第七讲一线三等角型相似三角形
- 格式:doc
- 大小:201.50 KB
- 文档页数:12
相似三角形重要模型-一线三等角模型相似三角形在中考数学几何模块中占据着重要地位。
相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。
如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就一线三等角模型进行梳理及对应试题分析,方便掌握。
模型1.一线三等角模型(相似模型)【模型解读与图示】“一线三等角”型的图形,因为一条直线上有三个相等的角,一般就会有两个三角形的“一对角相等”,再利用平角为180°,三角形的内角和为180°,就可以得到两个三角形的另外一对角也相等,从而得到两个三角形相似.1)一线三等角模型(同侧型)(锐角型)(直角型)(钝角型)条件:如图,∠1=∠2=∠3,结论:△ACE∽△BED.2)一线三等角模型(异侧型)条件:如图,∠1=∠2=∠3,结论:△ADE∽△BEC.3)一线三等角模型(变异型)图1 图2 图3①特殊中点型:条件:如图1,若C为AB的中点,结论:△ACE∽△BED∽△ECD.②一线三直角变异型1:条件:如图2,∠ABD=∠AFE=∠BDE=90°.结论:△ABC∽△BDE∽△BFC∽△AFB.③一线三直角变异型2:条件:如图3,∠ABD=∠ACE=∠BDE=90°.结论:△ABM∽△NDE∽△NCM.例1.(2023·山东东营·统考中考真题)如图,A B C为等边三角形,点D,E分别在边B C,A B上,60A D E∠=︒,若4B D D C=, 2.4D E=,则A D的长为()A.1.8B.2.4C.3D.3.2例2.(2023·湖南·统考中考真题)如图,,C A ADE D A D⊥⊥,点B是线段A D上的一点,且C B B E⊥.已知8,6,4A B A C D E===.(1)证明:A B C D E B∽△△.(2)求线段B D的长.例3.(2022·河南新乡·九年级期中)某学习小组在探究三角形相似时,发现了下面这种典型的基本图形.(1)如图1,在ABC中,∠BAC=90°,A BA C=k,直线l经过点A,BD⊥直线I,CE上直线l,垂足分别为D、E.求证:B DA E=k.(2)组员小刘想,如果三个角都不是直角,那么结论是否仍然成立呢?如图2,将(1)中的条件做以下修改:在ABC中,A BA C=k,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问(1)中的结论还成立吗?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,在ABC中,沿ABC的边AB、AC向外作矩形ABDE和矩形ACFG,A BA E =A CA G=12,AH是BC边上的高,延长HA交EG于点I.①求证:I是EG的中点.②直接写出线段BC与AI之间的数量关系:.例4.(2022·四川·一模)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:(1)如图1,已知:在△ABC 中,A B A C=,D 、A 、E 三点都在直线m 上,并且有B D AA E CB AC α∠=∠=∠=.试猜想DE 、BD 、CE 有怎样的数量关系,请证明你的结论;(2)老师鼓励学习小组继续探索相似的情形.于是,学习小组又研究以下问题:如图2,△ABC 中,(060)B C αα∠=∠=<<︒.将一把三角尺中30°角顶点P 放在BC 边上,当P 在BC 边上移动时,三角尺中30°角的一条边始终过点A ,另一条边交AC 边于点Q ,P 、Q 不与三角形顶点重合.设C P Qβ∠=.当β在许可范围内变化时,α取何值总有△ABP ∽△PCQ ?当α在许可范围内变化时,β取何值总有△ABP ∽△QCP ?(3)试探索有无可能使△ABP 、△QPC 、△ABC 两两相似?若可能,写出所有α、β的值(不写过程);若不可能,请说明理由.例5.(2022·山西晋中·一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①,在A B C中,90A C B ∠=︒,A C B C=,分别过A 、B 向经过点C 直线作垂线,垂足分别为D 、E ,我们很容易发现结论:A D C C E B△≌△.