小学四年级上册数学奥数知识点:第5课《倒推法的妙用》试题(含答案)
- 格式:doc
- 大小:846.43 KB
- 文档页数:7
倒推法运算四年级奥数题及答案解析
奥数通过动手、动脑和智趣题的学习培养学生学习数学的兴趣,快来做做奥数题来锻炼自己吧!下面是为大家收集到的倒推法运算四年级奥数题及答案,供大家参考。
一次数学考试后,李军问于昆数学考试得多少分?于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56。
”小朋友,你知道于昆得多少分吗?
方法一:
分析这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题。
如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?
把一个数用□来表示,根据题目已知条件可得到这样的等式:
{[(□-8)+10]÷7}×4=56。
如何求出□中的数呢?我们可以从结果56出发倒推回去,因为56是乘以4后得到的,而乘以4之前是56÷4=14.14是除以7后得到的,除以7之前是14×7=98。
98是加10后得到的,加10以前是98-10=88。
88是减8以后得到的,减8以前是88+8=96.这样倒推使问题得解。
方法二:
{[(□-8)+10]÷7}×4=56
[(□-8)+10〕÷7=56÷4
答:于昆这次数学考试成绩是96分。
通过以上例题说明,用倒推法解题时要注意:
①从结果出发,逐步向前一步一步推理;
②在向前推理的过程中,每一步运算都是原来运算的逆运算;
③列式时注意运算顺序,正确使用括号。
以上是查字典数学网为大家准备的倒推法运算四年级奥数题及答案,希望对大家有所帮助。
四年级倒推法练习题(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(四年级倒推法练习题(word 版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为四年级倒推法练习题(word版可编辑修改)的全部内容。
倒推法练习题
1。
一个数加上6,所得的和乘6,减去6,其结果等于42。
求这个数。
2。
一个数的4倍加上6,再减去9,最后乘3,结果得135。
求这个数。
3。
一个数加上12后减去16,再乘以3的129,这个数多少?
4.小强和小优三人共有故事书45本.如果小强向小军借3本后,又借给小小军优2本,结果三人拥有故事书的本书正好相等。
这三人原来各有故事书多少本?
5。
甲、乙、丙三个小朋友共有邮票120枚,如果甲给乙8枚后,乙又送给丙15枚,那么三人的邮票枚数刚好相同。
问甲、乙、丙桑小朋友原来各有邮票多少枚?
6、小红、小丽、小敏三个人各有小贴画若干张。
如果小红给小丽4张,小丽给小敏5张,小敏给小红3张,那么她们每人各有40张。
原来三个人各有小贴画多少张?
挑战题:甲、乙、丙、丁四个小朋友共有彩色玻璃球200,甲给乙26颗,乙给丙
36颗,丙给丁32颗,丁给甲4颗后四人的颗数相等.他们原来各有玻璃球多少颗?。
课题倒推法的妙用教学目标本节要求掌握倒推法解题的一般方法,明白倒推法是一种逆向思维,主要要在思维方式上得到新的启迪教学重难点重点是如何理解倒推法是一种逆运算,逆向思维难点是那这种思维用到自己解题中去,发散解题思路教学过程一、本讲知识点在分析应用题的过程中,倒推法是一种常用的思考方法.这种方法是从所叙述应用题或文字题的结果出发,利用已知条件一步一步倒着分析、推理,直到解决问题.用倒推法解题时要注意:①从结果出发,逐步向前一步一步推理.②在向前推理的过程中,每一步运算都是原来运算的逆运算.③列式时注意运算顺序,正确使用括号.二、教学方法讲练结合.三、具体安排【经典例题】例1 一次数学考试后,李军问于昆数学考试得多少分.于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56.”小朋友,你知道于昆得多少分吗?