第二届研究生数学建模竞赛C题优秀论文(1)
- 格式:pdf
- 大小:368.79 KB
- 文档页数:37
2020高教社杯数学建模c题范文一、概述本文将以2020高教社杯数学建模c题为题材,结合实际情况进行分析,并给出一份高质量的数学建模范文。
二、题目背景2020年高等教育社会数学建模竞赛c题要求参赛者从实际问题出发,运用数学方法和技术,对问题进行建模和分析,提出合理的解决方案。
本次题目以“XX问题”为背景,要求参赛者运用多元微积分、线性代数、统计学等知识,对问题进行综合分析,给出定量的结果。
三、问题分析1.问题描述我们需要清楚地描述题目中所涉及到的问题,将问题进行准确定义。
2.问题的关键因素我们需要分析问题中的关键因素,从而确定需要使用的数学方法和技术。
3.问题的研究现状进一步,我们需要了解问题的研究现状,从而确定我们的研究方向。
四、数学建模1.模型假设在建立数学模型之前,我们需要确定模型的假设条件,使得模型尽可能地符合实际情况。
2.建立数学模型我们将基于问题的分析和假设条件,建立数学模型,采用适当的数学方法和技术,得到一组方程或不等式。
3.模型求解我们将对所建立的数学模型进行求解,得到定量的解决方案,并进行结果的验证和分析。
五、数学建模范文以下是一份高质量的数学建模范文:题目:XX问题的数学建模和分析1.问题描述针对XX问题,我们首先进行了问题的准确定义,并对问题涉及的各个方面进行了详细的分析。
2.问题的关键因素在问题的分析中,我们确定了XX因素对问题的影响最为重要,因此需要进行重点研究和分析。
3.问题的研究现状我们了解到目前XX问题的研究现状,并基于这些研究成果,确定了我们的研究方向和方法。
4.模型假设在建立数学模型之前,我们对问题的实际情况进行了深入调研,确定了相应的模型假设条件。
5.建立数学模型基于问题的分析和假设条件,我们建立了XX数学模型,并运用了多元微积分、线性代数、统计学等知识,得到了一组方程组。
6.模型求解我们对所建立的数学模型进行了求解,得到了定量的解决方案,并进行了结果的验证和分析。
2005年全国部分高校研究生数学建模竞赛C题城市交通管理中的出租车规划最近几年,出租车经常成为居民、新闻媒体议论的话题。
某城市居民普遍反映出租车价格偏高,而另一方面,出租车司机却抱怨劳动强度大,收入相对来说偏低,甚至发生出租车司机罢运的情况,这反映出租车市场管理存在一定问题,整个出租车行业不景气,长此以往将影响社会稳定,值得关注。
我国城市在未来一段时间内,规模会不断扩大,人口会不断增长,人民生活水平将不断提高,对出租车的需求也会不断变化。
如何配合城市发展的战略目标,最大限度地满足人民群众的出行需要,减少环境污染和资源消耗,协调各阶层的利益关系,是值得深入研究的。
(附录中给出了某城市的相关数据)。
(1)考虑以上因素,结合该城市经济发展和自身特点,类比国内外城市情况,预测该城市居民出行强度和出行总量,同时进一步给出该城市当前与今后若干年乘坐出租车人口的预测模型。
(2)给出该城市出租车最佳数量预测模型。
(3)按油价调价前后(3.87元/升与4.30元/升),分别讨论是否存在能够使得市民与出租车司机双方都满意的价格调整方案。
若存在,给出最优方案。
(4)本题给出的数据的采集是否合理,如有不合理之处,请你给出更合理且实际可行的数据采集方案。
(5)请你们站在市公用事业管理部门的立场上考虑出租车规划问题,并将你们的研究成果写成一篇短文,向市公用事业管理部门概括介绍你们的方案。
附录11、2004年某城市的城市规模和道路情况如下:(1)城市现辖6区,2004年城市建成区面积181.77平方公里,人口185.15万。
(2)道路总长度998公里,道路铺装面积928万平方米,道路广场面积1371.45万平方米,道路网密度7.71公里/平方公里,人均道路长度0.7米,人均道路面积6.16平方米。
(3)城市总体规划人口城市总体规划人口规模(单位:万人)通过对出行特征的分析,把出行特征相近的人口划归为一类,常住人口和暂住人口称为第一类人口,短期及当日进出人口称为第二类人口。
191])()([),(20200y y x x r z y x z -+--=c y b x a y x y x z +⋅+⋅++=22),(4753⨯41i D i D 20.000160.001162021421339915152112032534791410.1 6660.1 2.5 2.666.11212.12525.16060.1/mcm05/probX 53⨯47Y 53⨯47k n m Z ⨯53⨯47 k n m Z ⨯~53⨯47i n m k H ⨯m m n k n 21n +120i n m k S ⨯i D126 18319719141164512X Y⎪⎪⎪⎭⎫ ⎝⎛=⨯⨯⨯⨯⨯⨯47532531534712111..................x x x x x x X ⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111..................y y y y y y),(y x Z =mnk ⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯),(...),,(),,(............),(...),,(),,(4753475325325315315347147121211111y x f y x f y x f y x f y x f y x f ⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111..................Z Z Z Z Z Z 1=imnk Z ~⎪⎪⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111~...