(1)探究问题:如果A CB C≠,其他条件不变,如图②,可得到结论;A D CC E B△∽△.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线12y x=与直线C D 交于点()2,1M ,且两直线夹角为α,且3ta n 2α=,请你求出直线C D 的解析式.(3)拓展应用:如图④,在矩形A B C D 中,3A B=,5B C=,点E为B C 边上—个动点,连接A E ,将线段A E 绕点E 顺时针旋转90︒,点A 落在点P 处,当点P 在矩形A B C D外部时,连接P C ,P D .若D P C △为直角三角形时,请你探究并直接写出B E 的长.Rt ABD中,上一动点,连接折叠得H E F,延长②B E M H E M≅;③当M2B,则正确的有(九年级校考阶段练习)已知A B C是等边三角形,E F和B D F∠,将B C E沿B则A F=P C D△;九年级校考阶段练习)如图,在A B C中,12.(2022·山东济宁·二模)情境观察:将含45°角的三角板的直角顶点R放在直线l上,分别过两锐角的顶点M,N作l的垂线,垂足分别为P,Q,(1)如图1.观察图1可知:与NQ相等的线段是______________,与N R Q∠相等的角是_____(2)问题探究直角A B C中,90B∠=︒,在AB边上任取一点D,连接CD,分别以AC,DC为边作正方形ACEF 和正方形CDGH,如图2,过E,H分别作BC所在直线的垂线,垂足分别为K,L.试探究EK与HL之间的数量关系,并证明你的结论.(3)拓展延伸:直角A B C中,90B∠=︒,在AB边上任取一点D,连接CD,分别以AC,DC为边作矩形ACEF和矩形CDGH,连接EH交BC所在的直线于点T,如图3.如果A C kC E=,试探究TE与TH=,C D kC H之间的数量关系,并证明你的结论.将.A B P沿着这样的点P,使得点问题解决(3)15.(2023春·四川广安·九年级校考阶段练习)如图1和图2,在平面直角坐标系中,点C的坐标为(0,4),A是x轴上的一个动点,M是线段AC的中点.把线段AM以A为旋转中心、按顺时针方向旋转90°得到AB.过B作x轴的垂线、过点C作y轴的垂线,两直线交于点D,直线DB交x轴于点E.设A点的横坐标为m.(1)求证:△AOC∽△BEA;(2)若m=3,则点B的坐标为;若m=﹣3,则点B的坐标为;(3)若m>0,△BCD的面积为S,则m为何值时,S=6?(4)是否存在m,使得以B、C、D为顶点的三角形与△AOC相似?若存在,求此时m的值;若不存在,请说明理由.16.(2020·四川雅安·中考真题)如图,已知边长为10的正方形A B C D E、不重,是B C边上一动点(与B C 合),连结A E G,是B C延长线上的点,过点E作A E的垂线交D C G∠的角平分线于点F,若F G B G⊥.(1)求证:A B E E G FE C=,求C E F△△;(2)若2∽△的△的面积;(3)请直接写出E C为何值时,C E F面积最大.的何位置时有B E H B A E∽?B C。
学员姓名: 学科教师:年 级: 辅导科目:授课日期时 间 主 题第7讲-相似综合一(一线三等角) 学习目标 1.准确掌握的一线三等角的概念;2.理解和掌握一线三等角和其他模型的使用.教学内容(一)上次课课后巩固作业处理,建议让学生互批互改,个别错题可以让学生进行分享,针对共性的错题教师讲解为主。
(二)上次预习思考内容讨论分享1、如图,在平面直角坐标系中,点A 的坐标是()1,2-,OB OA ⊥,且2OB OA =,则点B 的坐标是 .答案:(4,2)2、如图,将矩形ABCD 的边AD 折叠,使点D 落在边BC 上的点E 处,若6BE =,3tan 4FEC ∠=,则CF 的长为 .图1 xyB AO答案:3 3、如图,E 、F 分别是等边ABC V 的边AB 、AC 上的点,把AEF V 沿EF 折叠,点A 恰好落在BC 边上的D 点处,已知4BE =,2CF =,设BD x =,则CD = (用含x 的代数式表示).答案:8x知识点1:一线三等角一线三等角是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的定点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示。
