七年级上册数学同步讲义第4讲:幂的运算(一)
- 格式:doc
- 大小:760.50 KB
- 文档页数:17
辅导教案学员姓名:学科教师:周乔乔年级:七年级辅导科目:数学授课日期时间主题幂的运算(一)教学内容《整式的乘除》是整式加减的延续和发展,也是后续学习因式分解、分式运算的基础.整式的乘法运算包含单项式乘法、单项式与多项式乘法和多项式乘法,它们最后都转化为单项式乘法.单项式的乘法又以幂的运算为基础.“整式的乘法”的内容和逻辑线索是:同底数幂的乘法——幂的乘方——积的乘方——单项式乘单项式——单项式乘多项式——多项式乘多项式——乘法公式(特例).由此可见,同底数幂的乘法、幂的乘方、积的乘方是整式乘法的逻辑起点,是该章的起始课.作为章节起始课,承载着单元知识以及学习方法、路径的引领作用.幂的运算(一)知识结构模块一:同底数幂的乘法知识精讲内容分析1、幂的运算概念:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在n a 中,a 叫做底数,n 叫做指数.含义:n a 中,a 为底数,n 为指数,即表示a 的个数,n a 表示有n 个a 连续相乘. 例如:53表示33333⨯⨯⨯⨯,()53-表示()()()()()33333-⨯-⨯-⨯-⨯-,53-表示()33333-⨯⨯⨯⨯,527⎛⎫⎪⎝⎭表示2222277777⨯⨯⨯⨯,527表示222227⨯⨯⨯⨯.特别注意负数及分数的乘方,应把底数加上括号. 2、“奇负偶正”口诀的应用:口诀“奇负偶正”在多处知识点中均提到过,它具体的应用有如下几点:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:[](3)3---=-;[](3)3-+-=. (2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号. (3)有理数乘方,这里奇、偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正.例如:()239-=,()3327-=-.特别地:当n 为奇数时,()n n a a -=-;而当n 为偶数时,()nn a a -=. 负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,1的任何次幂都是1,任何不为0的数的0次幂都是“1”. 3、同底数幂相乘同底数的幂相乘,底数不变,指数相加.用式子表示为: m n m n a a a +⋅=(,m n 都是正整数).【例1】 下列各式正确吗?不正确的请加以改正. (1)347()()x x x -⋅-=-; (2)246()()x x x --=-; (3)()()121m m m a a a ++--=;(4)5552b b b ⋅=;(5)4610b b b +=; (6)55102x x x ⋅=;(7)5525x x x ⋅=;(8)33c c c ⋅=.【难度】★【答案】(1)正确;(2)不正确,正确为:()()4626x x x x --=-=--;(3)不正确,正确为:()()()12121m m m m a a a a +++--=-=-;(4)不正确,正确为:5510b b b ⋅=;(5)不正确,不能计算;(6)不正确,正确为:5510x x x ⋅=;(7)不正确,正确为:5510x x x ⋅=; (8)不正确,正确为:34c c c ⋅=. 例题解析【解析】同底数幂相乘,底数不变,指数相加.【总结】本题主要考查同底数幂的乘法运算,同时一定要注意确保是在同底数幂乘法运算时才可以应用,注意算式中的符号.【例2】 计算下列各式,结果用幂的形式表示: (1)567(2)(2)(2)-⨯-⨯-; (2)23a a a ⋅⋅;(3)24()()a b a b +⋅+;(4)235()()()x y x y x y -⋅-⋅-.【难度】★【答案】(1)182;(2)6a ;(3)()6a b +;(4)()10x y -. 【解析】本题主要考查同底数幂相乘的计算,底数不变,指数相加.【例3】 计算下列各式,结果用幂的形式表示. (1)()()334333x x x x x x x x ⋅+⋅⋅+-⋅-⋅;(2)()()()()()3224a a a a a ---+--;(3)12211m n m n m n a a a a a a -++-+⋅+⋅+⋅. 【难度】★【答案】(1)73x ;(2)0;(3)13m n a ++.【解析】(1)原式77773x x x x =++=; (2)原式660a a =-=;(3)原式11113m n m n m n m n a a a a ++++++++=++=.【总结】本题主要考查同底数幂相乘的计算和合并同类项相关知识概念,同底数幂相乘,底数不变,指数相加,然后进行合并同类项的运算.【例4】 计算下列各式,结果用幂的形式表示.(1)()()()332a a a --⋅--;(2)()()23x y y x --;(3)()()()212222m m x y x y x y -+---.【难度】★★【答案】(1)8a ;(2)()5y x -;(3)()232m x y +-.【解析】(1)原式358a a a =⋅=; (2)原式235()()()y x y x y x =-⋅-=-;(3)原式21223(2)m m m x y a +-+++=-=.【总结】本题主要考查同底数幂相乘的计算,底数不变,指数相加;同时涉及到多重负号的化简,看“-”号的个数决定运算结果的符号,奇负偶正.【例5】 如果2111m n n x x x -+⋅=,且145m n y y y --⋅=,试求m 、n 的值. 【难度】★★【答案】64m n ==,.【解析】根据同底数幂的计算法则,可得2111145m n n m n -++=⎧⎨-+-=⎩,解方程组得64m n =⎧⎨=⎩.【总结】考查同底数幂相乘的运算法则.【例6】 求值: (1)已知:29m n n m x x x +-⋅=,求()59n-+的值.(2)已知:()4233x +-=,求x 的值.【难度】★★【答案】(1)116-;(2)2-.【解析】(1)由同底数幂乘法法则,可得29m n n m ++-=,解得3n =,()359116-+=-;(2)()()422333x +-==-,可得42x +=,解得2x =-.【总结】本题主要考查同底数幂相乘的运算法则,注意一定要让底数相等的前提下保证幂相等.【例7】 若2216m n ⋅=,求48m n m n ++⋅的值. 【难度】★★★ 【答案】432.【解析】由同底数幂的乘法计算,可得422m n +=,由此4m n +=,原式=4444832⨯=. 【总结】本题主要考查同底数幂计算中整体思想的应用.【例8】 解关于x 的方程: (1)21134151294x x x x ++⋅=-⋅; (2)已知351327648x x ++-=. 【难度】★★★ 【答案】(1)32x =;(2)13x =.【解析】(1)22223321512324x x x x ⋅⋅=-⋅⋅ (2)3333393648x x ++⋅-= 2671512x ⋅= 3338648x +⋅= 2362166x == 3343813x +== 32x =13x =【总结】解此种类型的方程主要根据乘方的定义把含有未知数的项变作相同的项,再根据相互之间的关系转化求解.