不同雷诺数下圆柱绕流多重分形研究
- 格式:docx
- 大小:17.39 KB
- 文档页数:2
不同雷诺数下的圆柱绕流数值模拟研究引言:圆柱绕流是流体力学领域中一个经典的、被广泛研究的问题。
在众多的工业应用中,圆柱绕流的研究对于风力发电机组的设计优化、管道内部液体运动的控制等方面具有重要实际意义。
雷诺数是描述流体流动的一个无量纲参数,它与流体的流速、流体的粘性有关。
本文将对不同雷诺数下的圆柱绕流进行数值模拟研究。
方法:数值模拟是一种有效的研究流体力学问题的方法,它能够通过计算机模拟得到流体的速度场、压力场等关键参数,从而进一步分析流体的特性。
在本文中,我们将使用计算流体力学方法进行圆柱绕流的数值模拟研究。
结果与讨论:我们选取了不同雷诺数的圆柱绕流作为研究对象,分别为200、400、600、800和1000,通过数值模拟得到了不同雷诺数下的圆柱绕流的速度场和压力场等关键参数。
首先,我们分析了速度场的分布。
通过数值模拟可以得到圆柱绕流过程中流体速度的分布情况。
随着雷诺数的增加,流体速度场呈现出不同的特征。
在雷诺数较低的情况下,流体绕圆柱流动的速度场分布较为简单,流速主要集中在圆柱前部和尾部。
随着雷诺数的增加,流体速度场呈现出更复杂的结构,流速分布更加均匀。
其次,我们研究了压力场的分布。
通过数值模拟可以得到圆柱绕流过程中流体压力的分布情况。
在不同雷诺数下,圆柱周围存在不同的压力区域。
当雷诺数较低时,圆柱前后表面存在较大的压差,压力分布较为不均匀。
而当雷诺数增加时,压力分布更加均匀,圆柱表面的压力变化较小。
最后,我们研究了绕流过程中的阻力情况。
通过数值模拟得到了不同雷诺数下圆柱绕流过程中的阻力系数。
我们发现,随着雷诺数的增加,阻力系数逐渐增大。
这是因为当雷诺数较低时,流体绕圆柱流动的速度较低,阻力较小;而当雷诺数增加时,流体流动速度较高,阻力也逐渐增大。
结论:本文通过数值模拟的方式研究了不同雷诺数下的圆柱绕流问题。
通过分析速度场、压力场和阻力系数等关键参数,我们得出了以下结论:随着雷诺数的增加,流体速度场更加复杂,流速分布更加均匀;压力场分布更加均匀,圆柱表面的压力变化较小;阻力系数随着雷诺数的增大而增加。
流体力学Fluent报告——圆柱绕流亚临界雷诺数下串列双圆柱与方柱绕流的数值模拟摘要:本文运用Fluent软件中的RNG k-ε模型对亚临界雷诺数下二维串列圆柱和方柱绕流问题进行了数值研究,通过结果对比,分析了雷诺数、柱体形状对柱体绕流阻力、升力以及涡脱频率的影响。
一般而言,Re数越大,方柱的阻力越大,圆柱体则不然;而Re越大,两种柱体的升力均越大。
相对于圆柱,同种条件下,方柱受到的阻力要大;相反地,方柱涡脱落频率要小。
Re越大,串列柱体的Sr数越接近于单圆柱体的Sr数。
关键字:圆柱绕流、升力系数、阻力系数、斯特劳哈尔数在工程实践中,如航空、航天、航海、体育运动、风工程及地面交通等广泛的实际领域中,绕流研究在工程实际中具有重大的意义。
当流体流过圆柱时 , 由于漩涡脱落,在圆柱体上产生交变作用力。
这种作用力引起柱体的振动及材料的疲劳,损坏结构,后果严重。
因此,近些年来,众多专家和学者对于圆柱绕流问题进行过细致的研究,特别是圆柱所受阻力、升力和涡脱落以及涡致振动问题。
沈立龙等[1]基于RNG k⁃ε模型,采用有限体积法研究了亚临界雷诺数下二维圆柱和方柱绕流数值模拟,得到了圆柱和方柱绕流阻力系数C与 Strouhal 数d随雷诺数的变化规律。
姚熊亮等[2]采用计算流体软件CFX中LES模型计算了二维不可压缩均匀流中孤立圆柱及串列双圆柱的水动力特性。
使用非结构化网格六面体单元和有限体积法对二维N- S方程进行求解。
他们着重研究了高雷诺数时串列双圆柱在不同间距比时的压力分布、阻力、升力及Sr数随Re数的变化趋势。
费宝玲等[3]用FLUENT软件对串列圆柱绕流进行了二维模拟,他们选取间距比L/D(L为两圆柱中心间的距离,D为圆柱直径)2、3、4共3个间距进行了数值分析。
计算均在 Re = 200 的非定常条件下进行。
