现场观测数据:增加观测次数,提高观测数据的精度和可靠性。
2.优化计算模型:结合工程实际情况,不断调整和完善冲刷计算模型,使之更符合实际工况。
3.引入先进技术:利用现代化监测手段,如遥感技术、数值模拟等,提高冲刷计算的准确性。
五、结论涵洞冲刷计算是评估涵洞稳定性的一项重要工作。
通过合理的计算方法和措施,可以有效预测和预防涵洞冲刷现象,确保工程的安全和稳定。
涵洞冲刷计算
(原创实用版)
目录
1.涵洞冲刷计算的概述
2.涵洞冲刷计算的方法
3.涵洞冲刷计算的实际应用
4.涵洞冲刷计算的发展趋势
正文
【涵洞冲刷计算的概述】
涵洞冲刷计算是指对涵洞在洪水等水流作用下的抗冲刷能力进行计算,以确保涵洞的安全稳定。
在实际工程中,涵洞冲刷计算是桥梁涵洞设计与施工的重要环节,对于防止涵洞被冲刷毁坏具有重要意义。
【涵洞冲刷计算的方法】
涵洞冲刷计算的方法主要包括以下几种:
1.传统经验法:根据设计者的经验,结合涵洞的地形、地质、洪水等条件,对涵洞的抗冲刷能力进行估计。
2.公式计算法:根据水流动力学原理和涵洞的结构特点,建立数学模型,通过公式计算得到涵洞的抗冲刷能力。
3.数值模拟法:利用计算机技术,对涵洞在洪水作用下的冲刷过程进行数值模拟,以得到涵洞的抗冲刷能力。
【涵洞冲刷计算的实际应用】
在实际工程中,涵洞冲刷计算主要用于以下几个方面:
1.涵洞设计:根据涵洞冲刷计算结果,确定涵洞的结构形式、尺寸和材料等设计参数。
2.涵洞施工:在施工过程中,根据涵洞冲刷计算结果,采取相应的防护措施,确保涵洞的安全稳定。
3.涵洞运营维护:通过对涵洞的冲刷计算,评估涵洞的抗冲刷能力,为涵洞的运营维护提供依据。
【涵洞冲刷计算的发展趋势】
随着计算机技术的不断发展,涵洞冲刷计算将呈现出以下发展趋势:
1.数值模拟法的应用将越来越广泛,为涵洞冲刷计算提供更为精确的结果。
2.基于大数据和人工智能的技术将在涵洞冲刷计算中得到应用,提高计算的准确性和效率。
3.涵洞冲刷计算将与其他相关领域相结合,形成综合性的涵洞安全评估体系。
4.2.1洛河冲刷分析计算 a.冲刷计算
冲刷深度参照《堤防工程设计规范》(GB50286-2013)(以下简称《规范2013》)附录D.2计算。
其冲刷深度按下列公式计算:
s 01n cp c U h h U ⎡⎤
⎛⎫⎢⎥=- ⎪⎢⎥⎝⎭⎣⎦
(D.2.2-1)
21cp U U
η
η
=+ (D.2.2-2) 公式中:
h s ——局部冲刷深度(m ); h 0——冲刷处的水深(m ),取3.85m; U cp ——近岸垂线平均流速,取4.42m/s ;
n ——与防护岸坡在平面上的形状有关,取n=1/5;
η——水流流速不均匀系数,根据水流流向与岸坡交角α查《规范2013》附录D2表D.2.2,取1.00;
U ——行近流速(m/s ),取4.42m/s ;
U c ——泥沙起动流速(m/s ),对于卵石的起动流速,可采用长江科学院的起动公式(D.2.1-6)计算;
1
7
050501.08s
c H U g
d d γγ
γ
⎛⎫-= ⎪⎝⎭
(D.2.1-6) g ——重力加速度(m/s 2),9.8m/s 2; d 50——床沙的中值粒径,0.0215m ;
H 0——行近流速水深(m ),取4.09m ;
γs 、γ——泥沙与水的容重(kN/m ³),γs 取1.7kN/m ³;γ取1.0kN/m ³。
使用以上公式,经过计算机软件计算,结果列表4.18淄阳河冲刷水深计算成果表。
表4.18 洛河冲刷水深计算成果表
综上所述:该管道穿越河道处冲刷深度为1.5m,根据相关规范要求管道开挖深度应位于河道冲刷深度0.5米以下,即管道开挖深度应大于等于2m 。
河流名称
U (m/s ) η
g
(m/s 2
) d 50 (m ) H 0
(m ) r s
(kN/m ³ γ
(kN/
m ³ h 0
(m ) H s
(m ) 洛河 4.42
1.00
9.8
0.0215
4.09
1.7
1.0
3.85
1.50。