~~............~...~~Z Z Z Z Z Z i imnkH ∆mnk Z i mnk Z ~⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯ii i i i i h h h h h h 47532531534712111............... (2)i mnkS∆∑∑=⨯=⨯4712531)(47531j i ji i hi D ∆∑=16411641i mnk S 4i i imnk H 5347imnk S mnk H i D 41 2),(y x Z = ),(y x Z =i D nk m ⨯ i mnk H mnk Z i mnk Z ~1~mnk Z 2~mnk Z 1mnk H 2mnk H imnkS∆∑∑=⨯=⨯4712531)(47531j ij i i h1mnk S 2mnk S⑤ 用i D ∆∑=16411641i mnk S 计算出1D 与2D ,则1D 和2D 的值较小者为最优方案.3 主要程序及结论通过数据处理与分析我们认为预测方法一比预测方法二好.所得计算结果值分别为:(1)不同时段的两种方法的实测与预测值的均方差:1mnkS =[0.9247218269e-1, .165797962696, 0.9247218269e-1,0.9247218269e-1, .2586806182, .2586806182, .2586806182, 2.791713932, .2474029514, .2539943168, .2715902174, .2715902174182, .2586806182, 2.791713932, .2474029514, .2539943168, .2715902174]2mnkS := [0.921412432e-1, .1098068392, 0.2234955063e-1,0.1592933205e-1, .2851304286, .2851304286, .2851304286, 2.792910527, .2612701098, .2381007694, .2613774987, 0.5183032655e-1,.2851304286,2.792810527, .2612701098, .2381007694, .2613774987] (2) 方法一的均方差为:1D := .8311398371方案二的均方差: 2D = .8417760978得1D <2D .主要程序与运行结果为: (1) 局域曲面拟合程序> solve({0.3=0.6-r*(0.045^2+0.042^2)},{r});> z1:=0.6-79.17656374*[(x-120.2500)^2+(y-33.7667)^2];> z2:=0.6-79.17656374*[(x-120.2500)^2+(y-33.7667)^2];> z3:=0.6-79.17656374*[(x-120.2500)^2+(y-33.7667)^2];> z4:=0.6-79.17656374*[(x-120.2500)^2+(y-33.7667)^2];> solve({0.15=0.3-r*(0.045^2+0.042^2)},{r});> z4:=0.3-39.58828187*[(x-118.1833)^2+(y-31.0833)^2];> solve({5.1=10.2-r*(0.045^2+0.042^2)},{r});> z1:=10.2-1346.001584*[(x-120.3167)^2+(y-31.5833)^2];> z2:=10.2-1346.001584*[(x-120.3167)^2+(y-31.5833)^2];> z3:=10.2-1346.001584*[(x-120.3167)^2+(y-31.5833)^2];> z4:=10.2-1346.001584*[(x-120.3167)^2+(y-31.5833)^2];> solve({0.1=0.2-r*(0.045^2+0.042^2)},{r});> z4:=0.2-26.39218791*[(x-118.4000)^2+(y-30.6833)^2];>z4:=solve({118.9833^2+30.6167^2+a*118.9833+b*30.6167+c=0.7000,118.5833^ 2+30.0833^2+a*118.5833+b*30.0833+c=1.8000,119.4167^2+30.8833^2+a*119.41 67+b*30.8833+c=0.5});> solve({0.05=0.1-r*(0.045^2+0.042^2)},{r});> z1:=0.1-13.19609396*[(x-119.4167)^2+(y-30.8833)^2];>> solve({2.9=5.8-r*(0.045^2+0.042^2)},{r});> z4:=0.1-765.3734495*[(x-118.2833)^2+(y-29.7167)^2];(2)均方差求值程序:>sq1:=[0.09247218269,0.165797962696,0.09247218269,0.09247218269,0.258680 6182,0.2586806182,0.2586806182,2.791713932,0.2474029514,0.2539943168,0. 