等角的顶点在底边上的位置不同得到的相似三角形的结论也不同,当定点移动到底边的延长线时,形成变式图形,图形虽然变化但是求证的方法不变。
知识点2:一线三直角三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下:BC DA E FD CAB EF例1:(2015学年崇明一模)如图,等边△ABC 中,D 是边BC 上的一点,且:1:3BD DC =,把△ABC 折叠,使点A 落在边BC 上的点D 处,那么AM AN的值为__________;答案:57例2:如图,梯形ABCD 中,BC AD P ,90BAD ∠=o ,18AD =,24BC =,AB m =,在线段BC 上任取一点P ,连结DP ,作射线PE DP ⊥,PE 与直线AB 交于点E .设CP x =,BE y =,写出y 关于x 的函数关系式.答案:EABC D PCF ,点E是射线BA上一个动点,以线段EF为例3:已知边长为3的等边△ABC,点F在边BC上,1边向右侧做等边△EFG,直线EG,FG交直线AC于点M,N(1)写出图中与△BEF相似的三角形(2)证明其中的一对三角形相似(3)设BE=x, MN=y,求y与x之间的函数关系,并写出自变量的取值范围。
相似三角形几何模型——一线三等角【模型讲解】模型一:一线三直角图一 图二90;B ACE D ABC CDE ∠=∠=∠=∆∆如图一、二,已知:结论:(1)∽(2)AB DE=BC CD模型二:一线三等角图三 图四 ;B ACE D ABC CDE ABC CDE ACEα∠=∠=∠=∆∆∆∆∆如图三、四,已知:结论:(1)∽(2)AB DE=BC CD(3)当C 为BD 中点时,∽∽【典型例题】1.△ABC 和△DEF 是两个全等的等腰直角三角形,∠BAC =∠EDF =90°,△EDF 的顶点E 与△ABC 的斜边BC 的中点重合,将△DEF 绕点E 旋转,旋转过程中,线段DE 与线段AB 相交于点P ,线段EF 与射线CA 相交于点Q .(1)如图①,当点Q 在线段AC 上,且AP=AQ 时,求证:△BPE≌△CQE;(2)如图②,当点Q 在线段CA 的延长线上时,求证:△BPE∽△CEQ;(3)在(2)的条件下,BP=2,CQ=9,则BC 的长为_______.2.如图,已知AB BD ⊥,CD BD ⊥.(1)若9AB =,4CD =,10BD =,请问在BD 上是否存在点P ,使以P ,A ,B 三点为顶点的三角形与以P ,C ,D 三点为顶点的三角形相似?若存在,求BP 的长;若不存在,请说明理由;(2)若9AB =,4CD =,12BD =,请问在BD 上存在几个点使以三点为顶点的三角形与以P ,C ,D 三点为顶点的三角形相似?并求BP 的长.3.如图,点P是正方形ABCD边AB上一点(点P不与点A,B重合),连接PD,将线段PD 绕点P顺时针方向旋转90°得到线段PE,PE交边BC于点F,连接BE,DF.(1)求∠PBE的度数;(2)若△PFD∽△BFP,求APAB的值.4.感知:如图①,在四边形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,可知△ABP∽△PCD.(不要求证明)探究:如图②,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:△ABP∽△PCD.拓展:如图③,在△ABC中,点P是边BC的中点,点D、E分别在边AB、AC上.若∠B=∠C=∠DPE=45°,CE=4,则DE的长为______.5.如图,点B 在线段AC 上,点D 、E 在AC 同侧,90A C ∠=∠=︒,BD BE ⊥,AD BC =.若3AD =,5CE =,点P 为线段AB 上的动点,连结DP ,作PQ DP ⊥,交直线BE 于点Q .(1)当点P 与A ,B 两点不重合时,求DP PQ的值; (2)当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)6.如图,在ABC △中,点D E 、分别在边BC AC 、上,连接AD DE 、,且B ADE C ∠=∠=∠.(1)证明:BDA CED △∽△;(2)若45,2B BC ∠=︒=,当点D 在BC 上运动时(点D 不与B C 、重合),且ADE △是等腰三角形,求此时BD 的长.。
