2016级高三新课标热学复习
- 格式:doc
- 大小:99.00 KB
- 文档页数:8
2016万卷作业卷(二十)热学一 、单选题(本大题共5小题 。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1. 下列说法正确的是A .物体温度改变时,物体分子的平均动能一定改变B .在两分子间距离减小的过程中,分子间引力减小,斥力增大C .在两分子间距离增大的过程中,分子势能一定增大D .气体压强是气体分子间的斥力产生的2. 热现象与大量分子热运动的统计规律有关,1859年麦克斯韦从理论上推导出了气体分子速率的分布规律,后来有许多实验验证了这一规律。
若以横坐标v 表示分子速率,纵坐标f (v )表示各速率区间的分子数占总分子数的百分比。
对某一部分密闭在钢瓶中的理想气体,在温度T 1、T 2时的分子速率分布图象如题图所示,下列分析和判断中正确的是( )A .两种状态下瓶中气体内能相等B .两种状态下瓶中气体分子平均动能相等C .两种状态下瓶中气体分子势能相等D .两种状态下瓶中气体分子单位时间内撞击瓶壁的总冲量相等3. 下列说法中正确的是A .气体的温度升高时,分子的热运动变得剧烈,分子的平均动能增大,撞击器壁时对器壁的作用力增大,从而气体的压强一定增大B .气体体积变小时,单位体积的分子数增多,单位时间内撞到器壁单位面积上的分子数增多,从而气体的压强一定增大C .压缩一定质量的气体,气体的内能一定增加D .分子a 只在分子b 的分子力作用下,从无穷远处向固定不动的分子b 运动的过程中,当a 到达受b 的作用力为零的位置时,a 的动能一定最大4. 架在A 、B 两根电线杆之间的均匀电线在夏、冬两季由于热胀冷缩的效应,电线呈现如图所示的两种形状。
下列说法中正确的是( ) A .夏季电线对电线杆的拉力较大B .冬季电线对电线杆的拉力较大C .夏季、冬季电线对电线杆的拉力一样大D .夏季杆对地面的压力较大[5. 下列有关分子运动理论的各种说法中正确的是( )A . 温度低的物体内能小B . 温度低的物体,其分子运动的平均动能也必然小C . 做加速运动的物体,由于速度越来越大,因此物体分子的平均动能越来越大D . 0℃的铁和0℃的冰,它们的分子平均动能可能不相同夏季 冬季 A A B B二、多选题(本大题共2小题)6. 健身球是一个充满气体的大皮球,当人压向健身球上时,假设球内气体温度不变,则在这个过程中A.气体分子的平均动能增大B.气体的密度增大C.气体从外界吸收热量D.外界对气体做功7.(2015•汕头一模)气象探测气球内充有常温常压的氦气,从地面上升至某高空的过程中,气球内氦气的压强随外部气压减小而逐渐减小,其温度因启动加热装置而保持不变.高空气温为﹣7.0℃,球内氦气可视为理想气体,下列说法中正确的是()A.在此过程,气球内氦气体积逐渐增大B.在此高空,关闭加热装置后,氦气分子平均动能增大C.在此高空,关闭加热装置后,氦气将对外界做功D.在此高空,关闭加热装置后,氦气将对外放热三、简答题(本大题共2小题)8.(2015•松江区一模)如图,由U形管和细管连接的玻璃泡A、B和C浸泡在温度均为0℃的水槽中,B的容积是A的3倍.阀门S将A和B两部分隔开.A内为真空,B和C内都充有气体.U形管内左边水银柱比右边的低60mm.打开阀门S,整个系统稳定后,U形管内左右水银柱高度相等.假设U形管和细管中的气体体积远小于玻璃泡的容积.(1)求玻璃泡C中气体的压强(以mmHg为单位)(2)将右侧水槽的水从0℃加热到一定温度时,U形管内左右水银柱高度差又为60mm,求加热后右侧水槽的水温.9.(2015•崇明县一模)在托里拆利实验中,由于操作不慎,漏进了一些空气.当大气压强为75cm Hg时,管内外汞面高度差为60cm,管内被封闭的空气柱长度是30cm,如图所示.问:(1)此时管内空气的压强是多少?(2)若将此装置移到高山上,温度不变,发现管内外汞面高度差变为54cm,山上的大气压强为多少(设管顶到槽内汞面的高度不变)?2016万卷作业卷(二十)答案解析一、单选题10.【答案】A11.【答案】C12.【答案】D13.【答案】B14.【答案】B考点:分子的热运动.专题:分子运动论专题.分析:温度是分子平均动能的唯一标志,分子动能与分子的速率以及分子质量有关.解答:解:A、温度是分子平均动能的标志,温度低只能说明分子平均动能小,不能说明分子势能,而内能包括分子动能和分子势能,故A错误.B、温度低的物体,分子平均动能一定小,故B正确;C、温度是分子平均动能的标志,与物体是否运动无关,故C错误.D、温度是分子平均动能的唯一标志,温度相同说明分子平均动能相同,0℃的铁和0℃的冰,它们的分子平均动能相同,故D错误.故选:B.点评:掌握温度是分子平均动能的“唯一”标志,与其他任何因素无关.二、多选题15.【答案】BD16.【答案】AD【考点】:热力学第一定律;理想气体的状态方程.【分析】:气体经历等温过程,根据玻意耳定律分析体积的变化;温度是分子热运动平均动能的标志.【解析】:解:A、气体经历等温过程,压强减小,根据PV=C,在此过程,气球内氦气体积逐渐增大,故A正确;B、在此高空,关闭加热装置后,温度降低,故氦气分子平均动能减小,故B错误;C、在此高空,压强固定,关闭加热装置后,温度降低,根据,体积减小,故是外界对气体做功,故C错误;D、在此高空,压强固定,关闭加热装置后,温度降低,故会对外放热,故D正确;故选:AD.【点评】:本题关键是明确温度的微观意义,能够结合理想气体状态方程列式分析,基础题目.三、简答题17. 考点:理想气体的状态方程;封闭气体压强.专题:压轴题;理想气体状态方程专题.分析:以B内封闭气体为研究对象,做等温变化,根据玻意耳定律求出B内的压强,然后求出C内压强;以C中封闭气体为研究对象,根据等容变化列方程求解.解答:解:(i)加热前C中压强始终不变,B内封闭气体初状态:P B=P C+60,打开阀门后P B′=P C由题意:由玻意尔定律P B V B=P B′V B′得:P B′=180mmHg P C=P B′=180mmHg(ii)C内封闭气体做等容变化,加热后压强P C′=P C+60mmHg=得:T′=364K答:(1)玻璃泡C中气体的压强为180mmHg(2)加热后右侧水槽的水温364K.点评:本题考查了理想气体状态方程的应用,关键是正确分析ABC中气体压强的关系.。
