最新材料化学导论第三章 材料结构的表征
- 格式:ppt
- 大小:6.36 MB
- 文档页数:113
第三章结构材料一、填空题:1、碳的质量分数大于2.11% 的铁碳合金称之为铸铁,通常还含有较多的Si 、Mn、S 、P等元素。
2、优质碳素结构钢的钢号是以碳的平均万分数来表示的。
3、碳钢常规热处理有退火、正火、淬火、回火四种4、碳在铁碳合金中的存在形式有与铁的间隙固溶、化合态的渗碳体、游离态的石墨。
5、高分子材料分子量很大,是由许多相同的结构单元组成,并以共价键的形式重复连接而成。
6、塑料、橡胶、纤维被称为三大合成高分子材料。
7、高分子按结构单元的化学组成可分为碳链高分子、杂链高分子、元素有机高分子、无机高分子。
8、聚合物分子运动具有多重性和明显的松弛特性。
9、聚乙烯可分为低密度聚乙烯、高密度聚乙烯、线性低密度聚乙烯、超高分子质量聚乙烯、改性聚乙烯。
10、陶瓷材料的晶体缺陷有点缺陷、线缺陷、面缺陷,其中导电性与点缺陷有直接关系。
11、陶瓷材料的塑性和韧性较低,这是陶瓷材料的最大弱点。
12、陶瓷材料热膨胀系数小,这是由晶体结构和化学键决定的。
13、由两种或两种以上物理、化学、力学性能不同的物质,经人工组合而成的多相固体材料叫做复合材料。
14、复合材料可分为结构复合材料和功能复合材料两大类。
15、颗粒增韧的增韧机理主要包括相变增韧、裂纹转向增韧、和分叉增韧。
16、界面是复合材料中基体与增强材料之间发生相互作用和相互扩散而形成的结合面。
17、复合材料界面结合的类型有机械结合、溶解与侵润结合、反应结合、混合结合。
二、判断题:1、不锈钢中含碳量越低,则耐腐蚀性就越好。
(√)2、纯铝中含有Fe、Si等元素时会使其性能下降。
(√)3、正火是在保温一段时间后随炉冷却至室温的热处理工艺。
(×)4、受热后软化,冷却后又变硬,可重复循环的塑料称为热塑性塑料。
(√)5、聚乙烯从是目前产量最大,应用最广泛的品种。
(√)6、陶瓷材料在低温下热容小,在高温下热容大。
(√)7、陶瓷材料中位错密度很高。
(×)8、陶瓷材料一般具有优于金属材料的高温强度,高温抗蠕变能力强。
第三章1、指出金属中键型和结构的主要特征。
为什么可将金属单质的结构问题归结为等径圆球的密堆积问题?答:(1)金属中键型是金属键,由于金属元素的电负性一般都比较小,电离能也较小,最外层家电子很容易脱离原子的束缚而在金属晶粒中由各个正离子形成的势场中比较自由的运动,形成自由电子。
金属晶体中各金属原子的价电子公有化于整个金属大分子,所有成键点子可在整个聚集体中流动,而共同组成了离域的N中心键。
在金属晶体中没有定域的双原子键,也不是几个原子间的离域键,而是所有原子都参加了成键,这些离域电子在三维空间中运动,离域范围很大。
(2)因为整个金属单质晶体可以看作是同种元素的金属正离子周期性排列而成,这些正离子的最外层电子结构都是全充满或半充满状态,他们的电子分布基本上是球形对称的;而同种元素的原子半径都相等,因此可以把他们看成是一个个等径圆球。
又因为金属键无饱和性和方向性,金属原子在组成晶体时,总是趋向于形成密堆积的结构,其特点是堆积密度大,相互的配位数高,能够充分利用空间,整个体系能量最低。
所以可以用等圆球密堆积的模型来描述金属结构。
2、指出A1型和A3型密堆积结构的点阵形式与晶胞中球的数目,并写出球的分数坐标。
答:A1型为立方F,晶胞中球的数目为4。
球的分数坐标A3型为六方P格子,晶胞中的球的数目为2。
求的分数坐标为3、试比较A1和A3型结构的异同,指出A1和A3型结构中密置层相应的晶面指标。
答:A1型结构重复周期为三层,可画出面心立方晶胞,为立方最密堆积。
重复方式为ABCABC……。
A3性结构重复周期为二层,可画出六方晶胞,为刘方最密堆积。
重复方式为ABAB……A1、A3型堆积中原子的配位数皆为12,中心原子与所有配位原子都接触,同层6个,上下两层各3个。
所不同的是,A1型堆积中,上下两层配位原子沿C3轴的投影相差60度呈C6轴的对称性,而A3堆积中,上下两层配位原子沿c轴的投影互相重合。
