网络控制系统H∞鲁棒控制器设计
- 格式:pdf
- 大小:299.74 KB
- 文档页数:4
clcclose allK=31.31b0=50.88b1=57.81Ag=[0 1;-b0 -b1]Bg=[0;1]Cg=[K 0]Dg=[0];[num,den]=ss2tf(Ag,Bg,Cg,Dg) Gs=tf(num,den)[z,p,k]=tf2zp(num,den)Gs1=zpk(z,p,k)%W1S=tf([0.2 3],[1 0.001])%W2S=tf([0.002],[1])%W3S=tf([0.002 0.00001],[1]) %W1S=tf([0.2 4],[1 0.002])%W2S=tf([0.003],[1])%W3S=tf([0.001 0.00001],[1]) %加权函数W1S=tf([0.2 10],[1 0.001])W2S=tf([0.001],[1])W3S=tf([0.001 0.00001],[1]) W3NUM=W3S.num{1,1};W3DEN=W3S.den{1,1};i=0;j=0;a=length(W3NUM);b=length(W3DEN);for c=1:1:aif W3NUM(c-i)~=0break;elseW3NUM(c-i)=[];i=i+1;endendfor d=1:1:bif W3DEN(d-j)~=0break;elseW3DEN(d-j)=[];j=j+1;endendGg=ss(Ag,Bg,Cg,Dg);[Aw1,Bw1,Cw1,Dw1]=tf2ss(W1S.num{1,1},W1S.den{1,1});[Aw2,Bw2,Cw2,Dw2]=tf2ss(W2S.num{1,1},W2S.den{1,1});if Polyorder(W3NUM)>Polyorder(W3DEN)[Q,R]=deconv(W3NUM,W3DEN)W3poly=Q[Aw3,Bw3,Cw3,Dw3]=tf2ss(R,W3DEN)else[Aw3,Bw3,Cw3,Dw3]=tf2ss(W3NUM,W3DEN)W3poly=[]endW1=[Aw1,Bw1;Cw1,Dw1]W2=[Aw2,Bw2;Cw2,Dw2]W3=[Aw3,Bw3;Cw3,Dw3][A,B1,B2,C1,C2,D11,D12,D21,D22]=augss(Ag,Bg,Cg,Dg,Aw1,Bw1,Cw1,Dw1,Aw2,Bw2,Cw2,Dw2,A w3,Bw3,Cw3,Dw3,W3poly)G=[A,B1,B2;C1,D11,D12;C2,D21,D22];[Acp,Bcp,Ccp,Dcp,Ac1,Bc1,Cc1,Dc1]=hinf(A,B1,B2,C1,C2,D11,D12,D21,D22)[knum,kden]=ss2tf(Acp,Bcp,Ccp,Dcp) %控制器的状态空间形式转换成传递函数形式K=tf(knum,kden) %控制器的传递函数[z,p,k]=tf2zp(knum,kden) %控制器的传递函数转换成零极点增益形式Kzpk=zpk(z,p,k)%{[gnum,gden]=ss2tf(Ag,Bg,Cg,Dg)Gs=tf(gnum,gden) %标称系统的传递函数P=nd2sys(gnum,gden,1) %标称系统的系统矩阵形式K1=nd2sys(knum,kden,1) %鲁棒控制器的系统矩阵形式[type,out,in,n]=minfo(P)I=eye(out)S=minv(madd(I,mmult(P,K1))) %灵敏度函数(1+GK)^-1 ,其中P和K1都是系统矩阵的形式T=msub(I,S)W1S1=nd2sys(W1S.num{1,1},W1S.den{1,1},1)INVW1S1=minv(W1S1) %加权函数W1的逆W1^-1INVW3S1=nd2sys(W3S.den{1,1},W3S.num{1,1},1) %加权函数W3的逆W3^-1w=logspace(-5,5,500)Sw=vsvd(frsp(S,w)) %灵敏度函数的频域响应的奇异值Tw=vsvd(frsp(T,w)) %补灵敏度函数的频域响应的奇异值INVW1S1w=vsvd(frsp(INVW1S1,w))INVW3S1w=vsvd(frsp(INVW3S1,w))figure(1)vplot('liv,lm',Sw,'r-',INVW1S1w,'b--')title('Singular values of sensivity function S and W1^{-1}')set(gca,'color','w')xlabel('Frequency(rad/sec)')ylabel('Amplitude')grid