计算了圆柱的升阻力系数、尾涡脱落频率等描述绕流问题的主要参量,分析了不同间距对圆柱间相互作用和尾流特征的影响。
不同雷诺数下倾斜圆柱绕流三维数值模拟研究近年来,研究倾斜圆柱绕流特性引起了学界的广泛关注。
圆柱绕流可分为水平和垂直两类,其中倾斜圆柱绕流为一种特殊的二维绕流状态,它在一定雷诺数范围内具有更复杂的流场结构特性,并且受水文物理过程的影响更为显著,研究其特性更为重要。
本研究使用时间和空间设置,以带边界流作为边界条件,利用基于六边形网格的数值模拟方法研究不同雷诺数下的倾斜圆柱绕流特性。
实验参数包括:倾斜角度α=20°,Re=1000 ~ 10000,向心轴比例范围为0.5 ~ 2.0,圆柱入口处外提升速度Um=0.3 ~ 0.8,及空气密度ρ=1。
有鉴于此,本研究根据不同雷诺数和向心轴比例,计算出倾斜圆柱绕流特性。
首先,主要考察不同雷诺数Re下倾斜圆柱绕流的流态特性,包括在不同位置的压力梯度,流场动量,温度梯度,流态结构以及涡度等信息。
其次,重点考察不同向心轴比例和轴向外提升速度下倾斜圆柱绕流的流态特性,包括压降,动量,温度梯度,以及不同方向的涡度分布。
结果表明,不同的雷诺数和向心轴比例会对倾斜圆柱绕流的流动特性产生明显不同的影响。
随着雷诺数的增大,压力梯度增大,动量梯度减小,温度梯度增大,涡度明显减少,圆柱内部的流场会变得更加复杂,气泡变小,而且其会从一种混合流场演变为一种逆流的流场结构。
另外,随着向心轴比例的增加,轴向外提升速度的变化会出现显著影响,但随着向心轴比例的增加,压力梯度会逐渐减小,动量梯度增大,温度梯度变化不大,涡度分布也会有较大变化。
研究结果表明,在不同雷诺数和向心轴比例范围内,倾斜圆柱绕流的流动特性会发生明显的变化。
本研究对于进一步理解流动特性和确定流动行为有重要的理论意义,同时也为实际工程的设计提供了参考。
总的来说,本研究通过应用数值模拟方法研究不同雷诺数下倾斜圆柱绕流特性,得出上述结论。
未来可以将此模拟实验方法应用于建立更复杂物理系统的研究,以更深入地理解绕流特性和其流动性质。
不同雷诺数下圆柱绕流多重分形研究作者:东乔天张淼来源:《科技视界》2019年第03期【摘要】湍流是世界复杂问题之一,目前还没有方法准确的描述湍流。
研究通过多重分形去趋势波动分析(MFDFA)流体力学中基本的圆柱绕流问题,通过CFD计算获得四个不同雷诺数速度场,利用MFDFA方法研究了不同雷诺数速度流场的尺度特性。
结果在不同雷诺数下,圆柱绕流的速度场数据在变为湍流时呈现出不同的尺度特性,雷诺数越大,湍流的分形测量值越高。
本文提供了一种描述自然界湍流的方法。
【关键词】多重分形;MFDFA;圆柱绕流;湍流中图分类号: TP393.06 文献标识码: A 文章编号: 2095-2457(2019)03-0239-002DOI:10.19694/ki.issn2095-2457.2019.03.1000 引言当人类对自然有更深入的了解时,多重分形不仅仅限于几何或统计领域,近年来随着人们对混沌世界和湍流的关注,多重分形分析逐渐被应用于物理学、生物学、金融学等领域。
流体从层流转变为湍流时,可以清晰的发现某些多重分形特征[1],而这也为湍流学者提供了一个新的视角[2]。
随着实验流体技术和计算流体力学的发展,对湍流分形测量的研究越来越多,如PIV技术等,可以获得整个速度场。
圆柱绕流是流体动力学中的一种基本流,当雷诺数较低时,圆柱绕流呈现层流。
然而,随着雷诺数的增加,流动转化为湍流,当流动条件改变时,可以观察各种卡门涡街的各种形成。
本文着重研究了不同雷诺数引起的圆柱绕流的多重分形勘探。
雷诺数在一定程度上取决于湍流强度,对于不同的流场,应该有不同的分形测度来描述。
因此,本文试图通过计算流体力学和MFDFA方法,找出圆柱绕流多重分形与雷诺数的关系规律。
1 CFD模型雷诺数是本研究中唯一变量,使用相同的网格计算4个不同雷诺数工况(Re=1,102,103,104),以减少网格数量或质量引起的误差。
Re=(V×D×ρ)/μ,式中,V为来流速度,D为圆柱直径,ρ为流体密度,μ为流体粘度。