【例9】 若312x y z==,且99xy yz xz ++=,求2222129x y z ++的值. 【难度】★★★ 【答案】594. 【解析】由312x y z==,可得32x y z y ==,,22223261199xy yz xz y y y y ++=++==,则有29y =,所以()()2222222212923129266594x y z y y y y ++=⨯++⨯==.【总结】考查整体思想的应用,等量代换的方法.1、幂的乘方定义:幂的乘方是指几个相同的幂相乘.2、幂的乘方法则:幂的乘方,底数不变,指数相乘.即()m n mn a a =(m 、n 都是正整数)【例10】计算下列各式,结果用幂的形式表示.(1)()42a -;(2)24()a -; (3)2()n n a ; (4)()832;(5)()432⎡⎤-⎣⎦; (6)()33b -;(7)()43x -;(8)323()()x y x y ⎡⎤⎡⎤++⎣⎦⎣⎦.【难度】★【答案】(1)8a -;(2)8a ;(3)22n a ;(4)242;(5)122;(6)9b -;(7)12x ;(8)()9x y +.【解析】幂的乘方,底数不变,指数相乘. 【总结】本题主要考查幂的乘方的运算.【例11】 当正整数n 分别满足什么条件时,()(),n nn n a a a a -=-=-?【难度】★【答案】n 为偶数时,()nn a a -=;n 为奇数时,()nn a a -=-.【解析】幂的运算中,奇负偶正.【例12】已知:2n a =(n 为正整数),求()()2223nn a a -的值.【难度】★★【答案】48-.【解析】原式=()()4646462248n n n n a a a a -=-=-=-.【总结】本题主要考查幂的乘方的运算,以及运算中整体思想的应用. 知识精讲例题解析模块二:幂的乘方【例13】 计算(1)()2122n n n a a a +++;(2)()()()3834222632x x x x x ⎡⎤-+⎢⎥⎣⎦.【难度】★★【答案】(1)223n a +;(2)0【解析】(1)原式22222223n n n a a a +++=+=; (2)原式18181820x x x =-+=. 【总结】本题考查幂的乘方和同底数幂的乘法运算.【例14】计算:(1)()()()22121n n n a b b a a b -+⎡⎤⎡⎤---⎣⎦⎣⎦;(2)()()3223a b b a ⎡⎤⎡⎤---⎣⎦⎣⎦. 【难度】★★ 【答案】(1)()61n a b --;(2)0.【解析】(1)原式2222161()()()()n n n n a b a b a b a b -+-=-⋅-⋅-=-;(2)原式66()()0a b a b =---=.【总结】本题考查幂的乘方和同底数幂的乘法运算.【例15】已知23m n a a ==,,求23m n a +的值.【难度】★★ 【答案】108.【解析】()()2323232323108m n m n m n a a a a a +=⋅=⋅=⨯=.【总结】本题注意考查幂的乘方运算中整体思想的应用.【例16】 已知2673x x y m m a a a b a b ++⋅⋅⋅=(x 、y 、m 都是正整数),且y 不大于3,求2x y m +-的值. 【难度】★★★ 【答案】3-.【解析】依题意有221673x y m m a b a b +++=,由此可得()217x y ++=,63m m +=,解得3x y +=, 3m =,由此23x y m +-=-.【总结】本题主要考查同底数幂相乘的法则的运用.【例17】比较大小:(1)比较下列一组数的大小:在552,443,334,225; (2)比较下列一组数的大小:31416181279,,; (3)比较下列一组数的大小:4488,5366,6244. 【难度】★★★【答案】(1)443355223425>>>;(2)31416181279>>;(3)488366244456>>. 【解析】(1)()()()()11111111555114441133311222112232338144645525========,,,,可得:443355223425>>>;(2)()()()31416131412441312361212281332733933======,,,可得:31416181279>>; (3)()()()11211211248841123663112244211244256551256636======,,,可得:488366244456>>.【总结】本题中,指数幂运算结果都是很大的数,不可能直接算出来,采用间接法,利用幂的乘方运算法则,要么化作指数相同,比较底数大小,要么化作底数相同,比较指数大小.【例18】已知()()2222221123451216n n n n ++++++=++L ,求222224650++++L 的值.【难度】★★★ 【答案】22100.【解析】原式=()()()()()222222222212223225212325⨯+⨯+⨯+⋅⋅⋅+⨯=⨯+++⋅⋅⋅+,代入公式,可得:()()14252512251221006⨯⨯⨯+⨯⨯+=.【总结】本题主要考查对相关公式的变形运用. 模块三:积的乘方1、积的乘方定义:积的乘方指的是乘积形式的乘方.2、积的乘方法则:积的乘方,等于把积中的每个因式分别乘方,再把所得的幂相乘: ()nn n ab a b =(n 是正整数)3、积的乘方的逆用:()n n n a b ab =.【例19】计算:(1)()333m n -;(2)43213a b ⎛⎫- ⎪⎝⎭;(3)()32242a b--;(4)541103⎛⎫-⨯ ⎪⎝⎭.【难度】★【答案】(1)9327m n -;(2)128181a b ;(3)61264a b ;(4)2010243-.【解析】本题考查积的乘方的运算法则,把积中的每个因式分别乘方,注意正负.【例20】计算:(1)342(-)a b ;(2)3532()4x y ;(3)23[()]a b -+.【难度】★【答案】(1)68a b ;(2)91518x y ;(3)()6a b -+.【解析】本题考查积的乘方的运算法则,把积中的每个因式分别乘方,注意正负.【例21】计算:(1)()()233232x x +;(2)()()32223332x y x y -;例题解析知识精讲(3)()()433648a b a b -+-;(4)232()[()]a b b a -⋅-.【难度】★【答案】(1)617x ;(2)66x y ;(3)0;(4)()8a b -. 【解析】(1)原式6669817x x x =+=;(2)原式66666632x y x y x y =-=; (3)原式122412240a b a b =-=;(4)原式268()()()a b a b a b =-⋅-=-.【总结】本题考查同底数幂的乘法,幂的乘方,积的乘方综合运算,熟练运算法则.【例22】计算:(1)32332()()y y y ⋅⋅;(2)2323[()]a a a -⋅⋅-;(3)()()3222632x y x y ⎡⎤⎡⎤---+-⎣⎦⎢⎥⎣⎦.【难度】★★【答案】(1)15y ;(2)11a -;(3)12665x y . 【解析】(1)原式26615y y y y =⋅⋅=;(2)原式5611a a a =-⋅=-;(3)原式1261261266465x y x y x y =+=.【总结】本题考查同底数幂的乘法,幂的乘方,积的乘方综合运算,熟练运算法则.