模型中的相似三角形(2)【基本模型】1. 如图1,BDE EDF CB ∆⇒∠=∠=∠∽CFD ∆(一线三等角) 如图2,ABD ADEC B ∆⇒∠=∠=∠∽DCE ∆(一线三直角)如图3,特别地,当D 是BC 中点时:BDE ∆∽DFE ∆∽CFD ∆⇒ED 平分BEF ∠,FD 平分EFC ∠。
2. 一线三等角辅助线添加:一般情况下,已知一条直线上有两个等角(直角)或一个直角时,可构造“一线三等角”型相似。
【巩固提高】1. 已知ABC ∆中,120,6︒=∠==BAC AC AB ,D 是BC 的中点,AB 边上有一点AC E ,延长线上有一点F ,使.C EDF ∠=∠ 已知4=BE ,则=CF 427 提示:,120,6︒=∠==B A C AC AB ,D 是BC 的中点 ∴33==CD BD由B D E ∆∽CFD ∆ ∴CF DB DC BE =, 427=CF 2. 如图,等边ABC ∆中,D 是边BC 上的一点,且3:1:=DC BD ,把ABC ∆折叠,使点A 落在BC 边上的点D 处.那么ANAM 的值为 75 . 提示:由翻折可得:A MDN DN AN DM AM ∠=∠==,,设:,3,1==DC BD 则4,4=+=+DN CN DM BM∵BDM ∆∽CND ∆, ∴753414=++===∆∆CND BDM C C DN DM AN AM 3. 在矩形ABCD 中,6=AB ,8=AD ,把矩形ABCD 沿直线MN 翻折,点B 落在边AD 上的E 点处,若AM AE 2=,那么EN 的长等于 提示:作AD NF ⊥于F ,则6==AB FN∵MAE ∆∽EFN ∆,∴EFAM FN AE = ∵AM AE 2=∴53,321===EN FN EF 4. 在矩形ABCD 中,15=AD ,点E 在边DC 上,联结AE ,△ADE 沿直线AE 翻折后点D 落到点F ,过点F 作AD FG ⊥,垂足为点G ,如果3:1:=AD DG ,那么=DE提示:作过点F 作MN ∥BC ,分别交AB 、CD 于M 、N 。
《相似三角形之一线三等角》教学ppt课件2023-10-26CATALOGUE目录•引言•相似三角形基本概念•一线三等角定理及其应用•课堂活动与练习•总结与回顾01引言•相似三角形是初中数学的重要内容,而一线三等角是相似三角形的一种重要类型。
通过学习本课,学生能够深入理解相似三角形的性质和判定方法,提高数学思维和解决问题的能力。
课程背景课程目标学会如何利用一线三等角判定两个三角形相似;掌握一线三等角的定义和性质;培养学生的自主学习和合作学习能力。
通过案例分析,培养学生的数学思维和解决问题的能力;教学策略利用PPT课件引导学生逐步深入学习;采用讲解、示范、小组讨论等多种教学方法,帮助学生掌握知识;通过案例分析,让学生了解一线三等角的应用;组织课堂练习和小组讨论,加深学生对知识的理解和应用。
02相似三角形基本概念如果两个三角形三边对应成比例,那么这两个三角形相似。
定义如果$\frac{a}{b} = \frac{c}{d}$,那么$\bigtriangleup ABC\backsim \bigtriangleup DEF$。
数学符号表示相似三角形的定义相似三角形的性质对应角相等相似三角形对应角相等,可以用$\bigtriangleup ABC \backsim \bigtriangleup DEF$推出$\angle A =\angle E$,$\angle B = \angle F$,$\angle C = \angle D$。
对应边成比例相似三角形对应边成比例,可以用$\bigtriangleup ABC \backsim \bigtriangleup DEF$推出$\frac{a}{d} = \frac{b}{e} = \frac{c}{f}$。
定义法根据相似三角形的定义进行判断,即判断两个三角形三边对应成比例。