onfigure(2)vplot('liv,lm',Tw,'r-',INVW3S1w,'b--')title('Singular values of complementary sensivity function T and W3^{-1}')set(gca,'color','w')xlabel('Frequency(rad/sec)')ylabel('Amplitude')grid on%}w=logspace(-5,5,500);figure(3)bode(W1S,'-b',W3S,'-r',w)legend('W1','W3')title('Bode Diagram Of Weighed Function W1 and W3')grid on[Acg,Bcg,Ccg,Dcg]=series(Acp,Bcp,Ccp,Dcp,Ag,Bg,Cg,Dg)[As,Bs,Cs,Ds]=feedbk(Acg,Bcg,Ccg,Dcg,1) %灵敏度函数的状态空间(1+GK)^-1 [At,Bt,Ct,Dt]=feedbk(Acg,Bcg,Ccg,Dcg,2) %补灵敏度函数的状态空间GK(1+GK)^-1svs=sigma(As,Bs,Cs,Ds,w);svs=20*log10(svs);[Aw1i,Bw1i,Cw1i,Dw1i]=unpck(minv(pck(Aw1,Bw1,Cw1,Dw1)));svw1i=sigma(Aw1i,Bw1i,Cw1i,Dw1i,w);svw1i= 20*log10(svw1i);figure(4)semilogx(w,svw1i,'b--',w,svs,'r-')title('Singular values of sensivity function S and W1^{-1}')xlabel('Frequency(rad/sec)')ylabel('Amplitude(db)')legend('W1^{-1}','S');grid on[Aw3i,Bw3i,Cw3i,Dw3i]=tf2ss(W3S.den{1,1},W3S.num{1,1})svw3i=sigma(Aw3i,Bw3i,Cw3i,Dw3i,w);svw3i=20*log10(svw3i);svt=sigma(At,Bt,Ct,Dt,w);svt=20*log10(svt);figure(5)semilogx(w,svw3i,'b--',w,svt,'r-')title('Singular values of complementary sensivity function T and W3^{-1}')xlabel('Frequency(rad/sec)')ylabel('Amplitude(db)')legend('W3^{-1}','T');grid onsvtt=sigma(Ac1,Bc1,Cc1,Dc1,1,w);svtt=20*log10(svtt);figure(6)semilogx(w,svtt,'b-')xlabel('Frequency(rad/sec)')ylabel('Amplitude(db)')title('Frequency Characteristic of Closed-Loop System Twz') grid onsvcp=sigma(Acp,Bcp,Ccp,Dcp,1,w);svcp=20*log10(svcp);figure(7)semilogx(w,svcp,'b-')xlabel('Frequency(rad/sec)')ylabel('Amplitude(db)')title('Frequency Characteristic of H∞Controller')grid ont=[0:0.01:15];setvalue=8y=setvalue*step(At,Bt,Ct,Dt,1,t);figure(8)plot(t,y,'-b')axis([0,10,0,10])xlabel('Time(s)')ylabel('L/Min)')grid onfigure(9)bode(Ag,Bg,Cg,Dg,1,w)title('Bode Diagram Of The Plant')grid on[cnum,cden]=ss2tf(At,Bt,Ct,Dt,1)figure(10)step(Ag,Bg,Cg,Dg,1)grid on。
最优控制问题的鲁棒控制算法设计最优控制问题作为控制理论的重要研究领域,涉及到在给定约束条件下,寻找使性能指标最优化的控制策略。
然而,现实中的控制系统常常会受到参数的不确定性和外部干扰的影响,这就需要设计一种鲁棒控制算法,以提高控制系统的稳定性和鲁棒性。