【例23】用简便方法计算:(1)818139⎛⎫⨯- ⎪⎝⎭;(2)()66720030.1252-⨯;(3)128184⎛⎫⨯- ⎪⎝⎭;(4)61245⨯.【难度】★★【答案】(1)9;(2)4-;(3)1;(4)1210. 【解析】(1)原式=()888928111399999999⎛⎫⎛⎫⎛⎫⨯=⨯⨯=⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)原式=()()()()6676676676672001230.125220.125240.125844-⨯⨯=-⨯⨯=-⨯⨯=-;(3)原式=()()1212121281232421111222414444⎛⎫⎛⎫⎛⎫⎛⎫⨯=⨯=⨯=⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭;(4)原式=()()61221212121225252510⨯=⨯=⨯=.【总结】主要根据积的乘方逆运算法则和同底数幂的乘法,将底数变成易于计算的数字.【例24】简便计算:(1)()()16170.1258⨯-;(2)20022001513135⎛⎫⎛⎫⨯ ⎪⎪⎝⎭⎝⎭;(3)()()315150.1252⨯.【难度】★★【答案】(1)8-;(2)513;(3)1. 【解析】(1)原式=()()()()()1616160.125880.125888⨯-⨯-=⨯-⨯-=-⎡⎤⎣⎦;(2) 原式=200120012001551355135131351313513⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯=⨯⨯=⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; (3) 原式=()()()151515330.12520.12521⨯=⨯=.【总结】考查积的乘方简便运算,把握好乘方的定义,同时注意一定指数相同时才能进行积的乘方的逆运算.【例25】已知57,19m n m x x +==,求3n x 的值.【难度】★★★ 【答案】27.【解析】57m n m n x x x +=⋅=,由19m x =,可得3n x =,则()333327n n x x ===.【总结】本题主要是幂的运算中整体思想的应用.【例26】已知:1123326x x x ++-⋅=,求x 的值.【难度】★★★ 【答案】4.【解析】由题目条件,根据积的乘方逆运用,()11233266x x x ++-⨯==,可得123x x +=-,解方程得:4x =.【总结】本题主要考查积的乘方的逆用.【例27】计算:()99991111...1123 (98991009998)32⎛⎫⨯⨯⨯⨯⨯⋅⨯⨯⨯⨯⨯⨯ ⎪⎝⎭.【难度】★★★ 【答案】99100.【解析】原式=999911112398991001009998⎛⎫⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯= ⎪⎝⎭.【总结】本题主要考查积的乘方的逆用.【例28】2009201025⨯的积有多少个0?是几位数?【难度】★★★【答案】有2009个0,是2010位数. 【解析】()20092009201020092009200925255255105⨯=⨯⨯=⨯⨯=⨯,可知式子乘积有2009个0, 是2010位数.【总结】本题主要考查积的乘方的逆用,注意指数的变化.【习题1】 计算:(1)()3523124m m ⎛⎫-⋅- ⎪⎝⎭;(2)322373127y y y ⎛⎫⎛⎫⋅⋅- ⎪⎪⎝⎭⎝⎭;随堂检测(3)431()()4x y x y ⎡⎤++⎢⎥⎣⎦.【难度】★【答案】(1)2112m ;(2)137192y ;(3)()71256x y +【解析】(1)原式6152111(32)642m m m =-⋅-=; (2)原式3661337971249192y y y y =⋅⋅=;(3)原式43711()()()256256x y x y x y =+⋅+=+.【总结】本题主要考查幂的运算,注意运算法则的准确运用以及计算过程中的符号.【习题2】 计算:(1)()()842263x x x x ⋅+⋅;(2)()()()()224252232a a a a ⋅-⋅;(3)()()()33252352123y y y y y ⎛⎫⋅⋅+-⋅- ⎪⎝⎭. 【难度】★【答案】(1)182x ;(2)14a ;(3)25132127y ⎛⎫+ ⎪⎝⎭.【解析】(1)原式216612182x x x x x =⋅+⋅=; (2)原式10486142a a a a a =⋅-⋅=;(3)原式252566325101313131222(1)272727y y y y y y y y =⋅⋅+⋅=+⋅=+.【总结】本题主要考查幂的运算,注意运算法则的准确运用以及计算后注意合并同类项.【习题3】 计算:()()()()213325m m ma b b a a b b a ++⎡⎤⎡⎤-⋅--⋅-⋅--⎣⎦⎣⎦. 【难度】★ 【答案】()620m a b +--.【解析】原式=()()()()34215m m m a b a b a b a b ++⎡⎤-⋅--⋅-⋅-⎣⎦()34215m m m a b +++++=--()620m a b +=--.【总结】本题主要考查幂的运算,计算过程中注意符号的变化.【习题4】 填空题:(1)n 为自然数,那么()1n-=______;()21n-=_______;()211n +-=________;(2)当n 为____________数时,()()2110n n-+-=; (3)当n 为____________数时,()()2112nn-+-=. 【难度】★★【答案】(1)111±-,,;(2)奇;(3)偶. 【解析】主要考查幂的运算中的符号,奇负偶正.【习题5】 若n 是自然数,并且有理数,a b 满足10a b+=,则必有( )A .210nna b ⎛⎫+= ⎪⎝⎭;B .21210n nab +⎛⎫+= ⎪⎝⎭;C .2210nnab ⎛⎫+= ⎪⎝⎭;D .212110n n ab ++⎛⎫+= ⎪⎝⎭.【难度】★★ 【答案】B 【解析】a 和1b互为相反数,则必为一正一负,根据“奇负偶正”可知两幂运算指数必为一 奇一偶. 【总结】本题主要考查积的乘方以及相反数的相关概念.【习题6】 填空:(1)计算:()()5333a b b a --=__________; (2)计算:43()()()m n n m n m ---=__________;(3)计算:()()222x y y x ⎡⎤--⋅-⎣⎦=__________. 【难度】★★【答案】(1)()83a b --;(2)()8m n -;(3)()6x y -. 【解析】(1)原式538(3)[(3)](3)a b a b a b =-⋅--=--; (2)原式448()()()m n n m m n =-⋅-=-; (3)原式426()()()x y x y x y =-⋅-=-.【总结】本题主要考查幂的综合运算,计算过程中注意符号.