(五年高考真题)2016届高考物理专题十三热学(全国通用)考点一分子动理论内能1.[2015·新课标全国Ⅱ,33(1),5分](难度★★)(多选)关于扩散现象,下列说法正确的是()A.温度越高,扩散进行得越快B.扩散现象是不同物质间的一种化学反应C.扩散现象是由物质分子无规则运动产生的D.扩散现象在气体、液体和固体中都能发生E.液体中的扩散现象是由于液体的对流形成的解析根据分子动理论,温度越高,扩散进行得越快,故A正确;扩散现象是由物质分子无规则运动产生的,不是化学反应,故C正确、B错误;扩散现象在气体、液体和固体中都能发生,故D正确;液体中的扩散现象不是由于液体的对流形成的,是液体分子无规则运动产生的,故E错误.答案ACD2.[2015·福建理综,29(1),6分](难度★★))下列有关分子动理论和物质结构的认识,其中正确的是()A.分子间距离减小时分子势能一定减小B.温度越高,物体中分子无规则运动越剧烈C.物体内热运动速率大的分子数占总分子数比例与温度无关D.非晶体的物理性质各向同性而晶体的物理性质都是各向异性解析当分子间距离r<r0时,r减小,分子势能增大,当r>r0时,r减小,分子势能减小,故A错误;温度越高,物体中分子的平均动能越大,分子运动越剧烈,故B 正确,温度越高,热运动速率大的分子数占总分子数的比例越大,故C错误;非晶体和多晶体具有各向同性的特点,单晶体具有各向异性的特点,故D错误.答案 B3.[2015·山东理综,37(1),](难度★★)(多选)墨滴入水,扩而散之,徐徐混匀.关于该现象的分析正确的是()a.混合均匀主要是由于碳粒受重力作用b.混合均匀的过程中,水分子和碳粒都做无规则运动c.使用碳粒更小的墨汁,混合均匀的过程进行得更迅速d.墨汁的扩散运动是由于碳粒和水分子发生化学反应引起的解析根据分子动理论的知识可知,混合均匀主要是由于水分子做无规则运动,使得碳粒无规则运动造成的布朗运动,由于布朗运动的剧烈程度与颗粒大小和温度有关,所以使用碳粒更小的墨汁,布朗运动会更明显,则混合均匀的过程进行得更迅速,故选b、c.答案bc4.[2015·江苏单科,12A(1)](难度★★)(多选)对下列几种固体物质的认识,正确的有()A.食盐熔化过程中,温度保持不变,说明食盐是晶体B.烧热的针尖接触涂有蜂蜡薄层的云母片背面,熔化的蜂蜡呈椭圆形,说明蜂蜡是晶体C.天然石英表现为各向异性,是由于该物质的微粒在空间的排列不规则D.石墨和金刚石的物理性质不同,是由于组成它们的物质微粒排列结构不同解析若物体是晶体,则在熔化过程中,温度保持不变,可见A正确;烧热的针尖接触涂有蜂蜡薄层的云母片背面,熔化的蜂蜡呈椭圆形是由于云母片在不同方向上导热性能不同造成的,说明云母片是晶体,所以B错误;沿晶格的不同方向,原子排列的周期性和疏密程度不尽相同,由此导致晶体在不同方向的物理性质不同,这就是晶体的各向异性.选项C错误,D正确.答案AD5.(2015·广东理综,17,6分)(难度★★)(多选)如图为某实验器材的结构示意图,金属内筒和隔热外筒间封闭了一定体积的空气,内筒中有水,在水加热升温的过程中,被封闭的空气()A.内能增大B.压强增大C.分子间引力和斥力都减小D.所有分子运动速率都增大解析 隔热外筒使封闭气体与外界无热量交换,因金属内筒导热,所以水温 升高时,气体吸热,温度升高,分子平均动能增大,但不是每个分子运动速 率都增大,D 项错误;气体体积不变,分子间距离不变,分子势能不变,分 子间引力和斥力均不变,C 项错误;分子平均动能增大,分子势能不变,所 以封闭气体的内能增大,A 正确;根据查理定律pT=C 得p 增大,B 正确.答案 AB6.(2014·北京理综,13,6分)(难度★★)下列说法中正确的是( ) A.物体温度降低,其分子热运动的平均动能增大 B.物体温度升高,其分子热运动的平均动能增大 C.物体温度降低,其内能一定增大 D.物体温度不变,其内能一定不变解析 温度是物体分子平均动能的标志,温度升高则其分子平均动能增大, 反之,则其分子平均动能减小,故A 错误,B 正确;物体的内能是物体内所 有分子的分子动能和分子势能的总和,宏观上取决于物体的温度、体积和质 量,故C 、D 错误.答案 B7.(2013·北京理综,13,6分)(难度★★)下列说法正确的是( )A.液体中悬浮微粒的无规则运动称为布朗运动B.液体分子的无规则运动称为布朗运动C.物体从外界吸收热量,其内能一定增加D.物体对外界做功,其内能一定减少解析布朗运动是指悬浮在液体(或气体)中的微粒的无规则运动,而不是液体(或气体)分子的运动,故A选项正确、B选项错误;由热力学第一定律ΔU=W+Q知,若物体从外界吸收热量同时对外做功,其内能也可能不变或减少,C选项错误;物体对外做功同时从外界吸热,其内能也可能增加或不变,D选项错误.答案 A8.[2013·福建理综,29(1),6分](难度★★)下列四幅图中,能正确反映分子间作用力f和分子势能E p随分子间距离r变化关系的图线是()解析本题考查分子间作用力以及分子势能随分子间距离变化的关系,意在考查考生对该部分知识的了解情况.当r=r0时,分子间作用力f=0,分子势能E p最小,排除A、C、D,选B.答案 B9.(2012·全国理综,14,6分)(难度★★)(多选)下列关于布朗运动的说法,正确的是()A.布朗运动是液体分子的无规则运动B.液体温度越高,悬浮粒子越小,布朗运动越剧烈C.布朗运动是由于液体各部分的温度不同而引起的D.布朗运动是由液体分子从各个方向对悬浮粒子撞击作用的不平衡引起的解析布朗运动是悬浮固体颗粒的无规则运动,而非液体分子的无规则运动,选项A错误;布朗运动的剧烈程度与液体的温度、固体颗粒大小有关,选项B正确;布朗运动是由液体分子对悬浮固体颗粒撞击不平衡引起的,选项C 错误,D正确.答案BD10.(2012·广东理综,13,4分)(难度★★)清晨,草叶上的露珠是由空气中的水汽凝结成的水珠,这一物理过程中,水分子间的()A.引力消失,斥力增大B.斥力消失,引力增大C.引力、斥力都减小D.引力、斥力都增大解析露珠是由空气中的水蒸气凝结成的水珠,液化过程中,分子间的距离变小,引力与斥力都增大,选项D正确.答案 D11.[2012·海南单科,17(1),4分](难度★★★)(多选)两分子间的斥力和引力的合力F与分子间距离r的关系如图中曲线所示,曲线与r轴交点的横坐标为r0.相距很远的两分子在分子力作用下,由静止开始相互接近.若两分子相距无穷远时分子势能为零,下列说法正确的是()A.在r>r0阶段,F做正功,分子动能增加,势能减小B.在r<r0阶段,F做负功,分子动能减小,势能也减小C.在r=r0时,分子势能最小,动能最大D.在r=r0时,分子势能为零E.分子动能和势能之和在整个过程中不变解析由E p r图可知:在r>r0阶段,当r减小时,F做正功,分子势能减小,分子动能增加,故选项A正确.在r<r0阶段,当r减小时,F做负功,分子势能增加,分子动能减小,故选项B错误.在r=r0时,分子势能最小,动能最大,故选项C正确.在r=r0时,分子势能最小,但不为零,故选项D错误.在整个相互接近的过程中分子动能和势能之和保持不变,故选项E正确.答案ACE考点二固体液体气体1.[2015·新课标全国Ⅰ,33(1),5分](难度★★)(多选)下列说法正确的是()A.将一块晶体敲碎后,得到的小颗粒是非晶体B.固体可以分为晶体和非晶体两类,有些晶体在不同方向上有不同的光学性质C.由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体D.