2019年高考数学一轮复习学案 训练 课件(北师大版理科) 第7章 立体几何 第2节 空间图形的基本关系与公理学
- 格式:doc
- 大小:312.00 KB
- 文档页数:8
第四节 垂直关系[考纲传真] (教师用书独具)1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.(对应学生用书第114页)[基础知识填充]1.直线与平面垂直(1)定义:如果一条直线和一个平面内的任何一条直线都垂直,那么称这条直线和这个平面垂直.(2)判定定理与性质定理⎭⎪⎬⎪⎫a 平面α,b 平面αa ∩b =O l ⊥a l ⊥b⇒l ⊥α2.(1)二面角:从一条直线出发的两个半平面所组成的图形叫作二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫作二面角的平面角. (3)范围:[0,π].3.平面与平面垂直(1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直. (2)判定定理与性质定理⎭⎪⎬⎪⎫l ⊥αl β⇒α⊥β⎭⎪⎬⎪⎫α⊥βl βα∩β=a l ⊥a⇒l ⊥α[平面.2.直线垂直于平面,则垂直于这个平面内的任一直线. 3.垂直于同一条直线的两平面平行.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)直线l 与平面α内的无数条直线都垂直,则l ⊥α.( ) (2)垂直于同一个平面的两平面平行.( ) (3)直线a ⊥α,b ⊥α,则a ∥b .( ) (4)若α⊥β,a ⊥β⇒a ∥α.( )(5)若直线a ⊥平面α,直线b ∥α,则直线a 与b 垂直.( ) [答案] (1)× (2)× (3)√ (4)× (5)√2.(教材改编)设α,β是两个不同的平面,l ,m 是两条不同的直线,且lα,mβ.( )A .若l ⊥β,则α⊥βB .若α⊥β,则l ⊥mC .若l ∥β,则α∥βD .若α∥β,则l ∥mA [∵l ⊥β,lα,∴α⊥β(面面垂直的判定定理),故A 正确.]3.(2016·浙江高考)已知互相垂直的平面α,β交于直线l .若直线m ,n 满足 m ∥α,n ⊥β,则( ) A .m ∥l B .m ∥n C .n ⊥lD .m ⊥nC [∵α∩β=l ,∴l β.∵n ⊥β,∴n ⊥l .]4.如图741,O 为正方体ABCD A 1B 1C 1D 1的底面ABCD 的中心,则下列直线中与B 1O 垂直的是( )图741A.A1DB.AA1C.A1D1D.A1C1D[易知AC⊥平面BB1D1D.∵A1C1∥AC,∴A1C1⊥平面BB1D1D.又B1O平面BB1D1D,∴A1C1⊥B1O,故选D.]5.如图742,已知PA⊥平面ABC,BC⊥AC,则图中直角三角形的个数为________.图7424[∵PA⊥平面ABC,∴PA⊥AB,PA⊥AC,PA⊥BC,则△PAB,△PAC为直角三角形.由BC⊥AC,且AC∩PA=A,∴BC⊥平面PAC,从而BC⊥PC.因此△ABC,△PBC也是直角三角形.](对应学生用书第115页)(2018·合肥一检)如图743,已知四棱锥PABCD的底面ABCD为菱形,且PA⊥底面ABCD,∠ABC=60°,点E,F分别为BC,PD的中点,PA=AB=2.图743(1)证明:AE ⊥平面PAD ; (2)求多面体PAECF 的体积.[解] (1)证明:由PA ⊥底面ABCD 得PA ⊥AE .底面ABCD 为菱形,∠ABC =60°,得△ABC 为等边三角形, 又因为E 为BC 的中点,得AE ⊥BC ,所以AE ⊥AD . 因为PA ∩AD =A ,所以AE ⊥平面PAD . (2)令多面体PAECF 的体积为V , 则V =V 三棱锥P AEC +V 三棱锥C PAF .V 三棱锥P AEC =13×⎝ ⎛⎭⎪⎫12×AE ×EC ×PA=13×⎝ ⎛⎭⎪⎫12×3×1×2=33;V 三棱锥C PAF =13×⎝ ⎛⎭⎪⎫12×PA ×PF ×sin∠APF ×AE=13×⎝ ⎛⎭⎪⎫12×2×2×sin 45°×3=33,所以多面体PAECF 的体积为V =33+33=233. 利用判定定理利用判定定理的推论a ∥利用面面平行的性质a ⊥利用面面垂直的性质.当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面重视平面几何知识,特别是勾股定理的应用[跟踪训练如图744所示,已知AB 为圆O 的直径,点D 为线段AB 上一点,且AD =13DB ,点C 为圆O上一点,且BC =3AC ,PD ⊥平面ABC ,PD =DB .图744求证:PA ⊥CD .【导学号:79140234】[证明] 因为AB 为圆O 的直径,所以AC ⊥CB ,在Rt△ACB 中,由3AC =BC ,得∠ABC =30°.设AD =1,由3AD =DB ,得DB =3,BC =23,由余弦定理得CD 2=DB 2+BC 2-2DB ·BC cos 30°=3,所以CD 2+DB 2=BC 2,即CD ⊥AO . 因为PD ⊥平面ABC ,CD平面ABC ,所以PD ⊥CD ,由PD ∩AB =D ,得CD ⊥平面PAB ,又PA 平面PAB ,所以PA ⊥CD .(2017·全国卷Ⅰ)如图745,在四棱锥P ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.