【习题7】 用简便方法计算: (1)()()2200320030.045⎡⎤⨯-⎣⎦;(2)200720072 1.53⎛⎫-⨯ ⎪⎝⎭;(3)1111127331982⎛⎫⎛⎫⎛⎫-⨯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【难度】★★【答案】(1)1;(2)1-;(3)32-【解析】(1)原式=()()()200320032003220.0450.0451⨯=⨯=;(2)原式=20072 1.513⎛⎫-⨯=- ⎪⎝⎭;(3)原式=1111111173337333311982298222⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯⨯-⨯-=-⨯⨯-⨯-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.【总结】考查幂的运算的应用,一般将指数化作相同,用积的乘方逆运算应用计算.【习题8】 如果2228162n n ⋅⋅=,求n 的值. 【难度】★★ 【答案】3.【解析】将式子两边化作等底数幂,即有()()347122281622222nnn n n +⋅⋅=⨯⨯==,故7122n +=,解得3n =.【总结】本题主要考查同底数幂相乘的法则的运用.【习题9】 已知a 、b 互为负倒数,a 、c 互为相反数,d 的绝对值为1,则()()20152016201412ab a c d ++-=__________. 【难度】★★【答案】32-.【解析】依题意有101ab a c d =-+==,,,代入可得:()2015201620141310122⨯-+-=-. 【总结】本题中注意d 的取值以及负倒数的概念.【习题10】 已知有理数x ,y ,z 满足()2|2|367|334|0x z x y y z --+--++-=,求3314n n n x y z x --的值. 【难度】★★ 【答案】0.【解析】依题意有2036703340x z x y y z --=⎧⎪--=⎨⎪+-=⎩,可解得:3131x y z =⎧⎪⎪=⎨⎪⎪=⎩,代入可得:313134311131333333033n n nn n ---⎛⎫⎛⎫⋅⋅-=⋅⨯-=-= ⎪⎪⎝⎭⎝⎭.【总结】当几个非负数的和为零时,则这几个数分别为零.【习题11】 已知2326212a b c ===,,,求a b c ,,之间的一个数量关系. 【难度】★★ 【答案】2a c b +=.【解析】由3×12=36=6×6,根据题意代换可得:2222a c b b ⋅=⋅,即为222a c b +=.由此可得:2a c b +=.【总结】本题主要考查同底数幂相乘的法则的运用.【习题12】 小杰在学习幂的乘法时,发现()32236a a a ⨯==,()23326a a a ⨯==,两者的结果是相同的,他觉得这是由于在进行指数相乘时,乘法具有交换律,所以是相同的,于是他在计算()32a -与()23a -时,认为结果也应是相同的,你同意他的观点吗?说说你 的理由. 【难度】★★ 【答案】不同意.【解析】这两个幂的乘法运算可视作积的乘方运算,积的乘方运算的结果是积中的每个因式 分别乘方,会产生类似()1n-的运算,n 分别为奇偶时会产生不同的运算结果,奇负偶正, 即要注意好运算符号,两个式子计算结果不相等.【总结】负数的偶次幂为正,负数的奇次幂为负.【习题13】 三个互不相等的有理数,既可表示为1,a b +,a 的形式,又可表示为0,ba, b 的形式,则19921993a b += .【难度】★★★ 【答案】2.【解析】三个有理数互不相等,则1ba≠,可得1b =,进而可得01a b a +==-,,代入可得:()19921993112-+=.【总结】本题主要考查对题目条件的理解,以及幂的运算的考查.【习题14】 已知:3982ba ==,求22211125525a b a b b a b ⎛⎫⎛⎫⎛⎫-++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.【难度】★★★ 【答案】64-.【解析】由已知,即得()333998222b a ====,由此29a b ==,,对代数式化简,结果为:2222a a b -,代入数值计算得:222222964⨯-⨯⨯=-.【总结】本题中注意要先根据已知条件将等式转化为底数相同的幂,再根据指数相同求出相应的字母的值,最后再求出代数式的值.【作业1】 下列计算正确的是( )课后作业A .234235a a a +=B .()32528a a =C .3252()2a a a -=-D .226212m m a a a ⋅=【难度】★ 【答案】C【解析】考查幂的运算法则,熟练计算.【作业2】 计算: (1)22234xy ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦;(2)33223a b ⎛⎫- ⎪⎝⎭;(4)()42313x y a b ⎡⎤--⋅⎢⎥⎣⎦.【难度】★ 【答案】(1)2481256x y ;(2)96827a b -;(3)()8124181x y a b - 【解析】考查幂的运算法则,熟练计算. 【作业3】计算:()()2436234341233a b a b b a ⎛⎫+--- ⎪⎝⎭【难度】★【答案】912410239a b ⎛⎫+⨯ ⎪⎝⎭.【解析】原式=12412491249124110232399a b a b a b a b ⎛⎫++⨯=+⨯ ⎪⎝⎭.【总结】本题主要考查幂的综合运算.【作业4】 简便计算: (1)20021220028113834⎛⎫⎛⎫-⋅+⨯- ⎪⎪⎝⎭⎝⎭;(2)()201120101294313343⎛⎫⎛⎫⎛⎫-⋅--⨯ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.【难度】★【答案】(1)2;(2)3527-.【解析】(1)原式=2002122002122002121111343423434⎛⎫⎛⎫⎛⎫⎛⎫⨯+⨯=⨯+⨯= ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭;(2)原式=2010201093944311413533343332727⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯+⨯⨯=-+=- ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.【总结】本题主要考查利用积的乘法法则完成简便运算.【作业5】 计算:62262224()()()()()kk k k kx y x y x y x y x y +-⎡⎤⎡⎤⎡⎤-⋅---⋅-+-⎣⎦⎣⎦⎣⎦.【难度】★★ 【答案】()8kx y -.【解析】原式=()()()()2662228k k k k kx y x y x y x y ++--⋅---+-=()()()888kkkx y x y x y ---+-()8kx y =-.【总结】本题主要考查幂的乘方的运用.【作业6】 求值:(1)已知102103m n ==,,求3210m n +. (2)已知54n n x y ==,,求()32n x y .【难度】★★【答案】(1)72;(2)2000.【解析】(1)()()3232323210101010102372m n m n m n +=⋅=⋅=⨯=;(2)()()()32323232542000nn n n n x y x y x y ==⋅=⨯=.【总结】本题主要考查整体思想的应用.【作业7】 求值:(1)若23n a =,求()43n a 的值.