在这两种最紧密堆积中,球间的空隙数目和大小也相同。
第一章绪论材料研究的四大要素:材料的固有性质、材料的结构、材料的使用性能、材料的合成与加工。
材料的固有性质大都取决于物质的电子结构、原子结构和化学键结构。
材料结构表征的三大任务及主要测试技术:1、化学成分分析:除了传统的化学分析技术外,还包括质谱(MC)、紫外(UV)、可见光、红外(IR)光谱分析、气、液相色谱、核磁共振、电子自旋共振、二次离子色谱、X射线荧光光谱、俄歇与X射线光电子谱、电子探针等。
如质谱已经是鉴定未知有机化合物的基本手段;IR在高分子材料的表征上有着特殊重要地位;X射线光电子能谱(XPS)是用单色的X射线轰击样品导致电子的逸出,通过测定逸出的光电子可以无标样直接确定元素及元素含量。
2、结构测定:主要以衍射方法为主。
衍射方法主要有X射线衍射、电子衍射、中子衍射、穆斯堡谱等,应用最多最普遍的是X射线衍射。
在材料结构测定方法中,值得一提的是热分析技术。
3、形貌观察:光学显微镜、扫描电子显微镜、透射电子显微镜、扫描隧道显微镜、原子力显微镜。
第二章X射线衍射分析1、X射线的本质是电磁辐射,具有波粒二像性。
X射线的波长范围:0.01~100 Å 或者10-8-10-12 m 1 Å=10-10m(1)波动性(在晶体作衍射光栅观察到的X射线的衍射现象,即证明了X射线的波动性);(2)粒子性(特征表现为以光子(光量子)形式辐射和吸收时具有的一定的质量、能量和动量)。
2、X射线的特征:①X射线对物质有很强的穿透能力,可用于无损检测等。
②X射线的波长正好与物质微观结构中的原子、离子间的距离相当,使它能被晶体衍射。
晶体衍射波的方向与强度与晶体结构有关,这是X射线衍射分析的基础。
③X射线光子的能量与原子内层电子的激发能量相当,这使物质的X射线发射谱与吸收谱在物质的成分分析中有重要的应用。
一、X射线的产生1.产生原理高速运动的电子与物体碰撞时,发生能量转换,电子的运动受阻失去动能,其中一小部分(1%左右)能量转变为X射线,而绝大部分(99%左右)能量转变成热能使物体温度升高。
材料化学导论范文材料化学是研究材料的组成、性质、结构和合成方法的学科。
它是化学学科的一个重要分支,涵盖了无机材料、有机材料和生物材料等不同类型的材料。
材料化学研究的对象包括金属、非金属、聚合物、复合材料等各种不同的材料。
材料化学的发展受益于化学和物理学的进步。
随着化学实验技术的不断提高,人们能够更好地理解材料的组成和结构。
通过分析材料的组成和结构,可以预测材料的性质并进行有针对性的合成。
同时,材料化学还借鉴了物理学的概念和方法,例如材料的能带结构和电子结构的研究,帮助人们更好地理解材料的电学、磁学和光学性质。
材料化学在现代科技领域的应用非常广泛。
它为新材料的开发和应用提供了有力的支持。
例如,在能源领域,材料化学的发展推动了新型电池、锂离子电池和太阳能电池的研究,提高了能源的利用效率。
在信息技术领域,材料化学的研究促进了半导体材料的发展,推动了电子设备的迅速发展。
在医学领域,材料化学的进展有助于新型药物的研发和生物材料的制备,提升了医学诊断和治疗的水平。
材料化学的研究内容包括材料的合成、改性和表征等方面。
材料的合成是指制备具有特定性能的材料的过程。
通过选择适当的合成方法和条件,可以控制材料的组成和结构,从而调控材料的性质。
例如,金属材料的合成可以通过熔融、溶液合成和气相沉积等方法来完成;聚合物材料的合成则可以通过聚合反应来实现。
材料的改性是指对已有材料进行结构或组成的调整,以获得更好的性能。
常见的改性方法包括材料的掺杂、表面修饰和功能组团的引入等。
材料的表征是指对材料进行结构和性能分析的过程。
常用的表征方法包括X射线衍射、电子显微镜、热重分析和光谱分析等。
在材料化学的研究中,要解决的一个重要问题是材料的结构与性能之间的关系。
材料的性能受其组成和结构的影响,而结构又决定了材料的性质。
因此,为了改善材料的性能,必须深入了解材料的结构,并利用结构的优化来实现。