图745(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,∠APD =90°,且四棱锥P ABCD 的体积为83,求该四棱锥的侧面积.[解] (1)证明:由已知∠BAP =∠CDP =90°, 得AB ⊥AP ,CD ⊥PD .由于AB ∥CD ,故AB ⊥PD ,从而AB ⊥平面PAD . 又AB平面PAB ,所以平面PAB ⊥平面PAD .(2)如图,在平面PAD 内作PE ⊥AD ,垂足为E .由(1)知,AB ⊥平面PAD ,故AB ⊥PE ,AB ⊥AD , 可得PE ⊥平面ABCD . 设AB =x ,则由已知可得AD =2x ,PE =22x . 故四棱锥P ABCD 的体积V P ABCD =13AB ·AD ·PE =13x 3.由题设得13x 3=83,故x =2.从而结合已知可得PA =PD =AB =DC =2,AD =BC =22,PB =PC =2 2. 可得四棱锥P ABCD 的侧面积为12PA ·PD +12PA ·AB +12PD ·DC +12BC 2sin 60°=6+2 3. 判定性质判定性质=PB =PC =3,O 是AB 的中点,E 是PB 的中点.图746(1)证明:平面PAB ⊥平面ABC ; (2)求点B 到平面OEC 的距离.[解] (1)证明:连接PO ,在△PAB 中,PA =PB ,O 是AB 的中点,∴PO ⊥AB .∵AC =BC =2,AC ⊥BC , ∴AB =22,OB =OC = 2. ∵PA =PB =PC =3, ∴PO =7,PC 2=PO 2+OC 2. ∴PO ⊥OC . 又AB ∩CO =O ,AB 平面ABC ,OC平面ABC ,∴PO ⊥平面ABC . ∵PO平面PAB ,∴平面PAB ⊥平面ABC .(2)∵OE 是△PAB 的中位线,∴OE =32.∵O 是AB 中点,AC =BC ,∴OC ⊥AB . 又平面PAB ⊥平面ABC ,两平面的交线为AB , ∴OC ⊥平面PAB .∵OE平面PAB ,∴OC ⊥OE .设点B 到平面OEC 的距离变d , ∵V 三棱锥B OEC =V 三棱锥E OBC , ∴13×S △OEC ·d =13×S △OBC ×12OP . d =S △OBC ·12OP S △OEC=12OB ·OC ·12OP 12OE ·OC =143.]◎角度1 平行与垂直关系的证明(2016·江苏高考)如图747,在直三棱柱ABCA1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.图747求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.[证明] (1)在直三棱柱ABCA1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,于是DE∥A1C1.又因为DE⊆/平面A1C1F,A1C1平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABCA1B1C1中,A1A⊥平面A1B1C1.因为A1C1平面A1B1C1,所以A1A⊥A1C1.又因为A1C1⊥A1B1,A1A平面ABB1A1,A1B1平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D平面ABB1A1,所以A1C1⊥B1D.又因为B1D⊥A1F,A1C1平面A1C1F,A1F平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为直线B1D平面B1DE,所以平面B1DE⊥平面A1C1F.◎角度2 平行与垂直关系中的探索性问题(2018·兰州实战模拟)如图748所示的空间几何体ABCDEFG中,四边形ABCD是边长为2的正方形,AE⊥平面ABCD,EF∥AB,EG∥AD,EF=EG=1.图748(1)求证:平面CFG ⊥平面ACE ;(2)在AC 上是否存在一点H ,使得EH ∥平面CFG ?若存在,求出CH 的长,若不存在,请说明理由.【导学号:79140235】[解] (1)证明:连接BD 交AC 于点O ,则BD ⊥AC . 设AB ,AD 的中点分别为M ,N ,连接MN ,则MN ∥BD , 连接FM ,GN ,则FM ∥GN ,且FM =GN , 所以MN ∥FG ,所以BD ∥FG ,所以FG ⊥AC . 由于AE ⊥平面ABCD ,所以AE ⊥BD .所以FG ⊥AE ,又因为AC ∩AE =A ,所以FG ⊥平面ACE .所以平面CFG ⊥平面ACE . (2)存在.设平面ACE 交FG 于Q ,则Q 为FG 的中点,连接EQ ,CQ ,取CO 的中点为H ,连接EH , 则CH ∥EQ ,CH =EQ =22, 所以四边形EQCH 为平行四边形,所以EH ∥CQ , 所以EH ∥平面CFG ,所以在AC 上存在一点H ,使得EH ∥平面CFG , 且CH =22. 处理平行与垂直的综合问题的主要数学思想是转化,要熟练掌握线线、线面、面面之间的平行与垂直的转化探索性问题一般是先根据条件猜测点的位置再给出证明,探索点的存在问题,点多为中点或三等分点中的某一个,也可以根据相似知识找点[跟踪训练CD =13AB =1,M 为AB 的三等分点.现将△AMD 沿MD 折起,使平面AMD ⊥平面MBCD ,连接AB ,AC .图749(1)在AB 边上是否存在点P ,使AD ∥平面MPC ,请说明理由; (2)当点P 为AB 边中点时,求点B 到平面MPC 的距离. [解] (1)当AP =13AB 时,有AD ∥平面MPC .