平行线法通过平行线构造相似三角形,即利用平行线的性质,将两个三角形放在平行线上,通过移动使得对应边成比例,从而证明两个三角形相似。
相似三角形——“一线三等角型”教学目标:1、掌握相似三角形的判定和性质,并能熟练运用其解决重要类型“一线三等角”的类型题.2、经历运用相似三角形知识解决问题的过程,体验图形运动、分类讨论、方程与函数等数学思想.3、通过问题的解决,体验探究问题成功的乐趣,积极探索,提高学习几何的兴趣.重点:相似三角形的判定性质及其应用.难点:与相似、函数有关的综合性问题的解决技巧和方法.教学方法:启发式教学方法,尝试指导教学法.一、知识梳理:(图1)(图2)(1)如图1,已知三角形ABC中,AB=AC,∠ADE=∠B,那么一定存在的相似三角形有;(2)如图2,已知三角形ABC中,AB=AC,∠DEF=∠B,那么一定存在的相似三角形有.二、【例题解析】【例1】如图,等边△ABC中,边长为4,D是BC上动点,∠EDF=60°,(1)求证:△BDE∽△CFD;(2)当BD=1,FC=52时,求BE.【变式1】在边长为4的等边ABC∆中,D是BC的中点,点E、F分别在AB、AC上,且保持ABCEDF∠=∠,连接EF.(1) 已知BE=1,DF=2,求DE的值; (2) 求证:∠BED=∠DEF.【变式2】在边长为4的等边ABC ∆中,若BD =1时,当△DEF 与△AEF 相似,求BE 的值.【变式3】如图,已知边长为3的等边ABC ∆,点F 在边BC 上,CF =1,点E 是射线BA 上一动点,以线段EF 为边向右侧作等边EFG ∆,直线EG ,FG 交直线AC 于点M ,N ,(1)写出图中与BEF ∆相似的三角形;(2)证明其中一对三角形相似;(3)设BE =x ,MN =y ,,求y 与x 之间的函数关系式,并写出自变量x 的取值范围.【例2】在ABC ∆中,O BC AC C ,3,4,90===∠o 是AB 上的一点,且52=AB AO ,点P 是AC 上的一个动点,OP PQ ⊥交线段BC 于点Q (不与点B ,C 重合),已知AP =2,求CQ .【变式1】 如图,在△ABC 中,8==AC AB ,10=BC ,D 是BC 边上的一个动点,点E 在AC 边上,且C ADE ∠=∠.(1) 求证:△ABD ∽△DCE ;(2) 如果x BD =,y AE =,求y 与x 的函数解析式,并写出自变量x 的定义域;(3) 当点D 是BC 的中点时,试说明△ADE 是什么三角形,并说明理由.QC P【变式2】在直角三角形ABC 中,D BC AB C ,,90==∠o 是AB 边上的一点,E 是在AC 边上的一个动点(与A ,C 不重合),DF DE DF ,⊥与射线BC 相交于点F .(1) 如图1,当点D 是边AB 的中点时,求证:DF DE =;(2) 如图2,当m DB AD =,求DF DE 的值.图(2)图(1)F CF C A BB A D E D E【例3】已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且AD =5,AB =DC =2,P 为AD 上的一点,满足∠BPC =∠A . ① 求证;△ABP ∽△DPC ; ② 求AP 的长.【变式1】如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足∠BPE =∠A ,PE 交直线BC 于点E ,同时交直线DC 于点Q ,那么①当点Q 在线段DC 的延长线上时,设AP =x ,CQ =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当CE =1时,写出AP 的长.C B AD C B A D【变式2】在梯形ABCD 中,AD ∥BC ,6AB CD BC ===,3AD =.点M 为边BC 的中点,以M 为顶点作EMF B ∠=∠,射线ME 交腰AB 于点E ,射线MF 交腰CD 于点F ,联结EF .(1)求证:△MEF ∽△BEM ;(2)若△BEM 是以BM 为腰的等腰三角形,求EF 的长;(3)若EF CD ⊥,求BE 的长.【作业】1、如图,在ABC ∆中,90C ∠=︒,6AC =,43=BC AC ,D 是BC 边的中点,E 为AB 边上的一个动点,作90DEF ∠=︒,EF 交射线BC 于点F .