FLUENT仿真计算不同雷诺数下的圆柱绕流。
尾迹与旋涡脱落经典图如下:Re=1 无分离流动Re=20 尾流中一对稳定的弗普尔旋涡Re=100 圆柱后方形成有规律的涡街Re=3900Re=100000 随着Reynolds数增大,涡道内部向湍流过度,直到全部成为湍流Re=1000000 超临界区,分离点后移,尾流变窄,涡道凌乱,涡随机脱落Re=10000000 极超临界区,分离点继续后移,尾流变窄,湍流涡道重新建立。
图3 Cd随Re的变化曲线图3中实曲线是由Wieselsberger,A.Roshko以及G.W.Jones和J.J.Walker测量数据绘制得到,图中圆点部分是FLUENT计算值在Re=106(超临界区),从经典数据和我们的计算结果都可以看到,圆柱体的平均阻力系数急剧下降。
这是因为在Re=3×105附近,边界层流动由层流状态转变为湍流状态,虽然湍流边界层流动的摩擦阻力较层流边界层大,但它从物面的分离较晚,所以形成较小的尾流区。
由于钝体绕流的阻力主要是压差阻力,所以此时物体的总阻力有了一个明显的下降。
入口VELOCITY_INLET,出口OUTFLOW,上下WALL.Re=1,20,100,二维层流模型。
Re=3900后,三维大涡模型计算不准与网格划分与一些参数设置有关。
1。
圆柱中心离上下边界(wall)的距离大于10D(D为圆柱直径),影响较小。
2。
湍流模型采用大涡模型(LES)。
是目前最复杂,最完善的一种湍流模型。
试验曲线来自,《Boundary-Layer Theory》, Dr.HERMANN SCHLICHTING, Translated by Dr.J.KESTIN,Seventh Edition,用MATLB绘制4.阻力系数的求法请参考此论坛我发的教程FLUENT三分立系数的求法人民法院--庭审流程图书记员首先入庭【站立】:现宣布法庭纪律书记员【宣告完毕】:全体起立,请审判长审判员入庭【审判长一行依次入庭就坐】书记员【清点当事人及其代理人】:报告审判长,本案当事人及诉讼代理人已全部到庭,请开庭。
高雷诺数范围内不同形状柱体流致振动特性研究丁林;张力;姜德义【摘要】流致振动是自然界和工程领域中普遍存在的一种流固耦合现象,其流固耦合过程非常复杂,涉及许多科学上的难题,一直是国际前沿研究热点之一。
针对不同截面形状柱体的流致振动进行数值计算,研究高雷诺数范围内(30000≤Re≤110000)柱体流致振动特性,分析柱体振幅、频率和尾迹旋涡形态。
结果表明,粗糙表面圆柱和类梯形柱Ⅰ的的流致振动响应强于其他形状柱体,最大振幅达到3.5D。
圆柱、方柱、三角柱和类梯形柱Ⅰ的流致振动随来流速度变化均观察到明显的涡致振动初始分支、上部分支和驰振。
类梯形柱Ⅱ出现高频低幅振动,未观察到明显的振动分支。
另外,柱体流致振动振幅和频率与尾迹旋涡形态紧密相关,在不同的振动分支,尾迹呈现出不同的旋涡形态。
%Flow-induced motion (FIM) is widely existing in the nature and engineering applications.The interactions between structure and flow are often very complex and the FIM is one of the research focuses in the fluid-structure interaction dynamics.In the present study,FIMof cylinders with different cross sections was numerically studied in the flow field with high Reynolds number range of 30000 ≤ Re ≤ 110000.The amplitude,frequency,and vortex patterns of each cylinder were examined.The