在合适的条件下,某些晶体可以转化为非晶体,某些非晶体也可以转化为晶体E.在熔化过程中,晶体要吸收热量,但温度保持不变,内能也保持不变解析晶体有固定的熔点,并不会因为颗粒的大小而改变,即使敲碎为小颗粒,仍旧是晶体,选项A错误;固体分为晶体和非晶体两类,有些晶体在不同方向上光学性质不同,表现为晶体具有各向异性,选项B正确;同种元素构成的可能由于原子的排列方式不同而形成不同的晶体,如金刚石和石墨,选项C正确;晶体的分子排列结构如果遭到破坏就可能形成非晶体,反之亦然,选项D正确;熔化过程中,晶体要吸热,温度不变,但是内能增大,选项E错误.答案BCD2.[2014·新课标全国Ⅱ,33(1),5分](难度★★)(多选)下列说法正确的是()A.悬浮在水中的花粉的布朗运动反映了花粉分子的热运动B.空中的小雨滴呈球形是水的表面张力作用的结果C.彩色液晶显示器利用了液晶的光学性质具有各向异性的特点D.高原地区水的沸点较低,这是高原地区温度较低的缘故E.干湿泡湿度计的湿泡显示的温度低于干泡显示的温度,这是湿泡外纱布中的水蒸发吸热的结果解析水中花粉的布朗运动,反映的是水分子的热运动规律,则A项错;正是表面张力使空中雨滴呈球形,则B项正确;液晶的光学性质是各向异性,液晶显示器正是利用了这种性质,C项正确;高原地区大气压较低,对应的水的沸点较低,D项错误;因为纱布中的水蒸发吸热,则同样环境下湿泡温度计显示的温度较低,E项正确.答案BCE3.(2014·广东理综,17,6分)(难度★★★)(多选)用密封性好、充满气体的塑料袋包裹易碎品,如图所示,充气袋四周被挤压时,假设袋内气体与外界 无热交换,则袋内气体( )A.体积减小,内能增大B.体积减小,压强减小C.对外界做负功,内能增大D.对外界做正功,压强减小解析 袋内气体与外界无热交换即Q =0,袋四周被挤压时,体积V 减小,外 界对气体做正功,根据热力学第一定律ΔU =W +Q ,气体内能增大,则温度 升高,由pVT=常数知压强增大,选项A 、C 正确,B 、D 错误.答案 AC4.(2014·大纲全国,16,6分)(难度★★)(多选)对于一定量的稀薄气体,下 列说法正确的是( ) A.压强变大时,分子热运动必然变得剧烈 B.保持压强不变时,分子热运动可能变得剧烈 C.压强变大时,分子间的平均距离必然变小 D.压强变小时,分子间的平均距离可能变小解析 对一定量的稀薄气体,压强变大,温度不一定升高,因此分子热运动 不一定变得剧烈,A 项错误;在保持压强不变时,如果气体体积变大,则温 度升高,分子热运动变得剧烈,选项B 正确;在压强变大或变小时,气体的 体积可能变大,也可能变小或不变,因此选项C 错,D 对.答案 BD5.(2013·广东理综,18,6分)(难度★★)(多选)如图所示为某同学设计的喷 水装置,内部装有2 L 水,上部密封1 atm 的空气0.5 L.保持阀门关闭,再充入1 atm 的空气0.1 L.设在所有过程中空气可看做理想气体,且温度不变,下 列说法正确的有( )A.充气后,密封气体压强增加B.充气后,密封气体的分子平均动能增加C.打开阀门后,密封气体对外界做正功D.打开阀门后,不再充气也能把水喷光解析 充气后气体温度不变,分子平均动能不变,分子数密度增加,压强增 加,所以A 正确、B 错误;打开阀门,气体膨胀对外做功,C 正确.对装置中 气体由玻意尔定律得1 atm ×0.6 L =p 2×2.5 L,得p 2=0.24 atm<p 0,故不能将 水喷光,D 错误.答案 AC6.[2012·福建理综,28(2),6分](难度★★)空气压缩机的储气罐中储有1.0 atm 的空气6.0 L ,现再充入1.0 atm 的空气9.0 L.设充气过程为等温过程,空气可 看做理想气体,则充气后储气罐中气体压强为( ) A.2.5 atmB.2.0 atmC.1.5 atmD.1.0 atm解析 可把此过程等效为将体积为(6.0 L +9.0 L )、压强为1.0 atm 的空气等 温压缩到体积为6.0 L 的储气罐中,对此过程由玻意耳定律得p 1V 1=p 2V 2.解得 p 2=V 1V 2p 1=2.5 atm.答案 A7.(2012·重庆理综,16,6分)(难度★★★)图为伽利略设计的一种测温装置示 意图,玻璃管的上端与导热良好的玻璃泡连通,下端插入水中,玻璃泡中封 闭有一定量的空气.若玻璃管内水柱上升,则外界大气的变化可能是( )A.温度降低,压强增大B.温度升高,压强不变C.温度升高,压强减小D.温度不变,压强减小解析 设玻璃泡中气体压强为p ,外界大气压强为p ′,则p ′=p +ρgh ,且玻璃 泡中气体与外界大气温度相同.液柱上升,玻璃泡内空气体积减小,根据理想 气体的状态方程pV T =C 可知,p T 变大,即p ′T变大,B 、C 、D 均不符合要求, A 正确.答案 A8.[2013·福建理综,29(2),6分](难度★★)某自行车轮胎的容积为V ,里面已有压强为p 0的空气,现在要使轮胎内的气压增大到p ,设充气过程为等温过 程,空气可看做理想气体,轮胎容积保持不变,则还要向轮胎充入温度相同, 压强也是p 0,体积为的空气.(填选项前的字母) A.p 0pVB.p p 0V C.(p p 0-1)VD.(p p 0+1)V解析 设需充入体积为V ′的空气,以V 、V ′体积的空气整体为研究对象,由理想气体状态方程有p 0(V +V ′)T =pV T ,得V ′=(pp 0-1)V .答案 C9.[2015·新课标全国Ⅰ,33(2),10分](难度★★★★)如图,一固定的竖直汽 缸由一大一小两个同轴圆筒组成,两圆筒中各有一个活塞.已知大活塞的质量 为m 1=2.50 kg ,横截面积为S 1=80.0 cm 2;小活塞的质量为m 2=1.50 kg ,横截面积为S 2=40.0cm 2;两活塞用刚性轻杆连接,间距为l =40.0 cm ;汽缸外 大气的压强为p =1.00×105Pa,温度为T =303 K.初始时大活塞与大圆筒底部相距l2,两活塞间封闭气体的温度为T 1=495 K.现汽缸内气体温度缓慢下降, 活塞缓慢下移.忽略两活塞与汽缸壁之间的摩擦,重力加速度大小g 取 10 m/s 2. 求:(ⅰ)在大活塞与大圆筒底部接触前的瞬间,缸内封闭气体的温度; (ⅱ)缸内封闭的气体与缸外大气达到热平衡时,缸内封闭气体的压强.解析 (ⅰ)大小活塞在缓慢下移过程中,受力情况不变,汽缸内气体压强 不变,由盖—吕萨克定律得V 1T 1=V 2T 2初状态V 1=l2(S 1+S 2),T 1=495 K末状态V 2=lS 2代入可得T 2=23T 1=330 K(ⅱ)对大、小活塞受力分析则有m 1g +m 2g +pS 1+p 1S 2=p 1S 1+pS 2可得p 1=1.1×105Pa缸内封闭的气体与缸外大气达到热平衡过程中,气体体积不变,由查理定律 得p 1T 2=p 2T 3T 3=T =303 K解得p 2=1.01×105Pa答案 (ⅰ)330 K (ⅱ)1.01×105Pa10.