分析这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题.如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4, 结果是56.求这个数是多少?把一个数用口来表示,根据题目已知条件可得到这样的等式: {[(口—8)+10]+7}义4 = 56.如何求出口中的数呢?我们可以从结果56出发倒推回去.因为56是乘以4后得到的,而乘以4之前是56 + 4=14.14是除以7后得到的,除以7之前是14X7 = 98.98是加10后得到的,加10以前是98-10 = 88.88是减8以后得到的,减8以前是88 + 8 = 96.这样倒推使问题得解.解:{[(口一8)+10]+7}义4 = 56[(口—8)+10]+7 = 56・4答:于昆这次数学考试成绩是96分.例2小玲问一老爷爷今年多大年龄,老爷爷说:“把我的年龄加上17后用4除,再减去15后用10乘,恰好是100岁”那么,这位老爷爷今年岁.分析{[(口 + 17)+4] - 15}X10 = 100采用逆推法,易知老爷爷的年龄为(100・10+15) X4-17=83(岁)【尝试实践1】1、某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是.2、某数除以4,乘以5,再除以6,结果是615,求某数.3、将某数的3倍减5,计算出答案,将答案再3倍后减5,计算出答案,这样反复经过4次, 最后计算的结果为691,那么原数是.例3马小虎做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是111.问正确答案应是几?分析马小虎错把减数个位上1看成7,使差减少7—1 = 6,而把十位上的7看成1, 使差增加70—10 = 60.因此这道题归结为某数减6,加60得111,求某数是几的问题.解:111—(70—10) + (7—1)=57答:正确的答案是57.例4树林中的三棵树上共落着48只鸟.如果从第一棵树上飞走8只落到第二棵树上;从第二棵树上飞走6只落到第三棵树上,这时三棵树上鸟的只数相等.问:原来每棵树上各落多少只鸟?分析倒推时以“三棵树上鸟的只数相等”入手分析,可得出现在每棵树上鸟的只数48 + 3 = 16 (只).第三棵树上现有的鸟16只是从第二棵树上飞来的6只后得到的,所以第三棵树上原落鸟16—6 = 10 (只).同理,第二棵树上原有鸟16+6—8 = 14 (只).第一棵树上原落鸟16+8 = 24 (只),使问题得解.解:①现在三棵树上各有鸟多少只? 48 ・ 3 = 16 (只)②第一棵树上原有鸟只数.16+8 = 24 (只)③第二棵树上原有鸟只数.16+6—8=14 (只)④第三棵树上原有鸟只数.16—6 = 10 (只)答:第一、二、三棵树上原来各落鸟24只、14只和10只.【尝试实践2】1、生产一批零件共560个,师徒二人合作用4天做完.已知师傅每天生产零件的个数是徒弟的3倍.师徒二人每天各生产零件多少个?2、有砖26块,兄弟二人争着挑.弟弟抢在前,刚刚摆好砖,哥哥赶到了.哥哥看弟弟挑的太多,就抢过一半.弟弟不肯,又从哥哥那儿抢走一半.哥哥不服,弟弟只好给哥哥5 块.这时哥哥比弟弟多2块.问:最初弟弟准备挑几块砖?例5篮子里有一些梨.小刚取走总数的一半多一个.小明取走余下的一半多1个.小军取走了小明取走后剩下一半多一个.这时篮子里还剩梨1个.问:篮子里原有梨多少个?分析依题意,画图进行分析.解:列综合算式:{[(1 + 1)X2+1]X2+1}X2=22 (个)答:篮子里原有梨22个.例6 “六一”儿童节,小明和小培从妈妈那儿分得一些糖,妈妈把糖分成相同的两份给他们,多的一个给自己留下了.小明在路上遇着自己的两个朋友,他把自己的糖分成三份, 每人一份,多的两颗分别送给了两个朋友.过了一会儿,又遇上两个小朋友,他同样分给他们糖,多的两颗分给了他们,后来,他又遇上了两个朋友,分完糖之后,小明发现自己只剩下一颗糖了,请问妈妈原来有多少糖?