例如,通过控制材料的晶体结构和晶格缺陷的引入,可以改善材料的光学、电学和磁学性能。
材料化学导论复习提纲第一章绪论一、材料的分类(按成分分类、按功能分类)1、按组成、结构特点分金属材料:由金属及合金构成的材料。
黑色金属:如钢Fe、Mn、Cr及其合金;有色金属:黑色金属以外的各种金属及其合金。
无机非金属材料:由非金属单质或金属与非金属组成的化合物所构成的材料。
传统无机非金属材料:水泥、玻璃、陶瓷等新型无机非金属材料:高温结构陶瓷、光导纤维等。
如水晶(SiO2)、金刚石(C)、刚玉(Al2O3)、新型陶瓷材料或精细陶瓷。
高分子材料:以脂肪族或芳香族的C-C 共价键为基础结构的大分子组成。
天然高分子材料:木材,天然橡胶,棉花,动物皮毛等。
合成高分子材料:塑料,合成橡胶,合成纤维和粘合剂等。
复合材料:金属、无机非金属和有机高分子材料有机结合,可以在性能上起到协同作用,从而获得全新性能的一类材料。
如碳纤维等。
2、按使用性能分结构材料:主要利用材料的力学性能的材料。
功能材料:主要利用材料的物理和化学性能的材料。
二、原料与材料的区别、(化学过程与材料过程?)。
材料:人类能用来制作有用物件的物质。
是为获得产品,无化学变化。
原料:人们在自然界经过开采而获得的劳动对象。
是生产材料,往往伴随化学变化。
注意:材料和原料合成为原材料。
三、.材料的发展过程(了解)。
第一代:天然材料在原始社会,生产技术水平低下,人类使用的材料只能是自然界的动物、植物和矿物,主要的工具是棍棒,用石料加工的磨制石器。
第二代:烧炼材料烧炼材料是烧结材料和冶炼材料的总称。
天然的矿、土烧结的砖瓦、陶瓷、玻璃、水泥,都属于烧结材料;从天然矿石中提炼的铜、铁等,属于冶炼材料。
第三代材料:合成材料如合成塑料、合成橡胶、合成纤维。
第四代:可设计的材料近代出现的根据实际需要去设计特殊性能的材料。
第五代:智能材料随时间、环境的变化改变自己的性能或形状的材料。
如形状记忆合金。
第二章一、晶体的对称性:点对称操作的独立操作元素、点对称操作与平移对称操作的组合(空间群)。
第三章金属材料在一百多种化学元素中,金属大约占80%。
金属材料具有许多宝贵的机械-力学、物理、化学性能,是迄今为止使用最为广泛且用量最多的一种材料。
3.1 金属键金属呈现特有的金属光泽,不透明,是电与热的良导体,具有延性和展性,比重大,强度高,可以焊接和形成合金。
金属的性能是其特定结构的外在反映。
由金属从单原子气态生成液态或固态时所释放出相当大的能量,可以断定金属原子在液态或固态中的相互结合力不是一般原子间的范德瓦耳斯力,而是一种相当强的化学键。
它又是由电负性小的同类原子所组成,从而也排除生成离子键的可能性。
X射线衍射测定结果表明,金属材料中每个金属原子与周围8至12个同等或接近同等距离的原子相紧邻,而每个金属原子的价电子层中只有少数的价电子,显然以这少数价电子来生成8至12个通常的共价键也是难以想象的。
因此,就需要另外提出“金属键”(metallic bond),即使金属原子结合成金属相互作用的模型。
一、“自由电子”模型金属晶体中,金属原子外层价电子受原子核束缚较弱,即电离能低,很容易失去这些价电子而形成正离子和自由电子。
所谓自由电子是指被电离的电子不再束缚于某一原子,而在整个晶体内“自由”运动。
正离子整体共同吸收自由电子而结合在一起。
自由电子就像胶泥似地将许多排列整齐的正离子胶合在一起。
自由电子在金属中的活动范围很大,因此可将金属看成是自由电子气和沉浸在其中的正离子的结合体。
这就是金属键的“自由电子”模型。
用量子力学处理金属键的自由电子模型,就相当于一个三维势箱问题。
在“箱”中的电子可近似作为平动子在整个晶体中作较自由的运动,但在总体上还受由正离子组成的电场所束缚。
由于金属中电子离域范围很大,将会产生很显著的能量降低效应,便成为金属键能的起源。
要指出的是,金属键和离域π键是不很相同的:参与离域π键的原子数一般是有限的,且离域电子的活动范围是沿二维空间,即平面伸展的;而参与金属键的原子数量则是很大的,且离域电子活动范围是沿三维空间伸展的。