理由如下:连接BD 交MC 于点N ,连接NP . 在梯形MBCD 中,DC ∥MB ,DN NB =DC MB =12.∵在△ADB 中,AP PB =12,∴AD ∥PN .∵AD ⊆/平面MPC ,PN 平面MPC ,∴AD ∥平面MPC .(2)∵平面AMD ⊥平面MBCD , 平面AMD ∩平面MBCD =DM , 由题易知,在△AMD 中,AM ⊥DM , ∴AM ⊥平面MBCD ,又P 为AB 中点, ∴V 三棱锥P MBC =13×S △MBC ×AM 2=13×12×2×1×12 =16. 在△MPC 中,MP =12AB =52,MC =2,PC =⎝ ⎛⎭⎪⎫122+12=52, ∴S △MPC =12×2×⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫222=64.∴点B 到平面MPC 的距离为3V 三棱锥P MBC S △MPC =3×1664=63.]。
第七章立体几何第一节空间几何体的结构特征及三视图与直观图1.简单几何体(1)多面体的结构特征名称棱柱棱锥棱台图形底面互相平行且相等多边形互相平行侧棱平行且相等相交于一点,但不一定相等延长线交于一点侧面形状平行四边形三角形梯形(2)旋转体的结构特征名称圆柱圆锥圆台球图形母线互相平行且相等,垂直于底面相交于一点延长线交于一点轴截面全等的矩形全等的等腰三角形全等的等腰梯形圆侧面展开图矩形扇形扇环2.直观图(1)画法:常用斜二测画法.(2)规则:①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.3.三视图(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.说明:正视图也称主视图,侧视图也称左视图.(2)作、看三视图的3原则①位置原则:②度量原则:长对正、高平齐、宽相等(即正俯同长、正侧同高、俯侧同宽).③虚实原则:轮廓线——现则实、隐则虚.1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( )(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( )(3)棱台是由平行于底面的平面截棱锥所得的平面与底面之间的部分.( )(4)夹在圆柱的两个平行截面间的几何体还是圆柱.( )(5)上下底面是两个平行的圆面的旋转体是圆台.( )答案:(1)×(2)×(3)√(4)×(5)×2.用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是( )解析:选B 俯视图中显然应有一个被遮挡的圆,所以内圆是虚线,故选B.3.若一个三棱柱的三视图如图所示,其俯视图为正三角形,则这个三棱柱的高和底面边长分别为( )A.2,2 3 B.22,2C.4,2 D.2,4解析:选D 由三视图可知,正三棱柱的高为2,底面正三角形的高为23,故底面边长为4,故选D.4.(教材习题改编)如图,长方体ABCDA′B′C′D′被截去一部分,其中EH∥A′D′,则剩下的几何体是________,截去的几何体是______.答案:五棱柱三棱柱5.利用斜二测画法得到的①三角形的直观图一定是三角形;②正方形的直观图一定是菱形;③等腰梯形的直观图可以是平行四边形;④菱形的直观图一定是菱形.以上结论正确的个数是________.解析:由斜二测画法的规则可知①正确;②错误,是一般的平行四边形;③错误,等腰梯形的直观图不可能是平行四边形;而菱形的直观图也不一定是菱形,④也错误,故结论正确的个数为1.答案:1考点一空间几何体的结构特征基础送分型考点——自主练透[考什么·怎么考]空间几何体的结构特征是立体几何的基础知识,很少单独考查.多作为载体与三视图、表面积、体积等综合考查,题型为选择题或填空题,难度较低.A.圆柱B.圆锥C.球体 D.圆柱、圆锥、球体的组合体解析:选C 截面是任意的且都是圆面,则该几何体为球体.2.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( )A.0 B.1C.2 D.3解析:选B ①错误,只有这两点的连线平行于轴时才是母线;②正确;③错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.3.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.解析:①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体ABCDA1B1C1D1中的三棱锥C1ABC,四个面都是直角三角形.答案:②③④[怎样快解·准解]空间几何体概念辨析题的常用方法定义法紧扣定义,由已知构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,根据定义进行判定.反例法通过反例对结构特征进行辨析,即要说明一个结论是错误的,只要举出一个反例即可.考点二空间几何体的直观图基础送分型考点——自主练透[考什么·怎么考]单独考查空间几何体的直观图的题目很少,多与三视图、表面积、体积等综合考查,题型为选择题或填空题,难度较低.1.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )解析:选A 由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y 轴上的对角线长为2 2.