分析:最后一次分糖前小明有糖3+2=5颗;倒数第二次分糖前小明有糖5X3+2=17颗;倒数第三次分糖前小明有糖17X3+2=53颗;妈妈原来有糖53X2+1=107颗.例7甲乙两个油桶各装了15千克油.售货员卖了14千克.后来,售货员从剩下较多油的甲桶倒一部分给乙桶使乙桶油增加一倍;然后从乙桶倒一部分给甲桶,使甲桶油也增加一倍,这时甲桶油恰好是乙桶油的3倍.问:售货员从两个桶里各卖了多少千克油?分析解题关键是求出甲、乙两个油桶最后各有油多少千克.已知“甲、乙两个油桶各装油15千克.售货员卖了14千克”.可以求出甲、乙两个油桶共剩油15X2 —14=16 (千克).又已知“甲、乙两个油桶所剩油”及“这时甲桶油恰是乙桶油的3倍”.就可以求出甲、乙两个油桶最后有油多少千克.求出甲、乙两个油桶最后各有油的千克数后,再用倒推法并画图求甲桶往乙桶倒油前甲、乙两桶各有油多少千克,从而求出从两个油桶各卖出多少千克.解:①甲乙两桶油共剩多少千克?15X2-14=16 (千克)②乙桶油剩多少千克?16+(3 + 1)=4 (千克)③甲桶油剩多少千克?4X3 = 12 (千克)用倒推法画图如下:④从甲桶卖出油多少千克?15-11 = 4 (千克)⑤从乙桶卖出油多少千克? 15—5 = 10 (千克)答:从甲桶卖出油4千克,从乙桶卖出油10千克.【尝试实践3】1、阿凡提去赶集,他用钱的一半买肉,再用余下钱的一半买鱼,又用剩下钱买菜.别人问他带多少钱,他说:“买菜的钱是1、2、3;3、2、1;1、2、3、4、5、6、7的和;加7加8,加8加7、加9加10加11。
小学四年级上册数学奥数知识点讲解第5课《倒推法的妙用》试题附答案第五讲倒推法的妙用在分析应用题的过程中,倒推法是一种常用的思考方法.这种方法是从所叙述应用题或文字题的结果出发,利用己知条件一步一步倒着分析、推理,直到解决问题. 例1一次数学考试后,李军问于昆数学考试得多少分.于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56.”小朋友,你知道于昆得多少分吗?例2马小虎做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是I11问正确答案应是几?例3树林中的三棵树上共落着48只鸟.如果从第一棵树上飞走8只落到第二棵树±;从第二棵树上飞走6只落到第三棵树上,这时三棵树上鸟的只数相等.问:原来每棵树上各落多少只鸟?例4篮子里有一些梨.小刚取走总数的一半多一个.小明取走余下的一半多1个.小军取走了小明取走后剩下一半多一个.这时篮子里还剩梨1个.问:篮子里原有梨多少个?例5甲乙两个油桶各装了15千克油.售货员卖了14千克.后来,售货员从剩下较多油的甲桶倒一部分给乙桶使乙桶油增加一倍;然后从乙桶倒一部分给甲桶,使甲桶油也增加一倍,这时甲桶油恰好是乙桶油的3倍.问:售货员从两个桶里各卖了多少千克油?例6菜站原有冬贮大白菜若干千克.第一天卖出原有大白菜的一半.第二天运进200千克.第三天卖出现有白菜的一半又30千克,结果剩余白菜的3倍是1800千克.求原有冬贮大白菜多少干克?第五讲倒推法的妙用在分析应用题的过程中,倒推法是一种常用的思考方法.这种方法是从所叙述应用题或文字题的结果出发,利用已知条件一步一步倒着分析、推理,直到解决问题.例1一次数学考试后,李军问于昆数学考试得多少分.于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56.”小朋友,你知道于昆得多少分吗?分析这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题.如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?把一个数用口来表示,根据题目己知条件可得到这样的等式:{[(□-8)+101+7}×4=56.如何求出口中的数呢?我们可以从结果56出发倒推回去.