(2)如果()23612m n a b a b ⋅=,求m n ,的值.【难度】★★【答案】(1)729;(2)32m n ==,.【解析】(1)()()46312263729n n n a a a ====;(2)()2326612m n m n a b a b a b ⋅==,由此26612m n ==,,可解得32m n ==,.【总结】本题主要考查整体思想的应用.【作业8】 若a 、b 、c 都是正数,且22a =,33b =,44c =,比较a 、b 、c 的大小. 【难度】★★★ 【答案】b a c >=.【解析】22a =,则有()22224a ==,即44a =,又44c =,且a 、c 都是正数,可得a c =;由22a =,33b =,则有()()322633622839a a b b ======,,即66a b <,可知a b <;综上所述,b a c >=.【总结】本题主要考查幂的乘法的综合运算,以及幂的大小比较,注意将不同的幂化成同底数或者是同指数.【作业9】 已知999990991199X Y ==,,比较X 与Y 的大小.【难度】★★★ 【答案】X=Y .【解析】()999999999999011999119119999X Y ⨯⨯=====. 【总结】本题主要考查幂的大小比较,根据幂的乘方法则进行转化.【作业10】 已知:252000x =,802000y =,求11x y+的值. 【难度】★★★ 【答案】1. 【解析】由题意()1125200025xxx==,()1180200080yyy==,两式相乘,得:11200025802000x y+=⨯=,故111x y+=. 【总结】本题一方面考查整体思想的运用,另一方面考查幂的乘方的计算.。
七年级上册数学幂的知识点七年级上册数学——幂的知识点在七年级的数学学习中,幂是一个基础且重要的知识点。
幂是指一个数的自乘,其中底数是幂的基础,指数是幂的次数。
接下来,我们就来一一了解一下幂的相关知识点。
一、幂的基本概念若 a 是任何一个非零数,则 a 的幂为 a 的 n 次方,即aⁿ =a×a×...×a (n 个 a 相乘)。
其中,a 为底数,n 为指数,aⁿ 为幂。
特别地,当 n = 0 时,我们规定 a⁰ = 1,无论 a 是哪个数。
二、幂的性质1.幂的乘方性质:(aⁿ )ⁿ = aⁿ×ⁿ2.幂的零次方性质:a⁰ = 1(a ≠ 0)3.幂的加法性质:aⁿ + aᵐ= aⁿᶻ(n ≠ m)4.幂的乘法性质:aⁿ × aᵐ= aⁿᶻ(n ≠ m)5.幂的除法性质:aⁿ ÷ aᵐ= aⁿᶻ(n ≠ m 且a ≠ 0)三、幂的计算方法1.幂的乘方运算运用乘方性质:(aⁿ)ⁿ = aⁿ×ⁿ,我们可以以如下的方式简化幂的运算:先对外层幂运算进行计算,然后将提取出来的结果作为内部幂的指数,进行内部幂的运算。
例如:(2⁶)³=2¹⁸=262144.2.幂的正、负指数指数为整数就是普通的幂,但指数可以是负数或零。
接下来,我将分别介绍负指数、零指数的情况。
当指数为负数时,底数的变化指的是它在分母位置,而指数的绝对值是该数作为分母的幂的大小。
例如:(3⁻²) = 1/(3²) = 1/9。
当指数为零时,底数为非零数,它的幂都应为1。
例如:(5⁰) = 1。
四、幂的实际应用1.幂的运用在定理证明中起重要作用例如,爱因斯坦把 E=mc²的定理固定下来,其中的 c 的平方就是一个基本的幂。
2.幂函数在计算中具有重要作用幂函数是指y = xⁿ(x≥0 , n为整数)的函数形式。
例如,温度转换公式中,摄氏度和华氏度之间的转换,就是通过幂函数求解的。
七年级数学幂的运算知识点在七年级数学中,幂的运算是一个常见的知识点。
幂的运算需要掌握基本的概念和运算规律,才能进行有效的计算。
本文将介绍七年级数学中幂的运算知识点。
一、幂的概念幂是数学中的一个概念,它表示同一个数连乘多次的结果。
其中,底数表示被连乘的数,指数表示连乘的次数。
例如,2的3次幂可以表示为2³,意思是2乘以2乘以2,其结果为8。
在数学中,连乘的次数必须是正整数。
二、幂的运算规律1、乘法规律当幂的底数相同时,按照下列公式进行乘法运算:am × an =am+n。
例如,2的3次幂乘以2的4次幂,可以化简为2的7次幂。
2、除法规律当幂的底数相同时,按照下列公式进行除法运算:am ÷ an =am-n。
例如,2的5次幂除以2的2次幂,可以化简为2的3次幂。
3、幂的乘方规律当幂的底数相同时,按照下列公式进行指数运算:(am)n = amn。
例如,2的3次幂的4次幂,可以化简为2的12次幂。
4、幂的除法规律当幂的底数相同时,按照下列公式进行指数运算:(am)n = amn。
例如,2的12次幂除以2的3次幂,可以化简为2的9次幂。
三、幂的运算例题1、计算2² × 2³的结果解:根据乘法规律,将底数相同的幂相乘,即可得到结果。
2²× 2³ = 2^(2+3) = 2⁵ = 32。
2、计算5¹⁰ ÷ 5³的结果解:根据除法规律,将底数相同的幂相除,即可得到结果。
5¹⁰ ÷ 5³ = 5^(10-3) = 5⁷ = 78125。
3、计算(3²)³的结果解:根据幂的乘方规律,将底数相同的幂进行指数运算,即可得到结果。
(3²)³ = 3^(2×3) = 3⁶ = 729。
4、计算81 ÷ 3⁴的结果解:根据幂的除法规律,将底数相同的幂进行指数运算,即可得到结果。
七年级数学幂的运算一、幂的定义。
1. 一般地,a^n表示n个a相乘,其中a叫做底数,n叫做指数,a^n叫做幂。
例如2^3 = 2×2×2 = 8,这里2是底数,3是指数,8是幂。
二、同底数幂的乘法。
1. 法则。
- 同底数幂相乘,底数不变,指数相加。
即a^m×a^n=a^m + n(m,n都是正整数)。
- 例如:2^3×2^4 = 2^3+4=2^7 = 128。
2. 推导。
- 根据幂的定义,a^m表示m个a相乘,a^n表示n个a相乘,那么a^m×a^n 就是(m + n)个a相乘,所以a^m×a^n=a^m + n。
三、幂的乘方。
1. 法则。
- 幂的乘方,底数不变,指数相乘。
即(a^m)^n=a^mn(m,n都是正整数)。
- 例如:(2^3)^4=2^3×4=2^12。
2. 推导。
- 根据幂的定义,(a^m)^n表示n个a^m相乘,a^m = a×a×·s×a(m个a),那么(a^m)^n=a^m×a^m×·s×a^m(n个a^m),所以(a^m)^n=a^mn。
四、积的乘方。
1. 法则。
- 积的乘方等于乘方的积。
即(ab)^n=a^n b^n(n是正整数)。
- 例如:(2×3)^2 = 2^2×3^2=4×9 = 36。
2. 推导。
- 根据幂的定义,(ab)^n=(ab)×(ab)×·s×(ab)(n个ab),利用乘法交换律和结合律可得(ab)^n=(a×a×·s×a)×(b×b×·s×b)=a^n b^n。
五、同底数幂的除法。
1. 法则。
- 同底数幂相除,底数不变,指数相减。
即a^m÷a^n=a^m - n(a≠0,m,n都是正整数,且m>n)。
第四讲:幂与积的乘方1.熟练掌握幂的乘方的运算性质并能运用它进行快速计算和熟练的计算;2.理解积的乘方的意义;会运用积的乘方法则进行有关的计算;3.逆用积的乘方法则简便运算,能利用所学幂的运算法则,进行混合运算指出下列各幂的底数和指数:34(2) 43()a 35()a在上列各式中我们若把23看成一个整体,那么34(2) 的底数是23,指数是4,它就是2的3次幂的4次方;43()a 的底数是 ,指数是_ __,它就是35()a 的底数是 ,指数是_ __,它就是34(2);43()a ;35()a 称之为幂的乘方。