故选A.2.已知正三角形ABC 的边长为2,那么△ABC 的直观图△A ′B ′C ′的面积为________. 解析:如图,图①、图②分别表示△ABC 的实际图形和直观图. 从图②可知,A ′B ′=AB =2,O ′C ′=12OC =32,C ′D ′=O ′C ′sin 45°=32×22=64. 所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×2×64=64.答案:643.用斜二测画法画出的某平面图形的直观图如图,边AB 平行于y ′轴,BC ,AD 平行于x ′轴.已知四边形ABCD 的面积为2 2 cm 2,则原平面图形的面积为________ cm 2.解析:依题意可知∠BAD =45°,则原平面图形为直角梯形,上下底的长分别与BC ,AD 相等,高为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.答案:8[怎样快解·准解]1.原图形与直观图中的“三变”与“三不变” (1)“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变与y 轴平行的线段的长度改变减半图形改变(2)“三不变”⎩⎪⎨⎪⎧平行性不变与x 轴平行的线段长度不变相对位置不变2.原图形与直观图面积的关系按照斜二测画法得到的平面图形的直观图与原图形面积的关系: (1)S 直观图=24S 原图形;(2)S 原图形=22S 直观图. 考点三 空间几何体的三视图题点多变型考点——追根溯源空间几何体的三视图的辨析是高考的热点内容,一般以选择题或填空题的形式出现.常见的命题角度有:1已知几何体,识别三视图;2已知三视图,判断几何体;3已知几何体的三视图中的某两个视图,确定另一种视图.[题点全练]角度(一) 已知几何体,识别三视图1.(2018·河北衡水中学调研)如图所示,在正方体ABCD A 1B 1C 1D 1中,E 为棱BB 1的中点,用过点A ,E ,C 1的平面截去该正方体的上半部分,则剩余几何体的侧视图为( )解析:选C 如图所示,过点A ,E ,C 1的截面为AEC 1F ,则剩余几何体的侧视图为选项C 中的图形.[题型技法] 识别三视图的步骤(1)弄清几何体的结构特征及具体形状、明确几何体的摆放位置;(2)根据三视图的有关定义和规则先确定正视图,再确定俯视图,最后确定侧视图; (3)被遮住的轮廓线应为虚线,若相邻两个物体的表面相交,表面的交线是它们的分界线;对于简单的组合体,要注意它们的组合方式,特别是它们的交线位置.角度(二) 已知三视图,判断几何体2.(2017·北京高考)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A.3 2 B.2 3C.2 2 D.2解析:选B 在正方体中还原该四棱锥如图所示,从图中易得最长的棱为AC1=AC2+CC21=22+22+22=2 3.[题型技法] 由三视图确定几何体的3步骤熟练掌握规则几何体的三视图是三视图还原几何体的基础,在明确三视图画法规则的基础上,按以下步骤可轻松解决此类问题:角度(三) 已知几何体三视图中的某两个视图,确定另外一个视图3.如图,一个三棱柱的正视图和侧视图分别是矩形和正三角形,则这个三棱柱的俯视图为( )解析:选D 由正视图和侧视图可知,这是一个水平放置的正三棱柱.故选D.[题型技法]由几何体的部分视图画出剩余视图的方法解决此类问题,可先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入检验.[题“根”探求]根据几何体的三视图判断几何体的结构特征,常见的有以下几类三视图的形状对应的几何体三个三角形三棱锥两个三角形,一个四边形四棱锥两个三角形,一个圆圆锥一个三角形,两个四边形三棱柱三个四边形四棱柱两个四边形,一个圆圆柱[冲关演练]1.(2018·惠州调研)如图所示,将图①中的正方体截去两个三棱锥,得到图②中的几何体,则该几何体的侧(左)视图为( )解析:选B 从几何体的左侧看,对角线AD1在视线范围内,故画为实线,右侧面的棱C1F不在视线范围内,故画为虚线,且上端点位于几何体上底面边的中点.故选B2.(2018·石家庄质检)一个三棱锥的正(主)视图和俯视图如图所示,则该三棱锥的侧(左)视图可能为( )解析:选D 由题图可知,该几何体为如图所示的三棱锥,其中平面ACD⊥平面BCD,故选D.3.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16解析:选B 由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为2+4×22×2=12,故选B.(一)普通高中适用作业A 级——基础小题练熟练快1.如图,△A ′B ′O ′是利用斜二测画法画出的△ABO 的直观图,已知A ′B ′∥y ′轴,O ′B ′=4,且△ABO 的面积为16,过A ′作A ′C ′⊥x ′轴,则A ′C ′的长为( )A .2 2 B. 2 C .16 2D .1解析:选A 因为A ′B ′∥y ′轴,所以△ABO 中,AB ⊥OB . 又因为△ABO 的面积为16,所以12AB ·OB =16.因为OB =O ′B ′=4,所以AB =8,所以A ′B ′=4. 因为A ′C ′⊥O ′B ′于C ′,所以B ′C ′=A ′C ′, 所以A ′C ′=4·sin 45°=22,故选A.2.