因为56是乘以4后得到的,而乘以4之前是56+4=14.14是除以7后得到的,除以7之前是14X7=98.98是加10后得到的,加10以前是98-10=88.88是减8以后得到的,减8以前是88+8=96.这样倒推使问题得解.解:{[(口-8)+10]+7}×4=56[(□-8)+10)+7=56+4答:于昆这次数学考试成绩是96分.通过以上例题说明,用倒推法解题时要注意:①从结果出发,逐步向前一步一步推理.②在向前推理的过程中,每一步运算都是原来运算的逆运算.③列式时注意运算顺序,正确使用括号.例2马小虎做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是II1问正确答案应是几?分析马小虎错把减数个位上1看成7,使差减少7—1=6,而把十位上的7看成1,使差增加70—10=60.因此这道题归结为某数减6,加60得111,求某数是几的问题.解:I11-(70—10)+(7—1)=57答:正确的答案是57.例3树林中的三棵树上共落着48只鸟.如果从第一棵树上飞走8只落到第二棵树上;从第二棵树上飞走6只落到第三棵树上,这时三棵树上鸟的只数相等.问:原来每棵树上各落多少只鸟?分析倒推时以“三棵树上鸟的只数相等”入手分析,可得出现在每棵树上鸟的只数48+3=16(只).第三棵树上现有的鸟16只是从第二棵树上飞来的6只后得到的,所以第三棵树上原落鸟16—6=10(只).同理,第二棵树上原有鸟16+6—8=14(只).第一棵树上原落鸟16+8=24(只),使问题得解.解:①现在三棵树上各有鸟多少只?48+3=16(只)②第一棵树上原有鸟只数.16+8=24(只)③第二棵树上原有鸟只数.16+6—8=14(只)④第三棵树上原有鸟只数.16—6=10(只)答:第一、二、三棵树上原来各落鸟24只、14只和10只.例4篮子里有一些梨.小刚取走总数的一半多一个.小明取走余下的一半多1个.小军取走了小明取走后剩下一半多一个.这时篮子里还剩梨1个.问:篮子里原有梨多少个?分析依题意,画图进行分析.篮子里梨的一半多1劭的二半''J ----------------- --多I个再余一半* --- √多1个乘Ih个篮子里原有梨多少个?解:列综合算式:{[(1+1)×2+U×2+1}×2=22(个)答:篮子里原有梨22个.例5甲乙两个油桶各装了15千克油.售货员卖了14千克.后来,售货员从剩下较多油的甲桶倒一部分给乙桶使乙桶油增加一倍;然后从乙桶倒一部分给甲桶,使甲桶油也增加一倍,这时甲桶油恰好是乙桶油的3倍.问:售货员从两个桶里各卖了多少千克油?分析解题关键是求出甲、乙两个油桶最后各有油多少千克.已知“甲、乙两个油桶各装油15千克.售货员卖了14千克”,可以求出甲、乙两个油桶共剩油15×2-14=16(千克).又已知“甲、乙两个油桶所剩油”及“这时甲桶油恰是乙桶油的3倍',就可以求出甲、乙两个油桶最后有油多少千克.求出甲、乙两个油桶最后各有油的千克数后,再用倒推法并画图求甲桶住乙桶倒油前甲、乙两桶各有油多少千克,从而求出从两个油桶各卖出多少千克.解:①甲乙两桶油共剩多少千克?15×2-14=16(千克)②乙桶油剩多少千克?16+(3+1)=4(千克)③甲桶油剩多少千克?4×3=12(千克)用倒推法画图如下:甲桶油乙桶油④从甲桶卖出油多少千克?15T1=4(千克)⑤从乙桶卖出油多少千克?15—5=10(千克)答:从甲桶卖出油4千克,从乙桶卖出油10千克.例6菜站原有冬贮大白菜若干千克.第一天卖出原有大白菜的一半.第二天运进200千克.第三天卖出现有白菜的一半又30千克,结果剩余白菜的3倍是1800千克.求原有冬贮大白菜多少千克?分析解题时用倒推法进行分析.根据题目的已知条件画线段图(见下图),使数量关系清晰的展现出来.原有冬贮来若干千克簟禹劈第二天运金OO千克有白菜一半第二天一一半3⅛⅛第三天曼出的~1 3,1800千克解:①剩余的白菜是多少千克?1800÷3=600(千克)②第二天运进200千克后的一半是多少千克?600+30=630(千克)③第二天运进200千克后有白菜多少千克?630×2=1260(千克)④原来的一半是多少千克?1260—200=1060(千克)⑤原有贮存多少千克?1060×2=2120(千克)答:菜站原来贮存大白菜2120千克.