results indicate that the amplitudes of the circular cylinder with rough surface and the quasi-trapezoid cylinderⅠare higher than others,and the maximum amplitude of 3.5 times of diameters is reached.The initial branch of VIV (vortex-induced vibration),the upper branch of VIV and galloping are correctly predicted in the oscillations of the circular cylinder,square cylinder,triangular prism,andquasi-trapezoid cylinder Ⅰ. FIMwith high frequency and small amplitude is achieved for the quasi-trapezoid cylinder Ⅱ,but no FIM branch can be observed.In addition,the vortex pattern of cylinder is closely related with the amplitude and frequecy responses,and the vortex pattern is stable when the cylinder is in one branch.【期刊名称】《振动与冲击》【年(卷),期】2015(000)012【总页数】6页(P176-181)【关键词】流致振动;旋涡脱落;涡致振动;驰振【作者】丁林;张力;姜德义【作者单位】重庆大学低品位能源利用技术及系统教育部重点实验室,重庆400044; 重庆大学资源及环境科学学院,重庆 400044;重庆大学低品位能源利用技术及系统教育部重点实验室,重庆 400044;重庆大学资源及环境科学学院,重庆 400044【正文语种】中文【中图分类】TK72钝体是工程中一种常见的非流线型结构,在一定的流速下,流体绕流钝体后会在钝体两侧交替地产生脱离钝体表面的旋涡,旋涡脱落会在结构表面形成复杂且不稳定的作用力,当钝体固定方式为弹性支撑或允许发生弹性形变时,流体绕流产生的作用力将引起钝体结构的振动,同样钝体的振动会反过来影响周围的流场,改变流体作用力,引起流体和钝体结构的相互耦合,由于流体与钝体之间相互作用而产生的结构振动即流致振动[1]。
不同雷诺数下倾斜圆柱绕流三维数值模拟研究近年来,由于技术发展,计算机技术及其应用已经发展到一定程度,计算机模拟技术被广泛应用于各个领域,例如,在流体力学中,计算流体运动的一般方法是采用数值解法来解决流体动态方程组,通过模拟计算可以精确描述流体物理量,从而探究其复杂运动规律,这种计算模型称为数值流体力学模型。
在模拟实验中,对流体物理量和场强进行有针对性的检测分析,可以获得准确的计算结果,从而发现流体运动的相关特性。
在流体力学中,倾斜圆柱流绕流研究备受关注。
它的研究能够丰富人们对流体机械的理解,帮助人们更好的利用这一特性,更好的设计和制造有效的机械结构。
本研究主要研究不同雷诺数条件下,倾斜圆柱体绕流的三维数值模拟,包括流场、动量场以及热力学场等,从而探讨它们在不同雷诺数条件下的流动运动特性。
本文使用Fluent软件进行倾斜圆柱绕流三维数值模拟,流体规则性网格和片元单元技术(PRT)构建网格,采用K-ε二元湍流模型,并考虑温度场对流体数值模拟的影响,对绕流流场以及湍流变量的分布特性进行了模拟计算。
根据实验结果,与重力的方向一致(即倾斜角θ=0°)的圆柱绕流,在不同雷诺数条件下,流动场具有不同特性,流动模式从正常型到湍流型,流动变量在横向方向以及轴向方向均呈现出非均匀性,雷诺数越大,流动模式越靠近湍流型,而流动变量的偏差与雷诺数的大小呈负相关性。