一几何体的直观图如图,下列给出的四个俯视图中正确的是( )解析:选B 由直观图可知,该几何体由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部是一条水平线段连接两个三角形,故选B.3.若某几何体的三视图如图所示,则这个几何体的直观图可以是( )解析:选D 由三视图知该几何体的上半部分是一个三棱柱,下半部分是一个四棱柱.故选D.4.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图为( )解析:选D 由正视图与俯视图知,几何体是一个三棱锥与半个圆锥的组合体,故侧视图为D.5.如图,在正四棱柱ABCDA 1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥PBCD的正视图与侧视图的面积之比为( )A.1∶1 B.2∶1C.2∶3 D.3∶2解析:选A 根据题意,三棱锥PBCD的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高.故三棱锥PBCD的正视图与侧视图的面积之比为1∶1.6.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是( )A .2 B.92C.32D .3解析:选D 根据三视图判断几何体为四棱锥,其直观图如图所示,则体积V =13×1+22×2×x =3,解得x =3,故选D. 7.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体; ②底面是矩形的平行六面体是长方体; ③直四棱柱是直平行六面体; ④棱台的相对侧棱延长后必交于一点. 其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.答案:①④8.一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为________cm.解析:如图,过点A 作AC ⊥OB ,交OB 于点C . 在Rt △ABC 中,AC =12(cm),BC =8-3=5 (cm). ∴AB =122+52=13(cm). 答案:139.已知正四棱锥V ABCD 中,底面面积为16,一条侧棱的长为211,则该棱锥的高为________.解析:如图,取正方形ABCD 的中心O ,连接VO ,AO ,则VO 就是正四棱锥V ABCD 的高.因为底面面积为16,所以AO =2 2. 因为一条侧棱长为211.所以VO =VA 2-AO 2=44-8=6. 所以正四棱锥V ABCD 的高为6. 答案:610.已知某几何体的三视图如图所示,正视图和侧视图都是矩形,俯视图是正方形,在该几何体上任意选择4个顶点,以这4个点为顶点的几何体的形状给出下列命题:①矩形;②有三个面为直角三角形,有一个面为等腰三角形的四面体;③两个面都是等腰直角三角形的四面体.其中正确命题的序号是________.解析:由三视图可知,该几何体是正四棱柱,作出其直观图为如图所示的四棱柱ABCDA1B1C1D1,当选择的4个点是B1,B,C,C1时,可知①正确;当选择的4个点是B,A,B1,C时,可知②正确;易知③不正确.答案:①②B级——中档题目练通抓牢1.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是( )A.8 B.7C.6 D.5解析:选C 画出直观图可知,共需要6块.2.将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧视图为( )解析:选 B 如图所示,由正视图和侧视图可知该几何体是由长方体ABCD A 1B 1C 1D 1截去三棱锥B 1A 1BC 1得到的,故其侧视图为选项B.3.已知四棱锥P ABCD 的三视图如图所示,则四棱锥P ABCD 的四个侧面中面积最大的是( )A .3B .2 5C .6D .8解析:选C 四棱锥如图所示,取AD 的中点N ,BC 的中点M ,连接PM ,PN ,则PN =5,PM =3,S △PAD =12×4×5=25,S △PAB =S △PDC =12×2×3=3, S △PBC =12×4×3=6.所以四个侧面中面积最大的是6.4.已知一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为________.解析:由题意可知,该几何体是三棱锥,将其放置在长方体中形状如图所示(图中棱锥P ABC ),利用长方体模型可知,此三棱锥的四个面全部是直角三角形.答案:45.如图,一立在水平地面上的圆锥形物体的母线长为4 m ,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥表面爬行一周后回到点P 处.若该小虫爬行的最短路程为4 3 m ,则圆锥底面圆的半径等于________ m.解析:把圆锥侧面沿过点P 的母线展开成如图所示的扇形,由题意OP =4,PP ′=43, 则cos ∠POP ′=42+42-4322×4×4=-12,所以∠POP ′=2π3.设底面圆的半径为r ,则2πr =2π3×4,所以r =43.答案:436.已知正三棱锥V ABC 的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图; (2)求出侧视图的面积. 解:(1)直观图如图所示.(2)根据三视图间的关系可得BC =23, ∴侧视图中VA =42-⎝ ⎛⎭⎪⎫23×32×232=23,∴S △VBC =12×23×23=6.7.