材料结构表征及应⽤复习资料.材料结构表征及应⽤复习资料--2013材料化学第⼀章绪论1.材料研究的四⼤要素:材料的固有性质、材料的结构、材料的使⽤性能、材料的合成与加⼯;2.材料的固有性质⼤都取决于物质的电⼦结构、原⼦结构和化学键结构。
3.材料结构表征的三⼤任务及主要测试技术:①化学成分分析:传统的化学分析技术、质谱、⾊谱、红外光谱、核磁共振、X射线光电⼦能谱;②结构测定:X射线衍射、电⼦衍射、中⼦衍射、热分析;③形貌观察:光学显微镜、扫描电镜、透射电镜、原⼦⼒显微镜;第⼆章红外光谱及激光拉曼光谱2.1 红外光谱的基本原理1.红外光谱定义:当⽤⼀束具有连续波长的红外光照射物质时,该物质的分⼦就要吸收⼀定波长的红外光的光能,并将其转变为分⼦的振动能和转动能,从⽽引起分⼦振动—转动能级的跃迁。
通过仪器记录下不同波长的透过率(或吸光度)的变化曲线,即是该物质的红外吸收光谱。
2.中红外区波数范围:4000-400cm-1;3.简正振动振动⾃由度(3n-6或3n-5)。
4.简正振动的特点是,分⼦质⼼在振动过程中保持不变,所有的原⼦都在同⼀瞬间通过各⾃的平衡位置。
每个简正振动代表⼀种振动⽅式,有它⾃⼰的特征振动频率。
5.简正振动类型主要分为两⼤类,即伸缩振动和弯曲振动。
伸缩振动是指原⼦沿着键轴⽅向伸缩使键长发⽣变化的振动;弯曲振动即指的是键⾓发⽣变化的振动6.实际观测到的红外基频吸收数⽬却往往少于3n-6个,为什么?①如振动过程中分⼦不发⽣瞬间偶极矩变化,则不引起红外吸收;②频率完全相同的振动彼此发⽣简并;③强宽峰往往要覆盖与它频率相近的弱⽽窄的吸收峰;④吸收强度太弱,以致⽆法测定;⑤吸收峰落在中红外区之外。
7.分⼦吸收红外辐射必须满⾜的条件?①只有在振动过程中,偶极矩发⽣变化的那种振动⽅式才能吸收红外辐射,从⽽在红外光谱中出现吸收谱带。
这种振动⽅式称为红外活性的。
反之,在振动过程中偶极矩不发⽣改变的振动⽅式是红外⾮活性的,虽有振动,但不能吸收红外辐射。
第一章绪论[教学要求]掌握高分子材料研究的意义和内容,了解表征材料组织结构的各种方法及手段。
[重点]高分子材料的各种研究方法。
[难点]不同结构和性能所应采用的研究方法。
[教学内容]一、高分子材料研究的意义和内容材料科学的主要任务是研究材料研究的内容:组成、结构性能材料的性能决定于:组成、结构材料的结构又取决于:材料的制备工艺材料的使用条件二、高聚物的结构和形态1、高分子结构的特点:1)高分子是由数目(103 — 105)很大的结构单元组成2)高分子主链有一定的内旋转自由度,可以使主链弯曲且具有柔性3)高分子的结构具有不均一性4)结构单元的相互作用对高分子聚集态结构和物理性能影响很大5)高分子聚集态结构沿主链方向的有序程度高于垂直于主链方向的有序程度2、高分子结构的内容近程结构(一级结构)链结构 {高分子结构 { 远程结构(二级结构)聚集态结构(三级结构)1)一级结构(近程结构)属于化学结构,包括构造和构型。
即结构单元的连接方式。
(均聚,共聚,相对分子量,链状分子形态如直链、支化、交联,高聚物的立体构型,全同、间同、无规、顺式、反式)2)二级结构(远程结构)包括分子的大小和形态,链的柔顺性及分子在各种环境中所采取的构象。
即单个分子存在的形态。
高分子的大小,平均分子量及其分子量分布3)三级结构(聚集态结构)包括晶态结构,非晶态结构,取向态结构,液晶态结构及织态结构。
是描述高分子聚集体中的分子间是如何堆砌的。
4)高次结构(织态结构)属于更高一级的结构。
三、材料研究方法1、定义:广义:包括技术路线、实验技术、数据分析狭义:某一种测试方法,如:X射线衍射方法、电子显微术、红外光谱分析、核磁共振分析等结构测定2、高聚物结构的测定方法1)链结构:X射线衍射、电子衍射、中心衍射、紫外、红外、拉曼、荧光、核磁共振,等.2)聚集态X射线小角散射、电子衍射、电子显微镜(TEM,SEM)、光学显微镜、原子力显微镜、小角激光光散射等。