[2015·新课标全国Ⅱ,33(2),10分](难度★★★)如图,一粗细均匀的U 形管竖直放置,A 侧上端封闭,B 侧上端与大气相通,下端开口处开关K 关 闭;A 侧空气柱的长度为l =10.0 cm ,B 侧水银面比A 侧的高h =3.0 cm.现将开关K 打开,从U 形管中放出部分水银,当两侧水银面的高度差为h 1= 10.0 cm 时将开关K 关闭.已知大气压强p 0=75.0 cmHg.(ⅰ)求放出部分水银后A 侧空气柱的长度;(ⅱ)此后再向B 侧注入水银,使A 、B 两侧的水银面达到同一高度,求注 入的水银在管内的长度.解析 (ⅰ)以cmHg 为压强单位.设A 侧空气柱长度l =10.0 cm 时的压强为 p ;当两侧水银面的高度差为h 1=10.0 cm 时,空气柱的长度为l 1,压强为p 1. 由玻意耳定律得pl =p 1l 1① 由力学平衡条件得p =p 0+h ②打开开关K 放出水银的过程中,B 侧水银面处的压强始终为p 0,而A 侧水银 面处的压强随空气柱长度的增加逐渐减小,B 、A 两侧水银面的高度差也随之 减小,直至B 侧水银面低于A 侧水银面h 1为止.由力学平衡条件有p 1=p 0-h 1③联立①②③式,并代入题给数据得l 1=12.0 cm ④(ⅱ)当A 、B 两侧的水银面达到同一高度时,设A 侧空气柱的长度为l 2,压 强为p 2. 由玻意耳定律得pl =p 2l 2⑤ 由力学平衡条件有p 2=p 0⑥联立②⑤⑥式,并代入题给数据得l 2=10.4 cm ⑦ 设注入的水银在管内的长度Δh ,依题意得 Δh =2(l 1-l 2)+h 1⑧联立④⑦⑧式,并代入题给数据得Δh =13.2 cm ⑨答案 (ⅰ)12.0 cm (ⅱ)13.2 cm11.[2015·江苏单科,12A (3)](难度★★)给某包装袋充入氮气后密封,在室温下,袋中气体压强为1个标准大气压、体积为1 L.将其缓慢压缩到压强为2 个标准大气压时,气体的体积变为0.45 L.请通过计算判断该包装袋是否漏气.解析 若不漏气,设加压后的体积为V 1,由等温过程得:p 0V 0=p 1V 1,代入数 据得V 1=0.5 L ,因为0.45 L <0.5 L ,故包装袋漏气.答案 漏气12.[2015·重庆理综,10(2),6分](难度★★)北方某地的冬天室外气温很低, 吹出的肥皂泡会很快冻结.若刚吹出时肥皂泡内气体温度为T 1,压强为p 1,肥 皂泡冻结后泡内气体温度降为T 2.整个过程中泡内气体视为理想气体,不计体 积和质量变化,大气压强为p 0.求冻结后肥皂膜内外气体的压强差.解析 对泡内气体由查理定律得p 1T 1=p 2T 2① 内外气体的压强差为Δp =p 2-p 0② 联立①②式解得Δp =T 2T 1p 1-p 0③答案T 2T 1p 1-p 0 13. [2015·山东理综,37(2)](难度★★★)扣在水平桌面上的热杯盖有时会发 生被顶起的现象.如图,截面积为S 的热杯盖扣在水平桌面上,开始时内部封 闭气体的温度为300 K ,压强为大气压强p 0.当封闭气体温度上升至303 K 时, 杯盖恰好被整体顶起,放出少许气体后又落回桌面,其内部气体压强立刻减 为p 0,温度仍为303 K.再经过一段时间,内部气体温度恢复到300 K.整个过程中封闭气体均可视为理想气体.求:(ⅰ)当温度上升到303 K 且尚未放气时,封闭气体的压强; (ⅱ)当温度恢复到300 K 时,竖直向上提起杯盖所需的最小力.解析 (ⅰ)以开始封闭的气体为研究对象,由题意可知,初状态温度T 0= 300 K ,压强为p 0;末状态温度T 1=303 K ,压强设为p 1,由查理定律得p 0T 0=p 1T 1①代入数据得p 1=101100p 0=1.01p 0②(ⅱ)设杯盖的质量为m ,刚好被顶起时,由平衡条件得p 1S =p 0S +mg ③放出少许气体后,以杯盖内的剩余气体为研究对象,由题意可知,初状态温 度T 2=303 K ,压强p 2=p 0,末状态温度T 3=300 K ,压强设为p 3,由查理定 律得p 2T 2=p 3T 3④设提起杯盖所需的最小力为F ,由平衡条件得F +p 3S =p 0S +mg ⑤联立②③④⑤式,代入数据得F =20110 100p 0S =0.02p 0S ⑥答案 (ⅰ)1.01 p 0 (ⅱ)0.02p 0S14.[2014·新课标全国Ⅰ,33(2),9分](难度★★★)一定质量的理想气体被活 塞封闭在竖直放置的圆柱形汽缸内,汽缸壁导热良好,活塞可沿汽缸壁无摩 擦地滑动.开始时气体压强为p ,活塞下表面相对于汽缸底部的高度为h ,外界的温度为T 0.现取质量为m 的沙子缓慢地倒在活塞的上表面,沙子倒完时,活 塞下降了h /4.若此后外界的温度变为T ,求重新达到平衡后气体的体积.已知 外界大气的压强始终保持不变,重力加速度大小为g .解析 设汽缸的横截面积为S ,沙子倒在活塞上后,对气体产生的压强为Δp , 由玻意耳定律得phS =(p +Δp )(h -14h )S ①解得Δp =13p ②外界的温度变为T 后,设活塞距底面的高度为h ′.根据盖—吕萨克定律,得(h -14h )ST 0=h ′ST③ 解得h ′=3T4T 0h ④ 据题意可得Δp =mg S⑤ 气体最后的体积为V =Sh ′⑥ 联立②④⑤⑥式得V =9mghT4pT 0答案9mghT4pT 015. [2014·新课标全国Ⅱ,33(2),10分](难度★★★)如图,两汽缸A 、B 粗细 均匀、等高且内壁光滑,其下部由体积可忽略的细管连通,A 的直径是B 的2倍,A 上端封闭,B 上端与大气连通;两汽缸除A 顶部导热外,其余部分均 绝热.两汽缸中各有一厚度可忽略的绝热轻活塞a 、b ,活塞下方充有氮气,活 塞a 上方充有氧气.当大气压为p 0、外界和汽缸内气体温度均为7 ℃且平衡 时,活塞a 离汽缸顶的距离是汽缸高度的14,活塞b 在汽缸正中间.(ⅰ)现通过电阻丝缓慢加热氮气,当活塞b 恰好升至顶部时,求氮气的温 度;(ⅱ)继续缓慢加热,使活塞a 上升.当活塞a 上升的距离是汽缸高度的116时, 求氧气的压强.解析 (ⅰ)活塞b 升至顶部的过程中,活塞a 不动,活塞a 、b 下方的氮气 经历等压过程.设汽缸A 的容积为V 0,氮气初态体积为V 1,温度为T 1;末态 体积为V 2,温度为T 2.按题意,汽缸B 的容积为V 0/4,由题给数据和盖—吕萨 克定律有V 1=34V 0+12 V 04=78V 0①V 2=34V 0+14V 0=V 0②V 1T 1=V 2T 2③由①②③式和题给数据得T 2=320 K ④(ⅱ)活塞b 升至顶部后,由于继续缓慢加热,活塞a 开始向上移动,直至 活塞上升的距离是汽缸高度的116时,活塞a 上方的氧气经历等温过程.设氧气 初态体积为V 1′,压强为p 1′;末态体积为V 2′,压强为p 2′.