如图,在四棱锥P ABCD 中,底面为正方形,PC 与底面ABCD 垂直,下图为该四棱锥的正视图和侧视图,它们是腰长为6 cm 的全等的等腰直角三角形.(1)根据图中所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积; (2)求PA .解:(1)该四棱锥的俯视图为(内含对角线)边长为6 cm 的正方形,如图,其面积为36 cm 2.(2)由侧视图可求得PD =PC 2+CD 2=62+62=6 2. 由正视图可知AD =6,且AD ⊥PD ,所以在Rt△APD中,PA=PD2+AD2=622+62=6 3 cm.C级——重难题目自主选做1.(2018·泉州模拟)某几何体的三视图如图所示,则该几何体的侧视图中的虚线部分是( )A.圆弧 B.抛物线的一部分C.椭圆的一部分 D.双曲线的一部分解析:选D 根据几何体的三视图可得,侧视图中的虚线部分是由平行于旋转轴的平面截圆锥所得,故侧视图中的虚线部分是双曲线的一部分,故选D.2.一只蚂蚁从正方体ABCDA1B1C1D1的顶点A出发,经正方体的表面,按最短路线爬行到顶点C1的位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图的是( )A.①② B.①③C.③④ D.②④解析:选D 由点A经正方体的表面,按最短路线爬行到达顶点C1的位置,共有6种路线(对应6种不同的展开方式).若把平面ABB1A1和平面BCC1B1展到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过BB1的中点,此时对应的正视图为②;若把平面ABCD和平面CDD1C1展到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过CD的中点,此时对应的正视图为④.而其他几种展开方式对应的正视图在题中没有出现.故选D.(二)重点高中适用作业A级——保分题目巧做快做1.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的俯视图可能是( )解析:选B 根据直观图以及图中的辅助四边形分析可知,当正视图和侧视图完全相同时,俯视图为B,故选B.2.已知点E,F,G分别是正方体ABCDA1B1C1D1的棱AA1,CC1,DD1的中点,点M,N,Q,P分别在线段DF,AG,BE,C1B1上.以M,N,Q,P为顶点的三棱锥PMNQ的俯视图不可能是( )解析:选C 当M与F重合,N与G重合,Q与E重合,P与B1重合时,三棱锥PMNQ 的俯视图为A;当M,N,Q,P是所在线段的中点时,三棱锥PMNQ的俯视图为B;当M,N,Q,P位于所在线段的非端点位置时,存在三棱锥PMNQ,使其俯视图为D.故选C.3.已知一个三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为( )解析:选C 由已知条件得直观图如图所示,PC⊥底面ABC,正视图是直角三角形,中间的线是看不见的线PA形成的投影,应为虚线,故选C.4.某几何体的正视图和侧视图如图1所示,它的俯视图的直观图是如图2所示的矩形O1A1B1C1,其中O1A1=6,O1C1=2,则该几何体的侧面积为( )A .48B .64C .96D .128解析:选 C 由题意可知该几何体是一个直四棱柱,∵它的俯视图的直观图是矩形O 1A 1B 1C 1,O 1A 1=6,O 1C 1=2,∴它的俯视图是边长为6的菱形,∵棱柱的高为4, 故该几何体的侧面积为4×6×4=96.5.已知四棱锥P ABCD 的三视图如图所示,则四棱锥P ABCD 的四个侧面中面积最大的是( )A .3B .2 5C .6D .8解析:选C 四棱锥如图所示,取AD 的中点N ,BC 的中点M ,连接PM ,PN ,则PN =5,PM =3,S △PAD =12×4×5=25,S △PAB =S △PDC =12×2×3=3, S △PBC =12×4×3=6.所以四个侧面中面积最大的是6.6.一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为________cm.解析:如图,过点A 作AC ⊥OB ,交OB 于点C . 在Rt △ABC 中,AC =12(cm),BC =8-3=5 (cm).∴AB =122+52=13(cm). 答案:137.已知一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为________.解析:由题意可知,该几何体是三棱锥,将其放置在长方体中形状如图所示(图中棱锥P ABC ),利用长方体模型可知,此三棱锥的四个面全部是直角三角形.答案:48.如图,一立在水平地面上的圆锥形物体的母线长为4 m ,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥表面爬行一周后回到点P 处.若该小虫爬行的最短路程为4 3 m ,则圆锥底面圆的半径等于________ m.解析:把圆锥侧面沿过点P 的母线展开成如图所示的扇形, 由题意OP =4,PP ′=43, 则cos ∠POP ′=42+42-4322×4×4=-12,所以∠POP ′=2π3.设底面圆的半径为r ,则2πr =2π3×4,所以r =43.答案:439.如图是一个几何体的正视图和俯视图. (1)试判断该几何体是什么几何体; (2)画出其侧视图,并求该平面图形的面积; (3)求出该几何体的体积.