请计算34(2); 43()a ; 35()a提醒学生可以根据乘方的意义和同底数的幂的乘法性质。
得(1)34(2)= ⨯ ⨯ ⨯ =()2(2)43()a = ⨯ ⨯ =()a(3)35()a = ⨯ ⨯ ⨯ ⨯ = ()a让学生观察(1)34(2)=122;(2)43()a =12a ;(3)35()a =15a 三小题左右两边的变化规律 猜想:如果m 、n 都是正整数,那么 ()m n a =_ __练习:1.计算:(1)52(10); (2)33()y ; (3)[2(3)-]3; (4)[3()a -]52.计算;(1)3524()a a a ⋅+; (2)2433()()a a ⋅;(3)322()a a ⋅ (4)3434()a a a +⋅3.把下列各式写成()n a b +或()n a b -的形式:(1)23()a b ⎡⎤+⎣⎦ (2)[()a b -2()b a -]4思考:请观察以下算式:()()()2353535⨯=⨯⋅⨯……幂的意义()()3355=⨯⋅⨯……乘法的交换律、结合律2235=⋅请按照以上方法,完成下列填空:()225____________________________⨯== ()4______________________________ab ==我们知道n a表示n个a相乘,那么()nab表示什么呢?()nab ab ab ab=⋅⋅⋅;____________个ab()()a a ab b b=⋅⋅⋅⋅⋅⋅⋅;________个a________个b_____________=思考:这个性质对于三个或三个以上因式的积的乘方适用吗?如()nabc ()n n n nabc a b c=(n是正整数)练习:1.计算:(1)()43a(2)()32mx-(3)()32xy-(4)2223xy⎛⎫ ⎪⎝⎭小结:在计算中要注意什么?(1)在计算中要看清所进行的计算类型(同底数幂相乘、幂的乘方、积的乘方),不能用错法则;(2)要看清综合运算中包含的各种运算,遵循“先乘方,再乘除,后加减,有括号先做括号”例1. 计算下列各题(1)、23523()()x x x x ⋅+-+ (2)、232534[()]()x x x x x x ⋅-+⋅+-⋅试一试:计算下列各题(1)、4510224()()3[()]x x x -+-- (2)、222452223()()()()x x x x ⋅-⋅例2. 计算: (1) 1111(0.25)4-⨯(2) 20132014(0.125)8-⨯试一试:计算: (1) 620.25(32)⨯- (2)201420142013201311(8)(7)()()87-⋅-⋅--例3. 已知105,106a b ==,求(1)231010a b +的值;(2)2310a b +的值试一试:已知2m a =,2n b =,求(1)8m n +,(2)3222m n m n +++的值例4. 阅读下列解题过程:试比较1002与753的大小.解:100425252(2)16==75325253(3)27==而1627<, 所以25251627<1007523∴<请根据上述解答过程解答:比较552、443、334的大小.1.下列等式成立的是( )(A )224a a a += (B )248a a a ⋅= (C )33()n n a a = (D )33(2)2a a = 2.如果x 和y 互为倒数,那么20142013()x y ⋅-的值为 ( ).A .xB .–xC .yD . –y 3.计算:61245_________⨯=(结果用幂的形式表示). 4.计算:3223()()a a -⋅-= .5.计算:33()()n n a a ⋅= .6.3223927⨯⨯= (结果用幂的形式表示).7.若35(2)2x -⋅=,则x = .本节课主要知识点:幂的乘法运算,积的乘方运算及注意事项【巩固练习】1.下列计算中,结果正确的是( )A .236a a a =·B .(2)(3)6a a a ⋅=C .()326a a = D .623a a a ÷=2.化简24m n ⋅的结果是( )A .(24)mn ⨯B .22m n +⨯C .(24)m n +⨯D .22m n + 3.221()n x --等于( )A 、41n x -B 、41n x --C 、42n x -D 、42n x --4. 12()n a --等于( )A 、22n a -B 、22n a --C 、21n a -D 、22n a --5. 31n y +可写成( )A 、31()n y +B 、31()n y +C 、3n y y ⋅D 、1()n n y +6. 2()()m m m a a ⋅不等于( )A 、2()m m a+ B 、2()m m a a ⋅ C 、22m m a + D 、31()()m m m a a -⋅【预习思考】1. 利用乘法的交换律和结合律计算:2223x y xy ⋅2.利用乘法分配率计算下列各题:(1)222(32)ab a b ab ⋅- (2) 212()(12)43x x y xy -⋅-。
七年级上册幂的知识点在数学中,幂是一种运算,用于表示某个数的几次方。
七年级上册的数学中,学习了许多幂的知识点,本文将重点讲解这些知识点。
一、幂的定义幂的定义是指一个数x,它与自身相乘n次的结果,记作xⁿ。
其中,x称为“底数”,n称为“指数”。
二、幂的特性1.幂的零次方等于1。
即x⁰=1,其中x≠0。
所以,任何数的零次方都等于1。
2.幂的负次方等于该数的倒数的正次方。
即x⁻ⁿ=1/xⁿ,其中x≠0,n为正整数。
例如,2⁻³=1/2³=1/8。
3.幂的乘幂,幂指数相加。
即(xⁿ)ⁿ₁=xⁿ⁺ⁿ₁,其中x≠0,n,n₁为正整数。
例如,(2³)²=2⁶=64。
4.幂的除幂,幂指数相减。
即(xⁿ)ⁿ₁=xⁿ⁻ⁿ₁,其中x≠0,n,n₁为正整数,且xⁿ₁≠0。
例如,(2⁵)⁴=2²⁰/2⁴=2¹⁶=65,536。
5.幂的幂,底数不变,指数相乘。
即(xⁿ)ⁿ₁=xⁿⁿ₁,其中x≠0,n,n₁为正整数。
例如,(2³)⁴=2¹²。
三、幂的简化与展开1.幂的简化幂的简化是指将幂的指数写成最简整数形式。
例如,8⁷可以简化为2¹²,因为8=2³,而7÷3=2余1,所以8⁷=2³⁷=2¹²。
2.幂的展开幂的展开是指将一个分解后的幂写成幂的乘积形式。
例如,8³=2³×2³×2³=2⁹。
四、幂的运算1.同底数幂的比较同底数幂的比较,指比较两个指数相同、底数不同的幂的大小关系。
如2³和5³,可通过求幂展开式,将它们的大小比较转化为底数大小的比较。
2.不同底数幂的乘除对于不同底数幂的乘、除,可以使用幂的乘除幂运算法则进行计算。
例如,2³×5²=10³,2⁵÷4²=2³。
《幂的乘方》讲义一、引入同学们,在我们之前的数学学习中,已经接触了幂的相关运算,比如同底数幂的乘法。
今天,咱们要来一起探讨另一个重要的幂的运算——幂的乘方。
想象一下,假如有一个数的幂,然后这个幂又要再次进行乘方,那结果会是怎样的呢?这就是我们今天要研究的内容。
二、幂的乘方的定义首先,咱们来明确一下幂的乘方的定义。
幂的乘方指的是:底数不变,指数相乘。
举个例子,如果有一个幂 a^m,然后这个幂再进行 n 次乘方,那么结果就是(a^m)^n = a^(m×n) 。