由题给数据 和玻意耳定律有V 1′=14V 0,p 1′=p 0,V 2′=316V 0⑤p 1′V 1′=p 2′V 2′⑥由⑤⑥式得p 2′=43p 0答案 (ⅰ)320 K (ⅱ)43p 016.[2014·山东理综,37(2)](难度★★★)一种水下重物打捞方法的工作原理如图所示.将一质量M =3×103kg 、体积V 0=0.5 m 3的重物捆绑在开口朝下 的浮筒上.向浮筒内充入一定量的气体,开始时筒内液面到水面的距离h 1=40 m ,筒内气体体积V 1=1 m 3.在拉力作用下浮筒缓慢上升,当筒内液面到水面的距离为h 2时,拉力减为零,此时气体体积为V 2,随后浮筒和重物自动上 浮.求V 2和h 2.已知大气压强p 0=1×105 Pa,水的密度ρ=1×103 kg/m 3,重力加速度的大小 g =10m/s 2.不计水温变化,筒内气体质量不变且可视为理想气体,浮筒质量 和筒壁厚度可忽略.解析 当F =0时,由平衡条件得Mg =ρg (V 0+V 2)①代入数据得V 2=2.5 m 3②设筒内气体初态、末态的压强分别为p 1、p 2,由题意得p 1=p 0+ρgh 1③p 2=p 0+ρgh 2④在此过程中筒内气体温度和质量不变,由玻意耳定律得p 1V 1=p 2V 2⑤联立②③④⑤式,代入数据得h 2=10 m ⑥答案 2.5 m 310 m17.[2014·重庆理综,10(2),6分](难度★★)如图为一种减震垫,上面布满了圆柱状薄膜气泡,每个气泡内充满体积为V 0,压强为p 0的气体,当平板状物 品平放在气泡上时,气泡被压缩.若气泡内气体可视为理想气体,其温度保持 不变,当体积压缩到V 时气泡与物品接触面的面积为S ,求此时每个气泡内 气体对接触面处薄膜的压力.解析 设压力为F ,压缩后气体压强为p . 由p 0V 0=pV 和F =pS 得F =V 0Vp 0S .答案V 0Vp 0S 18.(2013·新课标全国Ⅱ,33,15分)(难度★★★)(多选)(1)关于一定量的 气体,下列说法正确的是( )A.气体的体积指的是该气体的分子所能到达的空间的体积,而不是该气体所有分子体积之和B.只要能减弱气体分子热运动的剧烈程度,气体的温度就可以降低C.在完全失重的情况下,气体对容器壁的压强为零D.气体从外界吸收热量,其内能一定增加E.气体在等压膨胀过程中温度一定升高(2)如图所示,一上端开口、下端封闭的细长玻璃管竖直放置.玻璃管的下部 封有长l 1=25.0 cm 的空气柱,中间有一段长l 2=25.0 cm 的水银柱,上部空气 柱的长度l 3=40.0 cm.已知大气压强为p 0=75.0 cmHg.现将一活塞(图中未画出)从玻璃管开口处缓慢往下推,使管下部空气柱长度变为l 1′=20.0 cm.假 设活塞下推过程中没有漏气,求活塞下推的距离.解析 (1)气体体积为气体分子所能到达的空间的体积,A 正确;气体分子 热运动的剧烈程度表现为气体温度,B 正确;气体压强是由气体分子频繁碰 撞容器壁引起的,与重力无关,C 错误;由热力学第一定律ΔU =Q +W 可知, D 错误;由盖-吕萨克定律知,等压过程中VT=C ,V 增大,则T 增大,E 正 确. (2)以cmHg 为压强单位.在活塞下推前,玻璃管下部空气柱的压强p 1=p 0 +l 2①设活塞下推后,下部空气柱的压强为p 1′,由玻意耳定律得p 1l 1=p 1′l 1′②如图所示,设活塞下推距离为Δl ,则此时玻璃管上部空气柱的长度l 3′=l 3 +(l 1-l 1′)-Δl ③设此时玻璃管上部空气柱的压强为p 3′,则p 3′=p 1′-l 2④由玻意耳定律得p 0l 3=p 3′l 3′⑤联立①~⑤式及题给数据解得Δl =15.0 cm ⑥答案 (1)ABE (2)15.0 cm19.[2013·新课标全国Ⅰ,33(2),9分](难度★★★)如图所示,两个侧壁绝热、 顶部和底部都导热的相同汽缸直立放置,汽缸底部和顶部均有细管连通.顶部 的细管带有阀门K.两汽缸的容积均为V 0,汽缸中各有一个绝热活塞(质量不 同,厚度可忽略).开始时K 关闭,两活塞下方和右活塞上方充有气体(可视 为理想气体),压强分别为p 0和p 0/3;左活塞在汽缸正中间,其上方为真空; 右活塞上方气体体积为V 0/4.现使汽缸底与一恒温热源接触,平衡后左活塞升至汽缸顶部,且与顶部刚好没有接触;然后打开K ,经过一段时间,重新达 到平衡.已知外界温度为T 0,不计活塞与汽缸壁间的摩擦.求:(1)恒温热源的温度T ;(2)重新达到平衡后左汽缸中活塞上方气体的体积V x .解析 (1)与恒温度热源接触后,在K 未打开时,右活塞不动,两活塞下方 的气体经历等压过程,由盖-吕萨克定律得T T 0=7V 0/45V 0/4① 由此得T =75T 0②(2)由初始状态的力学平衡条件可知,左活塞的质量比右活塞的大.打开K 后,左活塞下降至某一位置,右活塞必须升至汽缸顶,才能满足力学平衡条 件.。
【2016考纲解读】本专题主要解决的是分子动理论和热力学定律,并从宏观和微观角度理解固、液、气三态的性质。
新课程标准对本部分内容要求较低,《考试说明》明确提出“在选考中不出现难题”,高考命题的形式基本上都是小题的拼盘。
高考对本部分内容考查的重点和热点有以下几个方面:①分子大小的估算;②分子动理论内容的理解;③物态变化中的能量问题;④气体实验定律的理解和简单计算;⑤固、液、气三态的微观解释和理解;⑥热力学定律的理解和简单计算;⑦油膜法测分子直径等内容。
预测2015年浙江高考选修3-3命名会涉及在以下方面:利用阿伏伽德罗常数进行微观量估算和涉及分子动理论内容的判断性问题,以选择填空题形式命题;气体压强为背景的微观解释问题,以简答形式命题;以理想气体为研究对象考查气体性质和热力学定律的问题,以计算题的形式命题。
【重点知识梳理】一、固体、液体、气体微观量的估算 1.固体、液体微观量的估算 (1)分子数、分子质量的计算 分子数N =nN A =m M 0N A =VV 0N A分子质量m ′=M 0N A ,其中M 0为摩尔质量,V 0为摩尔体积,N A 为阿伏加德罗常数.(2)分子体积(分子所占空间)的估算方法 每个分子的体积V ′=V 0N A =M 0ρN A,其中ρ为固体(或液体)的密度. (3)分子直径的估算方法如果把固体分子、液体分子看成球体,则分子直径d =36V ′π=36V 0πN A;如果把固体、液体分子看成立方体,则d =3V ′=3V 0N A.利用油酸在水面上形成的单层分子膜,可得油酸分子的直径d =VS,其中V 、S 分别为油酸的体积和油膜的面积.2.气体分子微观量的估算(1)物质的量n =V22.4,V 为气体在标准状况下的体积,其单位为L.(2)分子间距的估算方法:倘若气体分子均匀分布,每个分子占据一定的空间,假设为立方体,分子位于每个立方体的中心,则每个小立方体的边长就是分子间距;假设气体分子占有的体积为球体,分子位于球体的球心,则分子间距等于每个球体的直径.特别提醒:(1)分子直径的数量级为10-10 m,因此求出的数据只在数量级上有意义.