综合算式:[(1800+3+30)×2—2001×2=2120(千克)答:菜站原有冬贮大白菜2120千克.习题五1.某数除以4,乘以5,再除以6,结果是615,求某数.2.生产一批零件共560个,师徒二人合作用4天做完.已知师傅每天生产零件的个数是徒弟的3倍.师徒二人每天各生产零件多少个?3.有转26块,兄弟二人争着挑.弟弟抢在前,刚刚摆好移,哥哥赶到了.哥哥看弟弟挑的太多,就抢过一半.弟弟不肯,又从哥哥那儿抢走一半.哥哥不服,弟弟只好给哥哥5块.这时哥哥比弟弟多2块.问:最初弟弟准备挑几块砖?4.阿凡提去赶集,他用钱的一半买肉,再用余下钱的一半买鱼,又用剩下钱买菜.别人问他带多少钱,他说:“买菜的钱是1、2、3;3、2、1;1、2、3、4、5、6、7的和;加7加8,加8加7、加9加10加11。
第6讲倒推法的妙用【知识导航】倒推法是一种常用的思考方法。
这种方法是从应用题或文字题的结果出发,利用已知条件一步一步倒着分析、推理、计算。
原来加的倒回去就是减,原来减的倒回去就是加,原来乘的倒回去就是除,原来除的倒回去就是乘,我们称这种解题方法为倒推法,用倒推法来解决的问题称为还原问题。
基本训练1、一位老爷爷说:“把我的年龄加上12,再除以4,然后减去15,再乘以10,恰好是100岁。
”这位老爷爷现在多少岁?2、某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是多少?3、书架上有一些书,小红取走总数的一半多1本,小明取走余下的一半多1本,小军取走小明取走后剩下一半多1本,这时书架上还剩1本。
问:原来书架上有多少本书?4、甲、乙、丙三人共有图书120本,乙向甲借3本,又送给丙5本,结果三人图书数量相等。
甲原有多少本?乙原有多少本?丙原有多少本?5、东风小学准备将四年级三个班同学进行调整,一班调15人到二班,二班调12人到三班,三班调4人到一班,这时三个班都是36人。
则一班原有多少人?二班原有多少人?三班原有多少人?拓展提高6、两个两位数相加,其中一个加数是73,另一个加数不知道,只知道另一个加数的十位数字增加5,个位数字增加1,那么求得的和的后两位数字是72,问另一个加数原来是什么?7、已知A、B、C、D四个数,他们的和是80,A的5倍、B减去1、C加上5、D的一半都相等,求A、B、C、D各是多少?8、一筐梨连筐重122千克,卖出一半梨后,再卖出剩下的一半,这时连筐重35千克,求原来筐内梨重多少千克?9、公园里有一棵古树,李刚用12米的绳子将树绕三周后,把多余的部分跟自己身长比较,是身长的一倍半,已知整根绳长等于李刚身长的8倍,则树干的周长是多少米?10、有一个财迷总想使自己的钱成倍增长,一天他在一座桥上碰见一位老人,老人对他说:“你只要走过这座桥再回来,你身上的钱就会增加一倍,但作为报酬,你每走一来回要给我32个铜板。
文档仅供参照逆推法有些数学识题顺向思虑很难解答,这时假如能从反向进行思虑,有时能化难为易,很快找到解题门路。
其思虑的方法是从问题或结果出发,一步一步倒着推理,逐渐聚拢已知条件,直到问题的解决。
(一)思路指导:例 1. 一种细菌, 1 小时增加 1 倍,此刻有一批这样的细菌, 10 小时可增加到 400 万个,问增加到 100 万个需要多少小时?思路剖析:由于细菌每小时增加 1 倍。
10 小时增加到400 万个,那么 9 小时就增加到400 万个的一半,即9 小时增加到200 万个, 8 小时增加到100 万个。
算式:(小时)答:增加到 100 万个时需要8 小时。
例2. 四个小朋友共有课外读物 120 本,甲给了乙 3 本,乙给了丙 4 本,丙给了丁 5 本,丁给了甲 6 本,这时他们四个人课外读物的本数相等。
他们本来各有课外书多少本?思路剖析:四个人相互给,总本数仍旧是120 本,那么每人应有(本),而后各自把给他人的本数拿回来,再把他人给自己的本数退回去,就获得原有的本数。