设BE x =,BED ∆的面积为y .(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)如果以B 、E 、F 为顶点的三角形与BED ∆相似,求BED ∆的面积.2、如图,已知在△ABC 中, AB =AC =6,BC =5,D 是AB 上一点,BD =2,E 是BC 上一动点,连结DE ,并作DEF B ∠=∠,射线EF 交线段AC 于F .(1)求证:△DBE ∽△ECF ;(2)当F 是线段AC 中点时,求线段BE 的长;(3)联结DF ,如果△DEF 与△DBE 相似,求FC 的长.3、已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且BC =6,AB =DC =4,点E 是AB 的中点.(1)如图,P 为BC 上的一点,且BP =2.求证:△BEP ∽△CPD ;(2)如果点P 在BC 边上移动(点P 与点B 、C 不重合),且满足∠EPF =∠C ,PF 交直线CD 于点F ,同时交直线AD 于点M ,那么:①当点F 在线段CD 的延长线上时,设BP =x ,DF =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当BEP DMF S S ∆∆=49时,求BP 的长.。
模型中的相似三角形(2)【基本模型】CBBC C BAAA1. 如图1,BDE EDF C B ∆⇒∠=∠=∠∽CFD ∆(一线三等角)如图2,ABD ADE C B ∆⇒∠=∠=∠∽DCE ∆(一线三直角)如图3,特别地,当D 是BC 中点时:BDE ∆∽DFE ∆∽CFD ∆⇒ED 平分BEF ∠,FD 平分EFC ∠。
2. 一线三等角辅助线添加:一般情况下,已知一条直线上有两个等角(直角)或一个直角时,可构造“一线三等角”型相似。
【巩固提高】1. 已知ABC ∆中,120,6︒=∠==BAC AC AB ,D 是BC 的中点,AB 边上有一点AC E ,延长线上有一点F ,使.C EDF ∠=∠ 已知4=BE ,则=CF427提示:,120,6︒=∠==BAC AC AB ,D 是BC 的中点∴33==CD BD 由BDE ∆∽CFD ∆∴CF DB DC BE =, 427=CF2. 如图,等边ABC ∆中,D 是边BC 上的一点,且3:1:=DC BD ,把ABC ∆折叠,使点A 落在BC 边上的点D 处.那么ANAM 的值为 75.ABC提示:由翻折可得:A MDN DN AN DM AM ∠=∠==,,设:,3,1==DC BD 则4,4=+=+DN CN DM BM ∵BDM ∆∽CND ∆,∴753414=++===∆∆CND BDM C C DN DM AN AM 3. 在矩形ABCD 中,6=AB ,8=AD ,把矩形ABCD 沿直线MN 翻折,点B 落在边AD 上的E 点处,若AM AE 2=,那么EN 的长等于FE提示:作AD NF ⊥于F ,则6==AB FN ∵MAE ∆∽EFN ∆,∴EFAMFN AE = ∵AM AE 2=∴53,321===EN FN EF4. 在矩形ABCD 中,15=AD ,点E 在边DC 上,联结AE ,△ADE 沿直线AE 翻折后点D 落到点F ,过点F 作AD FG ⊥,垂足为点G ,如果3:1:=AD DG ,那么=DEN M GGAABEBE提示:作过点F 作MN ∥BC ,分别交AB 、CD 于M 、N 。
第七讲一线三等角型相似三角形
例1:如图,等边△ABC 中,边长为6,D 是BC 上动点,∠EDF =60° (1)求证:△BDE ∽△CFD
(2)当BD =1,FC =3时,求BE
例2:(1)在ABC ∆中,5==AC AB ,8=BC ,点P 、Q 分别在射线CB 、AC 上(点P 不与点C 、点B 重合)
,且保持ABC APQ ∠=∠. ①若点P 在线段CB 上(如图),且6=BP ,求线段CQ 的长;
②若x BP =,y CQ =,求y 与x 之间的函数关系式,并写出函数的定义域;
(2)正方形ABCD 的边长为5(如下图),点P 、Q 分别在直线..CB 、DC 上(点P 不与点C 、点B 重合),且保持︒=∠90APQ .当1=CQ 时,求出线段BP 的长.