解:(1)由题意可知该几何体为正六棱锥.(2)其侧视图如图所示,其中AB =AC ,AD ⊥BC ,且BC 的长是俯视图中的正六边形对边的距离,即BC =3a ,AD 的长是正六棱锥的高,即AD =3a ,∴该平面图形的面积S =12·3a ·3a =32a 2.(3)V =13×6×34a 2×3a =32a 3.10.已知正三棱锥V ABC 的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图; (2)求出侧视图的面积. 解:(1)直观图如图所示.(2)根据三视图间的关系可得BC =23, ∴侧视图中VA =42-⎝ ⎛⎭⎪⎫23×32×232=23,∴S △VBC =12×23×23=6.B 级——拔高题目稳做准做1.(2018·邵阳模拟)某四面体的三视图如图所示,该四面体的六条棱中,长度最长的棱的长是( )A .2 5B .2 6C .27D .4 2解析:选C 由三视图可知该四面体的直观图如图所示.其中AC =2,PA =2,△ABC 中,边AC 上的高为23,所以BC =42+232=27,AB=232+22=4,而PB=PA2+AB2=22+42=25,PC=PA2+AC2=22,因此在四面体的六条棱中,长度最长的是BC,其长为27,选C.2.(2018·泉州模拟)某几何体的三视图如图所示,则该几何体的侧视图中的虚线部分是( )A.圆弧 B.抛物线的一部分C.椭圆的一部分 D.双曲线的一部分解析:选D 根据几何体的三视图可得,侧视图中的虚线部分是由平行于旋转轴的平面截圆锥所得,故侧视图中的虚线部分是双曲线的一部分,故选D.3.一只蚂蚁从正方体ABCDA1B1C1D1的顶点A出发,经正方体的表面,按最短路线爬行到顶点C1的位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图的是( )A.①② B.①③C.③④ D.②④解析:选D 由点A经正方体的表面,按最短路线爬行到达顶点C1的位置,共有6种路线(对应6种不同的展开方式).若把平面ABB1A1和平面BCC1B1展到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过BB1的中点,此时对应的正视图为②;若把平面ABCD和平面CDD1C1展到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过CD的中点,此时对应的正视图为④.而其他几种展开方式对应的正视图在题中没有出现.故选D.4.某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则xy的最大值为________.解析:由三视图知三棱锥如图所示,底面ABC是直角三角形,AB⊥BC,PA⊥平面ABC,BC=27,PA2+y2=102,(27)2+PA2=x2,因此xy=x102-[x2-272]=x128-x2≤x2+128-x22=64,当且仅当x2=128-x2,即x=8时取等号,因此xy的最大值是64.答案:645.如图,在四棱锥PABCD中,底面为正方形,PC与底面ABCD垂直,下图为该四棱锥的正视图和侧视图,它们是腰长为6 cm 的全等的等腰直角三角形.(1)根据图中所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;(2)求PA.解:(1)该四棱锥的俯视图为(内含对角线)边长为6 cm的正方形,如图,其面积为36 cm2.(2)由侧视图可求得PD=PC2+CD2=62+62=6 2.由正视图可知AD=6,且AD⊥PD,所以在Rt△APD中,PA=PD2+AD2=622+62=6 3 cm.6.四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(1)求四面体ABCD 的体积; (2)证明:四边形EFGH 是矩形.解:(1)由题意,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1,∵BD ∩DC =D ,∴AD ⊥平面BDC ,∴四面体ABCD 的体积V =13×12×2×2×1=23.(2)证明:∵BC ∥平面EFGH ,平面EFGH ∩平面BDC =FG ,又平面EFGH ∩平面ABC =EH , ∴BC ∥FG ,BC ∥EH , ∴FG ∥EH .同理,EF ∥AD ,HG ∥AD ,∴EF ∥HG ,∴四边形EFGH 是平行四边形. ∵AD ⊥平面BDC ,∴AD ⊥BC , ∴EF ⊥FG ,∴四边形EFGH 是矩形.第二节空间几何体的表面积与体积1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱 圆锥 圆台侧面展开图侧面积公式 S 圆柱侧=2πrl S 圆锥侧=πrlS 圆台侧=π(r +r ′)l2.空间几何体的表面积与体积公式名称几何体 表面积体积柱体(棱柱和圆S 表面积=S 侧+2S 底 V =Sh柱) 锥体(棱锥和圆锥) S 表面积=S 侧+S 底V =13Sh台体(棱台和圆台) S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 31.判断下列结论是否正确(请在括号中打“√”或“×”)(1)圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS .( )(2)锥体的体积等于底面面积与高之积.( ) (3)台体的体积可转化为两个锥体的体积之差.( ) (4)球的体积之比等于半径之比的平方.( ) 答案:(1)× (2)× (3)√ (4)×2.一个球的表面积是16π,那么这个球的体积为( ) A.163π B.323πC .16πD .24π解析:选B 设球的半径为R ,则由4πR 2=16π,解得R =2,所以这个球的体积为43πR3=323π. 3.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:选C 由三视图知该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得r =2,c =2πr =4π,h =4,由勾股定理得:。