算式:(本)丁原有的本数:(本)丙原有的本数:(本)乙原有的本数:(本)甲原有的本数:(本)答:甲、乙、丙、丁四人本来各有书27 本、 31 本、 31 本、 31 本。
例 3. 粮仓里存大米若干袋,第一天卖出的比存米的一半少8 袋,次日又卖出节余米的一半,这时粮仓里还存米32 袋,这个粮仓原存大米多少袋?思路剖析:依据粮仓里最后还有32 袋,一步一步地求出粮仓原存大米多少袋。
依据次日又卖出节余米的一半后还剩32 袋,能够求出第一天卖出后粮仓里存有 2 个 32 袋(即64 袋),依据第一天卖出原存大米的一半少8 袋可知,第一天卖后剩下的是原存大米的一半多 8 袋,原存大米的一半多8 袋是 64 袋,能够求出原存大米是(袋)列式:(袋)文档仅供参照答:粮仓里原有存米112 袋。
例4. 有甲、乙两个港口,各停小船若干只,假如按下边的规则挪动船只:第一次从甲港开出和乙港相同多的船只到乙港,第二次从乙港开出和甲港剩下的相同多的船只到甲港,那么照这样挪动四次后,甲乙两港所停的小船只数都是48 只,甲乙两港最先各有小船多少只?思路剖析:第四次从乙港开出船只到甲港后,两港各有船48 只,那么在乙港船只挪动前,甲港所停的船只数应是只,乙港所停船的只数应是只。
第五讲倒推法的应用知识导航在分析应用题的过程中,倒推法是一种常用的思考方法.这种方法是从所叙述应用题或文字题的结果出发,利用已知条件一步一步倒着分析、推理,直到解决问题. 用倒推法解题时要注意:①从结果出发,逐步向前一步一步推理.②在向前推理的过程中,每一步运算都是原来运算的逆运算.③列式时注意运算顺序,正确使用括号.例1:一次数学考试后,李军问于昆数学考试得多少分.于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56.”小朋友,你知道于昆得多少分吗?解析:这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题.如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?把一个数用□来表示,根据题目已知条件可得到这样的等式:{[(□-8)+10]÷7}×4=56.如何求出□中的数呢?我们可以从结果56出发倒推回去.因为56是乘以4后得到的,而乘以4之前是56÷4=14.14是除以7后得到的,除以7之前是14×7=98.98是加10后得到的,加10以前是98-10=88.88是减8以后得到的,减8以前是88+8=96.这样倒推使问题得解.解:{[(□-8)+10]÷7}×4=56[(□-8)+10]÷7=56÷4=14(□-8)+10=14×7=98□-8=98-10=88□=88+8=96答:于昆这次数学考试成绩是96分.【巩固】某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是_____.解析:{[(□ + 6)×6]- 6}=6解:运用倒推法知这个数为(6×6+6)÷6-6=1【解题技巧】解答此类问题的方法规律是:原题加,逆推为减;原题减,逆推为加;原题乘,逆推为除;原题除,逆推为乘。
课题倒推法的妙用【尝试实践3】四、作业1、[(□-8)+16]÷7×4=802、(□×7÷6+98-8)÷10=143、95÷(2×□-3)=54、25×66÷(3×□+2)=1505、[(□+8)×8-8]÷8=8111、太郎和次郎各有钱若干元,先是太郎把他的钱的一半给次郎,然后次郎把他当时所有钱的1/3给太郎,以后太郎又把他当时所有钱的1/4给次郎,这时太郎就有675元次郎就有1325元,问最初两人各有多少钱?12、小明每分钟吹一次肥皂泡,每次恰好吹出100个,肥皂泡吹出以后经过一分钟有一半破了;经过两分钟还有1/20没破,经过2.5分钟全破了。