例3:已知在梯形ABCD中,AD∥BC,AD<BC,且AD=5,AB=DC=2.(1)如图8,P为AD上的一点,满足∠BPC=∠A.
①求证;△ABP∽△DPC
②求AP的长.
(2)如果点P在AD边上移动(点P与点A、D不重合),且满足∠BPE=∠A,PE交直线BC于点E,同时交直线DC于点Q,那么
①当点Q在线段DC的延长线上时,设AP=x,CQ=y,求y关于x的函数解析式,并写出函数的定义域;
②当CE=1时,写出AP的长.
C
C
例4:如图,在梯形ABCD 中,AD ∥BC ,6AB CD BC ===,3AD =.点M 为边BC 的中点,以M 为顶点作EMF B ∠=∠,射线ME 交腰AB 于点E ,射线MF 交腰CD 于点F ,联结EF .
(1)求证:△MEF ∽△BEM ;
(2)若△BEM 是以BM 为腰的等腰三角形,求EF 的长; (3)若EF CD ⊥,求BE 的长.
相关练习:
1、如图,在△ABC 中,8==AC AB ,10=BC ,D 是BC 边上的一个动点,点E 在AC 边上,且C ADE ∠=∠. (1) 求证:△ABD ∽△DCE ;
(2) 如果x BD =,y AE =,求y 与x 的函数解析式,并写出自变量x 的定义域; (3) 当点D 是BC 的中点时,试说明△ADE 是什么三角形,并说明理由.
2、如图,已知在△ABC 中, AB =AC =6,BC =5,D 是AB 上一点,BD =2,E 是BC 上一动点,
联结DE ,并作DEF B ∠=∠,射线EF 交线段AC 于F .
(1)求证:△DBE ∽△ECF ; (2)当F 是线段AC 中点时,求线段BE 的长; (3)联结DF ,如果△DEF 与△DBE 相似,求FC 的长.
3、已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且BC =6,AB =DC =4,点E 是AB 的中点. (1)如图,P 为BC 上的一点,且BP =2.求证:△BEP ∽△CPD ; (2)如果点P 在BC 边上移动(点P 与点B 、C 不重合),且满足∠EPF =∠C ,PF 交直线
CD 于点F ,同时交直线AD 于点M ,那么
①当点F 在线段CD 的延长线上时,设BP =x ,DF =y ,求y 关于x 的函数解析式,并
写出函数的定义域; ②当BEP DMF S S ∆∆=4
9
时,求BP 的长.
4、如图,已知边长为3的等边ABC ∆,点F 在边BC 上,1CF =,点E 是射线BA 上一动点,以线段EF 为边向右侧作等边EFG ∆,直线,EG FG 交直线AC 于点,M N , (1)写出图中与BEF ∆相似的三角形; (2)证明其中一对三角形相似;
(3)设,BE x MN y ==,求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (4)若1AE =,试求GMN ∆的面积.