一、最优控制问题简介最优控制问题是研究在给定约束条件下,求解性能函数最优的控制策略的问题。
在控制理论中,最优控制可以分为静态最优控制和动态最优控制,其中动态最优控制又分为无模型和具有模型的控制。
静态最优控制是指在给定约束条件下,通过调节系统的输入使得性能指标最优化。
常用的方法有变分法、极大极小原理等。
动态最优控制则考虑到系统的动力学特性,通过在一段时间内控制系统的状态变量,使得性能指标在这段时间内最优化。
无模型的动态最优控制主要采用最优控制算法,如最优化理论、线性二次型控制等;具有模型的动态最优控制则使用最优化理论中的动态规划方法。
二、鲁棒控制算法设计鲁棒控制算法是为了应对控制系统中的参数不确定性和外部干扰而设计的一种控制策略。
它能够使得控制系统不受扰动的影响,保持稳定性和性能。
1. H∞控制算法H∞控制是一种常用的鲁棒控制算法,它通过优化系统的H∞性能指标来设计控制器。
H∞控制的基本思想是在系统的输入和输出之间引入一个H∞范数,以保证系统对内外干扰的鲁棒性。
2. μ合成算法μ合成算法是一种基于频率域的鲁棒控制算法,它通过优化系统的鲁棒稳定裕度指标来设计控制器。
μ合成算法首先确定系统的不确定性范围,然后通过搜索合适的控制器来最小化系统对不确定性的敏感度。
3. 小波神经网络算法小波神经网络是一种结合小波分析和神经网络的算法,它可以有效地应对控制系统中的不确定性和非线性。
小波神经网络算法通过训练网络的权重和阈值来实现控制系统的稳定性和鲁棒性。
三、鲁棒控制算法的应用鲁棒控制算法在实际控制系统中有着广泛的应用。
下面以飞行器控制系统为例,说明鲁棒控制算法的应用。
最优控制问题的鲁棒H∞控制最优控制问题是控制理论中的一个重要研究领域,其目标是设计最优的控制策略,使得系统在给定的性能指标下达到最佳的控制效果。
然而,在实际应用中,系统参数的不确定性以及外部干扰等因素往往会对控制系统产生严重影响,导致传统最优控制策略难以在这些不确定因素下取得令人满意的控制效果。
为了解决上述问题,鲁棒控制方法被引入到最优控制问题中。
鲁棒控制的主要思想是设计一个能够对系统参数不确定性和外部干扰具有抗扰能力的控制策略,以保证系统在面临这些不确定性因素时仍能保持良好的控制性能。
其中,H∞控制是鲁棒控制的一种重要方法。
H∞控制是一种基于H∞优化理论的控制方法,其目标是设计一个稳定的控制器,使得系统输出对于外部干扰和参数不确定性具有最大的衰减能力。
H∞控制方法能够针对不确定性系统进行鲁棒性分析,并在饱和脉冲干扰和噪声扰动等情况下仍能保持系统的稳定性和性能。
在具体的系统应用中,鲁棒H∞控制方法常常需要进行控制器的设计和参数调整。
控制器的设计一般采用线性矩阵不等式(LMI)方法,在满足一定约束条件的前提下求解最优的控制器参数。
参数调整则可以采用各种数学优化算法,如内点法、遗传算法等,以达到使系统的H∞控制性能最优化的目标。
鲁棒H∞控制方法在许多领域中得到了广泛应用。
例如,在机器人控制、飞行器控制、电力系统控制等领域中,鲁棒H∞控制方法能够有效地抑制参数不确定性和外部干扰,提高系统的鲁棒性和控制性能。
此外,鲁棒H∞控制方法还能够应用于网络控制系统、混合控制系统等复杂系统中,具有广泛的应用前景。
总之,最优控制问题的鲁棒H∞控制方法在解决系统参数不确定性和外部干扰等问题时具有重要的研究意义和实际应用价值。
通过设计稳定的控制器并考虑系统的鲁棒性,能够有效提高控制系统的性能和稳定性,为实际工程应用提供了可靠的控制方案。
最优控制问题的鲁棒H∞控制设计最优控制理论在工程系统控制中具有重要的应用价值。
然而,传统的最优控制方法在系统模型存在不确定性或外部干扰的情况下可能无法有效应对。
为了克服这一问题,鲁棒控制方法被引入到最优控制中,并且在实际应用中取得了显著的成果。
本文将探讨最优控制问题的鲁棒H∞控制设计方法及其应用领域。
一、鲁棒控制概述鲁棒控制是一种针对不确定性或外部干扰具有克服能力的控制方法。
其目标是在不确定性环境中实现系统稳定性和性能要求。
最常见的鲁棒控制方法之一是H∞控制,该方法通过优化问题来设计控制器,以抑制系统中不确定性的影响。
二、最优控制问题最优控制问题旨在通过选择最佳控制策略来实现系统的最优性能。
在没有不确定性时,可以使用动态规划、变分法等方法求解最优控制问题。
然而,在实际应用中,系统往往存在参数不确定性或外部干扰,导致最优控制问题变得更加复杂。
因此,需要引入鲁棒控制方法来解决这些问题。
三、鲁棒H∞控制设计方法鲁棒H∞控制方法是一种常用的鲁棒控制方法,其基本思想是在保证系统稳定性的前提下,优化系统对外部干扰的抑制能力。
鲁棒H∞控制设计问题可以被描述为一个优化问题,目标是最大化系统的H∞性能指标,并且确保控制器对系统模型不确定性具有鲁棒性。