小明吹完第100次后,没破的有几个?这是什么问题?倒推法的妙用例1一次数学考试后,李军问于昆数学考试得多少分.于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56.”小朋友,你知道于昆得多少分吗?例2小玲问一老爷爷今年多大年龄,老爷爷说:“把我的年龄加上17后用4除,再减去15后用10乘,恰好是100岁”那么,这位老爷爷今年_____岁.【尝试实践1】1、某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是_____.2、某数除以4,乘以5,再除以6,结果是615,求某数.3、将某数的3倍减5,计算出答案,将答案再3倍后减5,计算出答案,这样反复经过4次,最后计算的结果为691,那么原数是_____.例3 马小虎做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是111.问正确答案应是几?例4树林中的三棵树上共落着48只鸟.如果从第一棵树上飞走8只落到第二棵树上;从第二棵树上飞走6只落到第三棵树上,这时三棵树上鸟的只数相等.问:原来每棵树上各落多少只鸟?【尝试实践2】1、生产一批零件共560个,师徒二人合作用4天做完.已知师傅每天生产零件的个数是徒弟的3倍.师徒二人每天各生产零件多少个?2、有砖26块,兄弟二人争着挑.弟弟抢在前,刚刚摆好砖,哥哥赶到了.哥哥看弟弟挑的太多,就抢过一半.弟弟不肯,又从哥哥那儿抢走一半.哥哥不服,弟弟只好给哥哥5块.这时哥哥比弟弟多2块.问:最初弟弟准备挑几块砖?例5篮子里有一些梨.小刚取走总数的一半多一个.小明取走余下的一半多1个.小军取走了小明取走后剩下一半多一个.这时篮子里还剩梨1个.问:篮子里原有梨多少个?【尝试实践3】1、李老师拿着一批书送给36位同学,每到一位同学家里,李老师就将所有的书的一半给他,每位同学也都还她一本,最后李老师还剩下2本书,那么李教师原来拿了_____本书.3、菜站原有冬贮大白菜若干千克.第一天卖出原有大白菜的一半.第二天运进200千克.第三天卖出现有白菜的一半又30千克,结果剩余白菜的3倍是1800千克.求原有冬贮大白菜多少千克?作业1、[(□-8)+16]÷7×4=802、(□×7÷6+98-8)÷10=143、95÷(2×□-3)=54、25×66÷(3×□+2)=1505、[(□+8)×8-8]÷8=816、一个猴子摘得一些桃,第一天吃掉一半少2个,第二天吃掉剩下的一半少1个,第三天吃掉剩下的一半多2个,这时还剩1个,问猴子原有桃多少个?7、将某数的3倍减5,计算的结果再3倍后减5,这样反复经过4次,最后计算的结果为691,那么原数是多少?8、从某天起,池塘水面上的浮萍,每天增加一倍,50天后整池塘长满浮萍,第几天时浮萍所占面积是池塘的1/4?9、小军和小明各有若干本故事书,如果小军给小明5本,两人本数相等;如果小明给小军4本,那么小军的本数正好是小明的3倍。
倒推法运算四年级奥数题及答案解析
倒推法运算四年级奥数题及答案解析
奥数通过动手、动脑和智趣题的学习培养学生学习数学的兴趣,快来做做奥数题来锻炼自己吧!下面是为大家收集到的倒推法运算四年级奥数题及答案,供大家参考。
一次数学考试后,李军问于昆数学考试得多少分?于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56。
”小朋友,你知道于昆得多少分吗?
方法一:
分析这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题。
如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?
把一个数用□来表示,根据题目已知条件可得到这样的等式:
{[(□-8)+10]÷7}×4=56。
如何求出□中的数呢?我们可以从结果56出发倒推回去,因为56是乘以4后得到的,而乘以4之前是56÷4=14.14是除以7后得到的,除以7之前是14×7=98。
98是加10后得到的,加10以前是98-10=88。
88是减8以后得到的,减8以前是88+8=96.这样倒推使问题得解。
方法二:。