(2)阿伏加德罗常数N A=6.02×1023 mol-1,是联系微观世界和宏观世界的桥梁.二、分子力做功及物体的内能1.分子力的特点分子间作用力(指引力和斥力的合力)随分子间距离变化而变化的规律是:(1)r<r0时表现为斥力;(2)r=r0时分子力为零;(3)r>r0时表现为引力;(4)r>10r0以后,分子力变得十分微弱,可以忽略不计,如图11-1.图11-12.分子力做功的特点及势能的变化分子力做正功时分子势能减小;分子力做负功时分子势能增大.(所有势能都有同样结论:重力做正功重力势能减小、电场力做正功电势能减小.)图11-2由上面的分子力曲线可以得出如果以分子间距离为无穷远时分子势能为零,则分子势能随分子间距离而变化的图象如图11-2.可见分子势能与物体的体积有关,体积变化,分子势能也变化.3.物体的内能及内能变化特别提醒:内能与机械能不同.前者由物体内分子运动和分子间作用决定,与物体的温度和体积有关,具体值难确定,但永不为零;后者由物体的速度、物体间相互作用、物体质量决定,可以为零;内能和机械能在一定条件下可以相互转化.三、气体性质的比较四、分子动理论 1.分子动理论的内容:(1)物体是由大量分子组成的:分子直径的数量级为10-10m .分子的大小可用油膜法估测:将油酸分子看成一个个紧挨在一起的单分子层,若用V 表示一滴油酸酒精溶液中纯油酸的体积,S 为一滴油酸酒精溶液中纯油酸的油膜面积,则分子直径(大小)d =V S.(2)分子永不停息地做无规则运动:布朗运动是悬浮在液体中的固体颗粒的运动,既不是固体分子的运动,也不是液体分子的运动;布朗运动现象说明液体分子在做无规则运动.(3)分子间同时存在着引力和斥力:二者均随分子间距的增大而减小,且分子斥力随分子间距变化得比较显著.分子力指引力和斥力的合力,当r =r 0(数量级是10-10m)时,分子力为零.2.气体压强的微观解释:气体压强是大量气体分子作用在单位面积器壁上的平均作用力.其微观决定因素是分子平均动能和分子密集程度,宏观决定因素是温度和体积.3.内能:物体内所有分子的动能与分子势能的总和.从微观上看,物体内能的大小由组成物体的分子数、分子平均动能和分子间距决定;从宏观上看,物体内能的大小由物质的量(摩尔数)、温度和体积决定.五、热力学定律1.热力学第一定律:ΔU=Q +W 2.热力学第二定律:反映了涉及内能的宏观过程的不可逆性.(1)克劳修斯表述(热传导的方向性):不可能使热量由低温物体传递到高温物体,而不引起其他变化. (2)开尔文表述(机械能和内能转化的方向性):不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化.(第二类永动机不可能制成)六、气体实验定律与理想气体的状态方程1.气体实验定律:等温变化——玻意耳定律:p 1V 1=p 2V 2;等容变化——查理定律:p 1p 2=T 1T 2;等压变化——盖·吕萨克定律:V 1V 2=T 1T 2.只适用于一定质量的气体.2.理想气体状态方程:p 1V 1T 1=p 2V 2T 2或pVT =C (恒量).适用于一定质量的理想气体.【高频考点突破】 考点一 分子动理论 内能例1.[2015·新课标全国Ⅱ,33(1),5分](难度★★)(多选)关于扩散现象,下列说法正确的是( ) A.温度越高,扩散进行得越快B.扩散现象是不同物质间的一种化学反应C.扩散现象是由物质分子无规则运动产生的D.扩散现象在气体、液体和固体中都能发生E.液体中的扩散现象是由于液体的对流形成的【变式探究】[2015·福建理综,29(1),6分](难度★★))下列有关分子动理论和物质结构的认识,其中正确的是( )A.分子间距离减小时分子势能一定减小B.温度越高,物体中分子无规则运动越剧烈C.物体内热运动速率大的分子数占总分子数比例与温度无关D.非晶体的物理性质各向同性而晶体的物理性质都是各向异性考点二 固体 液体 气体例2.[2015·新课标全国Ⅰ,33(1),5分](难度★★)(多选)下列说法正确的是( ) A.将一块晶体敲碎后,得到的小颗粒是非晶体B.固体可以分为晶体和非晶体两类,有些晶体在不同方向上有不同的光学性质C.由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体D.在合适的条件下,某些晶体可以转化为非晶体,某些非晶体也可以转化为晶体E.在熔化过程中,晶体要吸收热量,但温度保持不变,内能也保持不变【变式探究】[2014·新课标全国Ⅱ,33(1),5分](难度★★)(多选)下列说法正确的是( ) A.悬浮在水中的花粉的布朗运动反映了花粉分子的热运动B.空中的小雨滴呈球形是水的表面张力作用的结果C.彩色液晶显示器利用了液晶的光学性质具有各向异性的特点D.高原地区水的沸点较低,这是高原地区温度较低的缘故E.干湿泡湿度计的湿泡显示的温度低于干泡显示的温度,这是湿泡外纱布中的水蒸发吸热的结果考点三热力学定律与能量守恒定律例3.(2015·北京理综,13,6分)(难度★★)下列说法正确的是()A.物体放出热量,其内能一定减小B.物体对外做功,其内能一定减小C.物体吸收热量,同时对外做功,其内能可能增加D.物体放出热量,同时对外做功,其内能可能不变【变式探究】[2015·重庆理综,10(1),6分](难度★★)某驾驶员发现中午时车胎内的气压高于清晨时的,且车胎体积增大.若这段时间胎内气体质量不变且可视为理想气体,那么()A.外界对胎内气体做功,气体内能减小B.外界对胎内气体做功,气体内能增大C.胎内气体对外界做功,内能减小D.胎内气体对外界做功,内能增大【经典考题精析】1.[2015·山东理综,37(1),](难度★★)(多选)墨滴入水,扩而散之,徐徐混匀.关于该现象的分析正确的是()a.混合均匀主要是由于碳粒受重力作用b.混合均匀的过程中,水分子和碳粒都做无规则运动c.使用碳粒更小的墨汁,混合均匀的过程进行得更迅速d.墨汁的扩散运动是由于碳粒和水分子发生化学反应引起的2.[2015·江苏单科,12A(1)](难度★★)(多选)对下列几种固体物质的认识,正确的有()A.食盐熔化过程中,温度保持不变,说明食盐是晶体B.烧热的针尖接触涂有蜂蜡薄层的云母片背面,熔化的蜂蜡呈椭圆形,说明蜂蜡是晶体C.天然石英表现为各向异性,是由于该物质的微粒在空间的排列不规则D.石墨和金刚石的物理性质不同,是由于组成它们的物质微粒排列结构不同3.(2015·广东理综,17,6分)(难度★★)(多选)如图为某实验器材的结构示意图,金属内筒和隔热外筒间封闭了一定体积的空气,内筒中有水,在水加热升温的过程中,被封闭的空气()A.内能增大B.压强增大C.分子间引力和斥力都减小D.所有分子运动速率都增大4.[2015·新课标全国Ⅰ,33(2),10分](难度★★★★)如图,一固定的竖直汽缸由一大一小两个同轴圆筒组成,两圆筒中各有一个活塞.