为了实现鲁棒H∞控制设计,可以采用两种常用的方法:线性矩阵不等式(LMI)方法和基于频域分析的方法。
LMI方法通过求解一组线性矩阵不等式来得到控制器参数,从而实现系统的鲁棒H∞控制设计。
基于频域分析的方法则通过频域特性分析来设计控制器,以实现系统对不确定性的鲁棒性。
四、鲁棒H∞控制设计的应用领域鲁棒H∞控制设计方法在工程领域有广泛的应用。
它可以应用于飞行器姿态控制、机器人控制、智能电网控制等多个领域。
以飞行器姿态控制为例,鲁棒H∞控制设计可以有效提高飞行器对外部干扰的鲁棒性,并且保证姿态跟踪性能。
在机器人控制领域,鲁棒H∞控制设计可以提高机器人对环境不确定性的抑制能力,以实现精确的轨迹跟踪。
区间二型T-S模型网络控制系统的鲁棒H∞控制张富生;周绍生【摘要】针对一类具有网络诱导时滞和参数不确定的网络控制系统,研究鲁棒H∞控制器设计问题.基于区间二型T-S模型,通过构造合适的Lyapunov-Krasovskii泛函,引入自由权矩阵来表示New ton-Leibniz公式中各项之间的关系,加入一些附加项,运用不等式放缩和矩阵分解技巧,设计了使系统渐近稳定并满足H∞性能指标的状态反馈控制器.最后,通过数值仿真实例验证了设计方法的有效性.【期刊名称】《杭州电子科技大学学报》【年(卷),期】2019(039)004【总页数】8页(P51-57,77)【关键词】区间二型T-S模型;网络控制系统;自由权矩阵;网络诱导时滞【作者】张富生;周绍生【作者单位】杭州电子科技大学自动化学院 ,浙江杭州310018;杭州电子科技大学自动化学院 ,浙江杭州310018【正文语种】中文【中图分类】TP2730 引言1965年L.A.Zadeh教授首次提出模糊集合概念,1975年又提出二型模糊集合概念[1]。
在此基础上,J.M.Mendel等[2]提出区间二型T-S模糊集合概念。
区间二型T-S模糊集有主、次2个隶属函数并且次隶属函数为1,可以更好地捕捉系统的不确定信息并降低计算的复杂度[3]。
文献[4]针对一类传感器故障的网络控制T-S模糊系统,提出一种鲁棒可靠的控制方法。
文献[5]针对数据丢包的离散非线性网络控制系统,设计了区间二型状态反馈控制器。
文献[6]给出一类适当的Lyapunov-Krasovskii函数,充分利用时滞信息,引入一些关于时滞信息的附加项来改善现有的方法。
文献[7]在构造Lyapunov-Krasovskii时忽略了文献[6]中所提到的关于时滞信息的附加项,研究了一类T-S模型网络控制系统。
文献[8]研究了前件不匹配条件下的区间二型模糊模型控制系统的稳定性。
目前为止,关于区间二型T-S模型网络控制系统的研究成果较少。
具有鲁棒性的控制设计方法控制系统的设计和实现通常面临着各种不确定性和外部扰动的挑战。
为了克服这些问题并确保系统能够稳定和可靠地运行,具有鲁棒性的控制设计方法变得至关重要。
在本文中,将介绍一些常用的鲁棒控制设计方法,并探讨它们的优点和适用范围。
一、H∞控制方法H∞控制方法是一种广泛应用于工业控制系统中的鲁棒控制方法。
它的核心思想是通过优化控制器的H∞范数性能指标,使得控制系统对不确定性和扰动具有一定的鲁棒性。
H∞控制方法可以通过对控制器设计的性能要求进行权衡,从而实现系统的稳定性和鲁棒性。
H∞控制方法的主要优点是能够有效地处理各种不确定性和扰动,并具有较好的鲁棒性。
然而,它也存在一些局限性,例如需要对系统模型的不确定性进行较为准确的描述,以及对系统的结构进行一定的约束。
二、μ合成控制方法μ合成控制方法是一种基于现代控制理论的鲁棒控制方法。
它通过优化控制器的μ性能指标,实现系统的鲁棒性和性能要求之间的权衡。
μ合成控制方法能够有效地处理不确定性和扰动,并在实际应用中取得了良好的效果。
μ合成控制方法的主要优点是能够在控制器设计过程中兼顾系统的性能和鲁棒性要求,并具有较好的数学理论基础。
然而,μ合成控制方法也存在一些技术难题,例如需要进行复杂的计算和优化,并对系统的结构和参数进行一定的限制。
三、鲁棒PID控制方法鲁棒PID控制方法是一种基于传统PID控制算法的鲁棒控制方法。
它通过在PID控制器中引入补偿器,实现对系统不确定性和扰动的补偿,从而提高系统的稳定性和鲁棒性。
鲁棒PID控制方法的主要优点是简单易用,适用于各种不确定性和扰动情况,并且不需要对系统模型进行精确的描述。
然而,鲁棒PID 控制方法也存在一些问题,例如控制器的性能受限于PID结构的局限性,并且对不确定性和扰动的补偿能力有一定的限制。
四、自适应控制方法自适应控制方法是一种通过在线估计和补偿系统的不确定性和扰动的鲁棒控制方法。
它通过不断更新控制器的参数,使系统能够自适应地应对不确定性和扰动的变化,从而实现系统的鲁棒稳定性。