为了更好地理解这个定义,咱们来看几个具体的例子。
比如,(2^3)^2 ,底数 2 不变,指数 3 和 2 相乘,得到 2^(3×2) = 2^6 = 64 。
再比如,((-3)^2)^3 ,底数-3 不变,指数 2 和 3 相乘,得到(-3)^(2×3) =(-3)^6 = 729 。
三、幂的乘方的运算规则了解了定义之后,咱们来看看幂的乘方的运算规则。
1、当底数为正数时,幂的乘方运算结果一定是正数。
例如,(5^2)^3 = 5^(2×3) = 5^6 ,结果是一个正数。
2、当底数为负数时,指数为偶数时,幂的乘方运算结果是正数;指数为奇数时,幂的乘方运算结果是负数。
比如,(-2)^4 = 16 ,而(-2)^3 =-8 。
3、当指数中有括号时,要先计算括号内的指数运算。
例如,(3^2)^3^2 ,先计算最里面的括号,得到(3^6)^2 ,然后再继续计算,得到 3^(6×2) = 3^12 。
四、幂的乘方与同底数幂乘法的区别在学习幂的运算时,很容易把幂的乘方和同底数幂的乘法弄混,咱们来对比一下。
同底数幂的乘法是:底数不变,指数相加。
即 a^m × a^n = a^(m+ n) 。
而幂的乘方是:底数不变,指数相乘。
即(a^m)^n =a^(m×n) 。
通过对比可以发现,它们的关键区别在于指数的运算方式不同。
辅导教案学员姓名:学科教师:年级:七年级辅导科目:数学授课日期时间主题幂的运算(一)教学内容《整式的乘除》是整式加减的延续和发展,也是后续学习因式分解、分式运算的基础.整式的乘法运算包含单项式乘法、单项式与多项式乘法和多项式乘法,它们最后都转化为单项式乘法.单项式的乘法又以幂的运算为基础.“整式的乘法”的内容和逻辑线索是:同底数幂的乘法——幂的乘方——积的乘方——单项式乘单项式——单项式乘多项式——多项式乘多项式——乘法公式(特例).由此可见,同底数幂的乘法、幂的乘方、积的乘方是整式乘法的逻辑起点,是该章的起始课.作为章节起始课,承载着单元知识以及学习方法、路径的引领作用.幂的运算(一)知识结构模块一:同底数幂的乘法知识精讲内容分析1、幂的运算概念:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在n a 中,a 叫做底数,n 叫做指数.含义:n a 中,a 为底数,n 为指数,即表示a 的个数,n a 表示有n 个a 连续相乘. 例如:53表示33333⨯⨯⨯⨯,()53-表示()()()()()33333-⨯-⨯-⨯-⨯-,53-表示()33333-⨯⨯⨯⨯,527⎛⎫⎪⎝⎭表示2222277777⨯⨯⨯⨯,527表示222227⨯⨯⨯⨯.特别注意负数及分数的乘方,应把底数加上括号. 2、“奇负偶正”口诀的应用:口诀“奇负偶正”在多处知识点中均提到过,它具体的应用有如下几点:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:[](3)3---=-;[](3)3-+-=. (2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号. (3)有理数乘方,这里奇、偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正.例如:()239-=,()3327-=-.特别地:当n 为奇数时,()n n a a -=-;而当n 为偶数时,()nn a a -=. 负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,1的任何次幂都是1,任何不为0的数的0次幂都是“1”. 3、同底数幂相乘同底数的幂相乘,底数不变,指数相加.用式子表示为: m n m n a a a +⋅=(,m n 都是正整数).【例1】 下列各式正确吗?不正确的请加以改正. (1)347()()x x x -⋅-=-; (2)246()()x x x --=-; (3)()()121m m m a a a ++--=;(4)5552b b b ⋅=;(5)4610b b b +=; (6)55102x x x ⋅=;(7)5525x x x ⋅=;(8)33c c c ⋅=.【难度】★【例2】 计算下列各式,结果用幂的形式表示: (1)567(2)(2)(2)-⨯-⨯-; (2)23a a a ⋅⋅; (3)24()()a b a b +⋅+;(4)235()()()x y x y x y -⋅-⋅-.【难度】★例题解析【例3】 计算下列各式,结果用幂的形式表示. (1)()()334333x x x x x x x x ⋅+⋅⋅+-⋅-⋅;(2)()()()()()3224a a a a a ---+--;(3)12211m n m n m n a a a a a a -++-+⋅+⋅+⋅. 【难度】★【例4】 计算下列各式,结果用幂的形式表示.(1)()()()332a a a --⋅--;(2)()()23x y y x --;(3)()()()212222m m x y x y x y -+---.【难度】★★【例5】 简便计算(1)()()16170.1258⨯-;(2)20022001513135⎛⎫⎛⎫⨯ ⎪⎪⎝⎭⎝⎭;(3)()()315150.1252⨯.【难度】★★【例6】 如果2111m n n x x x -+⋅=,且145m n y y y --⋅=,试求m 、n 的值. 【难度】★★【例7】 求值:(1)已知:29m n n m x x x +-⋅=,求()59n-+的值. (2)已知:()4233x +-=,求x 的值.【难度】★★【例8】 若2216m n ⋅=,求48m n m n ++⋅的值. 【难度】★★★【例9】 解关于x 的方程: (1)21134151294x x x x ++⋅=-⋅; (2)已知351327648x x ++-=. 【难度】★★★【例10】 若312x y z ==,且99xy yz xz ++=,求2222129x y z ++的值. 【难度】★★★1、幂的乘方定义:幂的乘方是指几个相同的幂相乘.2、幂的乘方法则:幂的乘方,底数不变,指数相乘.即()m n mn a a =(m 、n 都是正整数)【例11】计算下列各式,结果用幂的形式表示.(1)()42a -;(2)24()a -; (3)2()n n a ; (4)()832;(5)()432⎡⎤-⎣⎦; (6)()33b -;(7)()43x -;(8)323()()x y x y ⎡⎤⎡⎤++⎣⎦⎣⎦.【难度】★【例12】 当正整数n 分别满足什么条件时,()(),nnn n a a a a -=-=-?【难度】★n ()()2223nn 例题解析知识精讲模块二:幂的乘方【难度】★★【例14】计算(1)()2122n n n a a a +++;(2)()()()3834222632x x x x x ⎡⎤-+⎢⎥⎣⎦.【难度】★★【例15】计算:(1)()()()22121n n n a b b a a b -+⎡⎤⎡⎤---⎣⎦⎣⎦;(2)()()3223a b b a ⎡⎤⎡⎤---⎣⎦⎣⎦. 【难度】★★【例16】计算:(1)201520152 1.53⎛⎫-⨯ ⎪⎝⎭;(2)()()5562353⎛⎫-⨯-⨯- ⎪⎝⎭.【难度】★★【例17】已知23,,m n a a ==求23m n a +的值.【难度】★★【例18】已知2673x x y m m a a a b a b ++⋅⋅⋅=(x 、y 、m 都是正整数),求2x y m +-的值.