研究结果可作为倾斜圆柱流精确计算和设计参考。
本文通过数值模拟研究了倾斜圆柱绕流的三维流体物理量及场强的变化特性,得出不同雷诺数下倾斜圆柱流对流场、动量场和热力学场的影响特性。
研究结果为倾斜圆柱流精确计算和设计参考提供了依据,有助于探究不同雷诺数下流体运动的特性变化和传热特性,为实际工程应用提供有效参考。
本研究分析了倾斜圆柱流绕流水力学特性,为提高设备效率提供了参考依据。
不过,在数值模拟过程中,并没有考虑流体中空气的影响。
此外,本研究的模型只适用于局部量的计算,而没有考虑空间量的计算,这些在未来的研究中仍需要深入探讨。
不同雷诺数下的单一圆柱绕流流场分析近年来,不同雷诺数下的单一圆柱绕流流场分析已经成为研究动力学流体模型的重要内容之一。
围绕流动学中的单一圆柱,可以清楚地理解某些重要物理现象,研究不同雷诺数下的圆柱绕流流在有助于深入理解流体力学模型。
圆柱绕流流是一种特殊的围绕流,它出现在单一圆柱绕流场中,是一种三维流动状态。
该流动状态由柱体重力中心线作为对称轴,圆柱周围绕流流场作为边界的系统组成。
圆柱绕流流的速度分布可以用极坐标来表示,速度在柱壁方向的分布尤其明显,向外流在壁面的正负变换的速度梯度极大,而向径向的变换则较小。
在不同的雷诺数下,圆柱绕流流的流场特性有所不同。
当雷诺数维持在一定水平时,圆柱绕流流会呈现明显的静态或者稳定态;当雷诺数降低时,圆柱绕流流会出现一定的动态或者湍流态,具有更复杂的特性。
在相同雷诺数下,柱壁或者柱腔附近的流场会出现不同程度的附加流动,其中会有平流和湍流耦合作用,并影响当前的流场分布。
当雷诺数越低,湍流出现的越多,同时圆柱绕流流的特性变化也更为显著。
在低雷诺数下,径向和柱壁上流场的特性更加复杂,湍流比平流更加明显,柱壁处的流场也更加激烈,此时就可以用湍流理论来描述和分析流动特性,而在雷诺数较高的情况下,则可以用线性流体力学理论来描述和分析流场特性。
在数值模拟方面,对于不同雷诺数下的单一圆柱绕流流场来说,可以利用有限体积法(FVM)和有限元法(FEM)来模拟。
FEM是一种基于有限元的数值求解法,可以精确地模拟不同大小的圆柱绕流流场,而FVM则是一种基于格点的数值求解法,可以在空间上给出精确的流场分布,适用于横截面变形不大的圆柱绕流流场。
综上所述,对于单一圆柱绕流流场而言,雷诺数是影响其绕流流场特性的重要参数。
不同雷诺数下,圆柱绕流流场表现出不同的特性,其中最重要的是柱壁处的湍流,以及湍流与平流的耦合作用。
从数值模拟的角度来看,FEM更适用于复杂的圆柱绕流流场,而FVM则适用于较简单的柱体流场。
不同雷诺数下圆柱绕流多重分形研究圆柱绕流是一种常见的流体力学问题,其中水流绕过一个圆柱体时会产生涡流。
雷诺数是衡量流体动态特征的重要参数,它可以用来表示流体的粘性、压力和流速之间的相对关系。
在不同雷诺数下,圆柱绕流的形态可能会有所不同。
在低雷诺数(Re < 40)的情况下,流体的粘性较大,因此圆柱绕流的形态会呈现出较为平滑的涡旋结构。
随着雷诺数的增加,流体的粘性会逐渐减小,圆柱绕流的形态也会逐渐变得复杂。
在雷诺数较高的情况下(Re > 40),圆柱绕流的形态会呈现出多重分形的特征,即流体中出现了多个涡旋结构,这种现象被称为“多重涡旋”。
在研究圆柱绕流多重分形的过程中,通常会使用数值模拟的方法来研究圆柱绕流的动态特征。
常用的数值模拟方法包括有限差分法、有限元法和有限体积法等。
这些方法可以用来求解流体动力学方程,从而研究不同雷诺数下圆柱绕流的形态变化。
在研究圆柱绕流多重分形的过程中,还可以使用实验方法来研究圆柱绕流的形态变化。
例如,可以使用流动可视化的方法来观察圆柱绕流的形态,或者使用绕流量测量仪器来测量绕流的强度。
除了使用数值模拟和实验方法研究圆柱绕流的多重分形之外,还可以使用理论分析的方法来研究这一现象。
例如,
可以使用流体力学的理论模型来分析圆柱绕流的形态变化,或者使用分形理论来研究圆柱绕流的多重分形现象。
总的来说,圆柱绕流多重分形是一个比较复杂的研究课题,需要综合运用数值模拟、实验和理论分析的方法才能全面地研究这一现象。