一线三直角型相似三角形
例1、已知矩形ABCD 中,CD=2,AD=3,点P 是AD 上的一个动点,且和点A,D 不重合,过点P 作CP PE ⊥,交边AB 于点E,设y AE x PD ==,,求y 关于x 的函数关系式,并写出x 的取值范围。
例2、在ABC ∆中,O BC AC C ,3,4,90===∠o
是AB 上的一点,且
5
2
=AB AO ,点P 是AC 上的一个动点,OP PQ ⊥交线段BC 于点Q ,(不与点B,C 重合),设y CQ x AP ==,,试求y 关于x 的函数关系,并写出定义域。
B
E
【练习1】
在直角ABC ∆中,4
3
tan ,5,90=
==∠B AB C o
,点D 是BC 的中点,点E 是AB 边上的动点,DE DF ⊥交射线AC 于点F (1)、求AC 和BC 的长 (2)、当BC EF //时,求BE 的长。
(3)、连结EF,当DEF ∆和ABC ∆相似时,求BE 的长。
F D
C
B
A
F
C
B
A
A B
A
B
【练习2】
在直角三角形ABC 中,D BC AB C ,,90==∠o
是AB 边上的一点,E 是在AC 边上的一个动点,(与A,C 不重合),DF DE DF ,⊥与射线BC 相交于点F. (1)、当点D 是边AB 的中点时,求证:DF DE =
(2)、当m DB
AD
=,求DF DE 的值
(3)、当2
1
,
6===DB AD BC AC ,设y BF x AE ==,,求y 关于x 的函数关系式,并写出定义域
【 练习4】]如图,在ABC ∆中,90C ∠=︒,6AC =,3
tan 4
B =
,D 是BC 边的中点,E 为AB 边上的一个动点,作90DEF ∠=︒,EF 交射线BC 于点F .设BE x =,BED ∆的面积为y .
(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;
(2)如果以B 、E 、F 为顶点的三角形与BED ∆相似,求BED ∆的面积.
【 练习5】、(2009年黄浦一模25) 如图,在梯形
ABCD 中,CD AB , 3
4
tan ,4,2=
==C AD AB ,P DAB ADC ,900=∠=∠是腰BC 上一个动点(不含点B 、C ),作AP PQ ⊥交CD 于点
Q .(图1)
(1)求BC 的长与梯形ABCD 的面积; (2)当DQ PQ =时,求BP 的长;(图2)
(3)设y CQ x BP ==,,试求y 关于x 的函数解析式,并写出定义域.
(图1) (图2)
相似三角形作业3
1、如图AB ∥CD ∥EF ,则图中相似三角形的对数为( )
A 、 1对
B 、 2对
C 、 3对
D 、 4对
2、如图,DE 与BC 不平行,当AC AB = 时, ΔABC 与ΔADE 相似。
3、如图,四边形ABCD 是平行四边形,AE ⊥BC 于E ,AF ⊥CD 于F.
(1)ΔABE 与ΔADF 相似吗?说明理由.
(2)ΔAEF 与ΔABC 相似吗?说说你的理由.
4、.如图,D 为ΔABC 内一点,E 为ΔABC 外一点,且∠1=∠2,∠3=∠4.
(1)ΔABD 与ΔCBE 相似吗?请说明理由.
(2)ΔABC 与ΔDBE 相似吗?请说明理由.
5、将两块完全相同的等腰直角三角板摆放成如图所示的样子,假设图中的所有点、线都在同一平面内,回答下列问题:(1)图中共有 个三角形.
(2)图中有相似(不包括全等)三角形吗?如果有,就把它们一一写出来.
6、如图,AB ⊥BC ,DC ⊥BC ,垂足分别为B 、C ,且AB=8,DC=6,BC=14,BC 上是否
存在点P 使△ABP 与△DCP 相似?若有,有几个?
并求出此时BP 的长,若没有,请说明理由。
7、已知:如图,CE 是Rt ΔABC 的斜边AB 上的高,BG ⊥AP.
求证:CE 2=ED ·EP.
B C
A D
P
8、.如图,在直角梯形ABCD 中,AB//CD ,7,3,2,===⊥AD AB CD AB DA ,在AD
上能否找到一点P ,使三角形PAB 和三角形PCD 相似?若能,共有几个符合条件的点P ?并求相应PD 的长。
若不能,说明理由。
9、如图:AB 是等腰直角三角形ABC 的斜边,点M 在边AC 上,点N 在边BC 上,沿直线
MN 将△MCN 翻折,使点C 落在AB 上,设其落点为P ,
①当P 是边AB 中点时,求证:
CN
CM PB PA =; ②当P 不是边AB 中点时,CN CM PB PA =是否仍成立?请证明你的结论;。