已知大活塞的质量为m1=2.50 kg,横截面积为S1=80.0 cm2;小活塞的质量为m2=1.50 kg,横截面积为S2=40.0 cm2;两活塞用刚性轻杆连接,间距为l=40.0 cm;汽缸外大气的压强为p=1.00×105Pa,温度为T=303 K.初始时大活塞与大圆筒底部相距l2,两活塞间封闭气体的温度为T1=495 K.现汽缸内气体温度缓慢下降,活塞缓慢下移.忽略两活塞与汽缸壁之间的摩擦,重力加速度大小g 取10 m/s2.求:(ⅰ)在大活塞与大圆筒底部接触前的瞬间,缸内封闭气体的温度;(ⅱ)缸内封闭的气体与缸外大气达到热平衡时,缸内封闭气体的压强.5.[2015·新课标全国Ⅱ,33(2),10分](难度★★★)如图,一粗细均匀的U形管竖直放置,A侧上端封闭,B侧上端与大气相通,下端开口处开关K关闭;A侧空气柱的长度为l=10.0 cm,B侧水银面比A 侧的高h=3.0 cm.现将开关K打开,从U形管中放出部分水银,当两侧水银面的高度差为h1=10.0 cm时将开关K关闭.已知大气压强p0=75.0 cmHg.(ⅰ)求放出部分水银后A侧空气柱的长度;(ⅱ)此后再向B侧注入水银,使A、B两侧的水银面达到同一高度,求注入的水银在管内的长度.6.[2015·江苏单科,12A(3)](难度★★)给某包装袋充入氮气后密封,在室温下,袋中气体压强为1个标准大气压、体积为1 L.将其缓慢压缩到压强为2个标准大气压时,气体的体积变为0.45 L.请通过计算判断该包装袋是否漏气.7.[2015·重庆理综,10(2),6分](难度★★)北方某地的冬天室外气温很低,吹出的肥皂泡会很快冻结.若刚吹出时肥皂泡内气体温度为T1,压强为p1,肥皂泡冻结后泡内气体温度降为T2.整个过程中泡内气体视为理想气体,不计体积和质量变化,大气压强为p0.求冻结后肥皂膜内外气体的压强差.8. [2015·山东理综,37(2)](难度★★★)扣在水平桌面上的热杯盖有时会发生被顶起的现象.如图,截面积为S的热杯盖扣在水平桌面上,开始时内部封闭气体的温度为300 K,压强为大气压强p0.当封闭气体温度上升至303 K时,杯盖恰好被整体顶起,放出少许气体后又落回桌面,其内部气体压强立刻减为p0,温度仍为303 K.再经过一段时间,内部气体温度恢复到300 K.整个过程中封闭气体均可视为理想气体.求:(ⅰ)当温度上升到303 K且尚未放气时,封闭气体的压强;(ⅱ)当温度恢复到300 K时,竖直向上提起杯盖所需的最小力.9.[2015·福建理综,29(2)](难度★★★)如图,一定质量的理想气体,由状态a经过ab过程到达状态b或者经过ac过程到达状态c.设气体在状态b和状态c的温度分别为T b和T c,在过程ab和ac中吸收的热量分别为Q ab和Q ac.则()A.T b>T c,Q ab>Q acB.T b>T c,Q ab<Q acC.T b=T c,Q ab>Q acD.T b=T c,Q ab<Q ac10.(2015·江苏单科,12A(2))(难度★★)在装有食品的包装袋中充入氮气,可以起到保质作用.某厂家为检测包装袋的密封性,在包装袋中充满一定量的氮气,然后密封进行加压测试.测试时,对包装袋缓慢地施加压力.将袋内的氮气视为理想气体,则加压测试过程中,包装袋内壁单位面积上所受气体分子撞击的作用力(选填“增大”、“减小”或“不变”),包装袋内氮气的内能(选填“增大”、“减小”或“不变”).1.【2014·江苏卷】一种海浪发电机的气室如图所示。
2016-2017学年第一学期西乡中学高三物理总复习教学学案专题:热学(宝中)1、以下说法中正确的是( )A.熵增加原理说明一切自然过程总是向着分子热运动的无序性减少的方向进行B.在绝热条件下压缩气体,气体的内能一定增加C.液晶即具有液体的流动性,又像某些晶体那样具有光学各向异性D.由于液体表面分子间距离大于液体内部分子间的距离,液面分子间表现为引力,所以液体表面具有收缩的趋势E.在温度不变的情况下,增大液面上方饱和汽的体积,待气体重新达到饱和时,饱和汽的压强增大2、下列说法正确的是( )A.当一定量气体吸热时.其内能可能减小B.温度低的物体分子运动的平均速率小C.做加速运动的物体.由于速度越来越大,因此物体分子的平均动能越来越大D.当液体与大气相接触时.液体表面层内的分子所受其他分子作用力的合力总是指向液体内部E.气体分子单位时间内与单位面积器壁碰撞的次数.与单位体积内气体的分子数和气体温度有关3、如图,一个导热汽缸竖直放置,汽缸内封闭有一定质量的气体,活塞与汽缸壁紧密接触,可沿汽缸壁无摩擦地上下移动。
若大气压保持不变,而环境温度缓慢升高,在这个过程中( )A. 汽缸内每个分子的动能都增大B. 封闭气体对外做功C. 汽缸内单位体积内的分子数增多D. 封闭气体吸收热量E. 汽缸内单位时间内撞击活塞的分子数减少4、如图所示,导热性能良好的气缸A和B竖直放置,它们的底部由一细管连通(忽略细管的容积)。
两气缸内各有一个活塞,质量分别为mA=3m和mB=m,活塞与气缸之间无摩擦,活塞的下方为理想气体,上方为真空。
当气体处于平衡状态时,两活塞位的高度均为h。
若在两个活塞上同时分别放一质量为2m的物块,保持温度不变,系统再次达到平衡后,给气体缓缓加热,使气体的温度由T0缓慢上升到T(气体状态变化过程中,物块及活塞没碰到气缸顶部)。
求(1)两个活塞的横截面积之比SA∶SB(2)在加热气体的过程中,气体对活塞所做的功5、如图所示,在一辆静止的小车上,竖直固定着两端开口、内径均匀的U形管,U形管的竖直部分与水平部分的长度均为l,管内装有水银,两管内水银面距管口均为。
现将U形管的左端封闭,并让小车水平向右做匀加速直线运动,运动过程中U形管两管内水银面的高度差恰好为。
已知重力加速度为g,水银的密度为ρ,大气压强为p0=ρgl,环境温度保持不变,求(ⅰ)左管中封闭气体的压强p;(ⅱ)小车的加速度a。
6、如图所示,这个装置可以作为火灾报警器使用:试管中装入水银,当温度升高时,水银柱上升,使电路导通,蜂鸣器发出响声。
27℃时,空气柱长度L1为20cm,水银上表面距离导线L2为10cm,管内水银柱的高度h为8 cm ,大气压强75厘米汞柱,则当温度达到多少摄氏度,报警器会报警?如果大气压增大,则报警温度将升高还是降低?7、如图,一根粗细均匀、内壁光滑、竖直放置的玻璃管下端密封,上端封闭但留有一抽气孔.管内下部被活塞封住一定量的气体(可视为理想气体),气体温度为T1.开始时,将活塞上方的气体缓慢抽出,当活塞上方的压强达到p0时,活塞下方气体的体积为V1,活塞上方玻璃管的容积为2.6V1。
活塞因重力而产生的压强为0.5p0。
继续将活塞上方抽成真空并密封.整个抽气过程中管内气体温度始终保持不变.然后将密封的气体缓慢加热.求:①活塞刚碰到玻璃管顶部时气体的温度;②当气体温度达到1.8T1时气体的压强.8、如图所示,均匀玻璃管内有一长h=15厘米的汞柱将一些空气封于闭端,当气温为27ºC、玻璃管水平放置时,空气柱长l1=20厘米(如图甲),外界大气压为1.0×105帕,且保持不变。