【难度】★★★【例19】比较大小:(1)比较下列一组数的大小:在552,443,334,225; (2)比较下列一组数的大小:31416181279,,; (3)比较下列一组数的大小:4488,5366,6244. 【难度】★★★【例20】已知()()2222221123451216n n n n ++++++=++L ,求222224650++++L 的值.【难度】★★★【例21】2009201025⨯的积有多少个0?是几位数?【难度】★★★1、积的乘方定义:积的乘方指的是乘积形式的乘方.2、积的乘方法则:积的乘方,等于把积中的每个因式分别乘方,再把所得的幂相乘: ()nn n ab a b =(n 是正整数)3、积的乘方的逆用:()n n n a b ab =.【例22】计算:(1)()333m n -;(2)43213a b ⎛⎫- ⎪⎝⎭;(3)()32242a b --;(4)541103⎛⎫-⨯ ⎪⎝⎭.【难度】★【例23】计算:(1)342()-a b ;(2)3532()4x y ;(3)23[()]a b -+.【难度】★【例24】计算:(1)()()233232x x +;(2)()()32223332x y x y -;(3)()()433648a b a b -+-;(4)232()[()]a b b a -⋅-.模块三:积的乘方例题解析【难度】★【例25】计算:(1)32332()()y y y ⋅⋅;(2)2323[()]a a a -⋅⋅-;(3)()()3222632x y x y ⎡⎤⎡⎤---+-⎣⎦⎢⎥⎣⎦.【难度】★★【例26】用简便方法计算:(1)818139⎛⎫⨯- ⎪⎝⎭;(2)()66720030.1252-⨯;(3)128184⎛⎫⨯- ⎪⎝⎭;(4)61245⨯.【难度】★★【例27】已知57,19m n m x x +==,求3n x 的值.【难度】★★★【例28】已知:1123326x x x ++-⋅=,求x 的值.【难度】★★★【例29】计算:()99991111...1123 (98991009998)32⎛⎫⨯⨯⨯⨯⨯⋅⨯⨯⨯⨯⨯⨯ ⎪⎝⎭.【难度】★★★【习题1】 计算:(1)()3523124m m ⎛⎫-⋅- ⎪⎝⎭;(2)322373127y y y ⎛⎫⎛⎫⋅⋅- ⎪⎪⎝⎭⎝⎭;(3)431()()4x y x y ⎡⎤++⎢⎥⎣⎦.【难度】★【习题2】 计算:(1)()()842263x x x x ⋅+⋅;(2)()()()()224252232a a a a ⋅-⋅;(3)()()()33252352123y yy y y ⎛⎫⋅⋅+-⋅- ⎪⎝⎭. 随堂检测【难度】★【习题3】 计算:()()()()213325m m m a b b a a b b a ++⎡⎤⎡⎤-⋅--⋅-⋅--⎣⎦⎣⎦ 【难度】★【习题4】 填空题:(1)n 为自然数,那么()1n -=______;()21n -=_______;()211n +-=________; (2)当n 为____________数时,()()2110n n -+-=;(3)当n 为____________数时,()()2112n n -+-=.【难度】★★【习题5】 若n 是自然数,并且有理数,a b 满足10a b +=,则必有( ) A .210n n a b ⎛⎫+= ⎪⎝⎭;B .21210n n a b +⎛⎫+= ⎪⎝⎭;C .2210n n ab ⎛⎫+= ⎪⎝⎭; D .212110n n a b ++⎛⎫+= ⎪⎝⎭.【难度】★★【习题6】 填空:(1)计算:()()5333a b b a --=__________;(2)计算:43()()()m n n m n m ---=__________;(3)计算:()()222x y y x ⎡⎤--⋅-⎣⎦=__________. 【难度】★★【习题7】 用简便方法计算:(1)()()2200320030.045⎡⎤⨯-⎣⎦; (3)200720072 1.53⎛⎫-⨯ ⎪⎝⎭;(4)1111127331982⎛⎫⎛⎫⎛⎫-⨯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 【难度】★★【习题8】 如果2228162n n ⋅⋅=,求n 的值.【难度】★★【习题9】 已知a 、b 互为负倒数,a 、c 互为相反数,d 的绝对值为1,则()()20152016201412ab a c d ++-=__________. 【难度】★★【习题10】 已知有理数x ,y ,z 满足()2|2|367|334|0x z x y y z --+--++-=,求 3314n n n x y z x --的值.【难度】★★【习题11】 已知23,26,212a b c ===,求,,a b c 之间的一个数量关系.【难度】★★【习题12】 小杰在学习幂的乘法时,发现()32236a a a ⨯==,()23326a a a ⨯==,两者的 结果是相同的,他觉得这是由于在进行指数相乘时,乘法具有交换律,所以是相同的,于是他在计算()32a -与()23a -时,认为结果也应是相同的,你同意他的观点吗?说说你的理由. 【难度】★★【习题13】 三个互不相等的有理数,既可表示为1,a b +,a 的形式,又可表示为0,b a , b 的形式,则19921993a b +=.【难度】★★★【习题14】 已知:3982b a ==,求22211125525a b a b b a b ⎛⎫⎛⎫⎛⎫-++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值. 【难度】★★★【作业1】 下列计算正确的是( )A .234235a a a +=B .()32528a a =C .3252()2a a a -=-D .226212m m a a a ⋅=【难度】★课后作业【作业2】 计算:(1)22234xy ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦;(2)33223a b ⎛⎫- ⎪⎝⎭;(4)()42313x y a b ⎡⎤--⋅⎢⎥⎣⎦.【难度】★【作业3】计算:()()2436234341233a b a b b a ⎛⎫+--- ⎪⎝⎭ 【难度】★【作业4】 简便计算:(1)20021220028113834⎛⎫⎛⎫-⋅+⨯- ⎪ ⎪⎝⎭⎝⎭; (2)()201120101294313343⎛⎫⎛⎫⎛⎫-⋅--⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 【难度】★62k【难度】★★【作业6】 求值:(1)已知102,103m n ==,求3210m n +;(2)已知5,4,n n x y ==求()32nx y . 【难度】★★【作业7】 求值:(1)若23n a =,求()43n a 的值. (2)如果()23612m n a b a b ⋅=,求,m n 的值. 【难度】★★【作业8】 若a 、b 、c 都是正数,且22a =,33b =,44c =,比较a 、b 、c 的大小.【难度】★★★【作业9】 已知9999909911,99X Y ==,比较X 与Y 的大小. 【难度】★★★【作业10】 已知:252000x =,802000y =,求11x y +的值. 【难度】★★★。