第四节 垂直关系[考纲传真] (教师用书独具).以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.(对应学生用书第页)[基础知识填充].直线与平面垂直()定义:如果一条直线和一个平面内的任何一条直线都垂直,那么称这条直线和这个平面垂直.()判定定理与性质定理.()二面角:从一条直线出发的两个半平面所组成的图形叫作二面角.()二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫作二面角的平面角.()范围:[,π]..平面与平面垂直()定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直.()判定定理与性质定理[平面..直线垂直于平面,则垂直于这个平面内的任一直线..垂直于同一条直线的两平面平行.[基本能力自测].(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)()直线与平面α内的无数条直线都垂直,则⊥α.( )()垂直于同一个平面的两平面平行.( )()直线⊥α,⊥α,则∥.( )()若α⊥β,⊥β⇒∥α.( )()若直线⊥平面α,直线∥α,则直线与垂直.( )[答案] ()× ()× ()√ ()× ()√.(教材改编)设α,β是两个不同的平面,,是两条不同的直线,且α,β.() .若⊥β,则α⊥β .若α⊥β,则⊥.若∥β,则α∥β .若α∥β,则∥[∵⊥β,α,∴α⊥β(面面垂直的判定定理),故正确.].(·浙江高考)已知互相垂直的平面α,β交于直线.若直线,满足 ∥α,⊥β,则() .∥ .∥.⊥ .⊥[∵α∩β=,∴β.∵⊥β,∴⊥.].如图,为正方体的底面的中心,则下列直线中与垂直的是( )图。
第二节空间图形的基本关系与公理
[考纲传真] (教师用书独具).理解空间直线、平面位置关系的定义.了解可以作为推理依据的公理和定理.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.
(对应学生用书第页)
[基础知识填充]
.空间图形的公理
()公理:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内).
()公理:经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面).()公理:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.
()公理:平行于同一条直线的两条直线平行.
推论:经过一条直线和这条直线外一点,有且只有一个平面.
推论:经过两条相交直线,有且只有一个平面.
推理:经过两条平行直线,有且只有一个平面.
()等角定理
空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补.
.空间点、直线、平面之间的位置关系
α
.
()定义:设,是两条异面直线,经过空间中任一点作直线′∥,′∥,把′与′所成的锐角(或直角)叫作异面直线与所成的角.
()范围:.
[知识拓展]
.唯一性定理
()过直线外一点有且只有一条直线与已知直线平行.
()过直线外一点有且只有一个平面与已知直线垂直.
()过平面外一点有且只有一个平面与已知平面平行.
()过平面外一点有且只有一条直线与已知平面垂直.
.异面直线的判定定理
经过平面内一点的直线与平面内不经过该点的直线互为异面直线.
[基本能力自测]
.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
()两个平面α,β有一个公共点,就说α,β相交于过点的任意一条直线.( ) ()两两相交的三条直线最多可以确定三个平面.( )
()如果两个平面有三个公共点,则这两个平面重合.( )
()若直线不平行于平面α,且α,则α内的所有直线与异面.( )
[答案]()×()√()×()×
.(教材改编)如图所示,在正方体中,,分别是,的中点,则异面直线与所成的角的大小为( )
图
.°.°.°.°
[连接,(图略),则∥,故∠为所求的角,又==,∴∠=°.]
.在下列命题中,不是公理的是( )
.平行于同一个平面的两个平面相互平行
.过不在同一条直线上的三点,有且只有一个平面
.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内
.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
[不是公理,是个常用的结论,需经过推理论证;,,是平面的基本性质公理.] .已知直线和平面α,β,α∩β=,α,β,且在α,β内的射影分别为直线和,则直。