已知水银密度为=13.6×103千克/米3,取g=9.8米/秒2。
问:(1)保持温度不变,小心地将玻璃管竖立起来,使开口的一端向上(如图乙),管内气柱长度l2等于多少?(2)玻璃管开口向上竖直放置时,要使管内气柱长仍为20厘米,管内气体温度应变为多少摄氏度?9、如图,在柱形容器中密闭有一定质量理想气体,一光滑导热活塞将容器分为A、B两部分,离气缸底部高为49cm处开有一小孔,与装有水银的U形管相连,容器顶端有一阀门K.先将阀门打开与大气相通,外界大气压等于p0=75cmHg,室温t0=27℃,稳定后U形管两边水银面的高度差为△h=25cm,此时活塞离容器底部为L=50cm.闭合阀门,使容器内温度降至﹣57℃,发现活塞下降,且U形管左管水银面比右管水银面高25cm.(U 形管内径很小,活塞有一定质量,但不考虑厚度)求:(1)此时活塞离容器底部高度L′;(2)整个柱形容器的高度H.10、如图1所示,左端封闭、内径相同的U形细玻璃管竖直放置,左管中封闭有长为L=20cm的空气柱,两管水银面相平,水银柱足够长.已知大气压强为p0=75cmHg.(1)若将装置翻转180°,使U形细玻璃管竖直倒置(水银未溢出),如图2所示.当管中水银静止时,求左管中空气柱的长度;(2)若将图1中的阀门S打开,缓慢流出部分水银,然后关闭阀门S,右管水银面下降了H=35cm,求左管水银面下降的高度.2016-2017学年第一学期西乡中学高三物理一轮复习教学学案专题:热学(宝中)一、多项选择液晶的特点是即具有液体的流动性,又有光学的各向异性;饱和气压只与温度有关;根据表面张力产生的本质解释.解答:解:A、墒增加原理说明一切自然过程总是向着分子热运动的无序性增大的方向进行,故A错误;B、根据热力学第一定律△U=W+Q,Q=0,W>0,故B正确;C、液晶即具有液体的流动性,又像某些晶体那样具有光学各向异性,故C正确;D、表面张力产生的本质可知,液体表面分子间距离大于液体内部分子间的距离,液面分子间表现为引力,所以液体表面具有收缩的趋势.故D正确;E、饱和气压只与温度有关,增大液面上方饱和汽的体积,待气体重新达到饱和时,饱和汽的压强增大.故E 错误故选:BCD点评:该题考查了热力学第二定律、热力学第一定律、液晶的特点、表面张力以及饱和蒸汽压等基本概念,属于对基础知识点的考查,这一类的题目,多加积累就可以做好.2、考点:物体的内能;气体压强的微观意义.分析:根据热力学第一定律,△U=W+Q可判定A.温度是分子平均动能的标志,由此可判定BC.由表面张力的形成原因可判定D.由压强的微观解释可判定E.解答:解:A、根据△U=W+Q可知,当一定量气体吸热时,其内能可能减小,也可能不变,也可能增大,故A正确;BC、温度是分子平均动能的标志,与物体是否运动,做何种性质的运动无关;温度低的物体分子运动的平均动能小,但是动能与质量有关,故速率不一定小,故B错误,C错误.D、由于表面张力的作用当液体与大气相接触时,液体表面层内的分子所受其它分子作用力的合力总是沿液体的表面.即表面形成张力,合力指向内部,故D正确;E、单位体积内气体的分子数多少和气体温度的高低,影响着气体的压强,即气体分子单位时间内与单位面积器壁碰撞的次数,故E正确故选:ADE.点评:考查热力学第一定律的内容,注意W与Q的正负确定,掌握晶体与非晶体的区别,理解分子表面引力,同时掌握影响气体分子的压强因素.3、解析:环境温度缓慢升高,说明封闭气体从外界吸收热量,温度升高,体积增大,对外做功,选项B、D正确;由于大气压保持不变,气体压强不变,质量一定,分子数一定,体积增大,单位体积内的分子数减少,所以汽缸内单位时间内撞击活塞的分子数减少,汽缸内分子的平均动能增大,不一定每个分子的动能都增大,选项E正确,A、C错误。
答案:BDE二、计算题4、(1)气缸A、B内气体的压强相等。
选取两个活塞为研究对象,由得:……(3分)(2)放质量为2m的物块前,气体压强,气体总体积…………(1分)两边放质量为2m的物块后,气体全部进入气缸A………………(1分)设体积变为V,压强………………………………(1分)加热膨胀是等压过程:由得:…(2分)气体对活塞所做的功为: ……(2分)5、以左管中封闭的气体为研究对象,设U形管的横截面积为S,由玻意耳定律3分解得 3分(ⅱ)以水平管内长为l的水银为研究对象,由牛顿运动定律2分解得6、 T2=450Kt2=177 ℃大气压增大后,将使报警温度比原来的设计值偏高。
7、①由玻意耳定律得:,式中V是抽成真空后活塞下方气体体积由盖・吕萨克定律得:解得:T/=1.2T②由查理定律得:解得:p2=0.75p08、①(1)气体发生等温变化:②由①、②:③(2)气体发生等压变化:④由③、④、⑤⑥9、考点:理想气体的状态方程.专题:光的折射专题.分析:(1)以A中气体为研究对象,找出初末状态参量利用理想气体状态方程列式求解;(2)以B中气体为研究对象,找出初末状态参量利用理想气体状态方程列式求解解答:解:(1)U形管两边水银面的高度差为△h=25cmA种气体的压强为:P A1=P0+△h=75+25cmHg=100cmHgB中为大气,设活塞产生压强为P塞,由平衡得:P0S+P塞S=P A1S解得:P塞=25cmHg闭合阀门,容器内温度降低,压强均减小且A处降低较多,活塞下移设此时表示A种气体的压强为P A2=P0﹣25=75﹣25cmHg=50cmHg由理想气体状态方程得:代入数据解得:L A2=72cm>49cm假设不成立,说明U管表示的应该是B种气体的压强,P B2=50cmHg则A种气体压强为:P A2=P B2+P塞=75cmHg对A种气体由理想气体状态方程得:代入数据解得:L A2=48cm活塞离容器底部的高度为:L′=L A2=48cm(2)对B中气体由理想气体状态方程得:设整个柱形容器的高度H,则:代入数据解得:H=75cm答:(1)此时活塞离容器底部高度L′=48cm;(2)整个柱形容器的高度H=75cm点评:本题是理想气体状态方程的应用,关键是第1问中温度降低后U管表示的是A还是B中压强,只要利用假设法对A种气体分析即可判断,从而迎刃而解.10、考点:理想气体的状态方程;封闭气体压强.专题:理想气体状态方程专题.分析:(1)根据玻意耳定律求的即可(2)气体发生等温变化,由玻意耳定律求出气体的压强,然后再求出水银面下降的高度解答:解:(1)设左管中空气柱的长度增加h,由玻意耳定律:p0L=(p0﹣2h)(L+h)代入数据解得:h=0或h=17.5cm所以,左管中空气柱的长度为20cm或37.5cm(2)设左管水银面下降的高度为x,左、右管水银面的高度差为y,由几何关系:x+y=H由玻意耳定律:p0L=(p0﹣y)(L+x)联立两式解得:x2+60x﹣700=0答:(1)左管中空气柱的长度为20cm或37.5cm(2)左管水银面下降的高度为10cm点评:本题考查了求水银面下降的高度,根据题意求出气体的状态参量,应用玻意耳定律即可正确解题,解题时要注意几何关系的应用。