2715902174,0.2715902174182,0.2586806182,2.791713932,0.2474029514,0.2539 943168,0.2715902174];> sum1:=add(i,i=sq1);> ave1:=sum1/17;>ve1:=[.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222 900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.522 2900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.52 22900020];>sq2:=[0.0921412432,0.1098068392,0.022********,0.01592933205,0.285130428 6,0.2851304286,0.2851304286,2.792910527,0.2612701098,0.2381007694,0.261 3774987,0.0518*******,0.2851304286,2.792810527,0.2612701098,0.238100769 4,0.2613774987];(2)数据模拟图程序:> with(linalg):> l:=matrix(91,7,[58138,32.9833,118.5167, 0.0000, 5.0000, 0.2000, 0.0000, 58139, 33.3000,118.8500, 0.0000, 3.9000, 0.0000, 0.0000,58141, 33.6667,119.2667, 0.0000, 0.0000, 0.0000, 0.0000,58143, 33.8000,119.8000, 0.0000, 0.0000, 0.0000, 0.0000,58146, 33.4833,119.8167, 0.0000, 0.0000, 0.0000, 0.0000,58147, 33.0333,119.0333, 0.0000, 6.0000, 1.4000, 0.0000,58148, 33.2333,119.3000, 0.0000, 1.1000, 0.3000, 0.0000,58150, 33.7667,120.2500, 0.0000, 0.0000, 0.0000, 0.1000,58154, 33.3833,120.1500, 0.0000, 0.0000, 0.0000, 0.0000,58158, 33.2000,120.4833, 0.0000, 0.0000, 0.0000, 0.0000,58230, 32.1000,118.2667, 3.3000,20.7000, 6.6000, 0.0000,58236, 32.3000,118.3000, 0.0000, 8.2000, 3.6000, 1.4000,58238, 32.0000,118.8000, 0.0000, 0.0000, 0.0000, 0.0000,58240, 32.6833,119.0167, 0.0000, 3.0000, 1.4000, 0.0000,58241, 32.8000,119.4500, 0.1000, 1.4000, 1.5000, 0.1000,58243, 32.9333,119.8333, 0.0000, 0.7000, 0.4000, 0.0000,58245, 32.4167,119.4167, 0.3000, 2.7000, 3.8000, 0.0000,58246, 32.3333,119.9333, 7.9000, 2.7000, 0.1000, 0.0000,58249, 32.2000,120.0000,12.3000, 2.4000, 5.6000, 0.0000,58251, 32.8667,120.3167, 5.2000, 0.1000, 0.0000, 0.0000, 58252, 32.1833,119.4667, 0.4000, 3.2000, 4.8000, 0.0000, 58254, 32.5333,120.4500, 0.0000, 0.0000, 0.0000, 0.0000, 58255, 32.3833,120.5667, 1.1000,18.5000, 0.5000, 0.0000, 58264, 32.3333,121.1833,35.4000, 0.1000, 0.2000, 0.0000, 58265, 32.0667,121.6000, 0.0000, 0.0000, 0.0000, 0.0000, 58269, 31.8000,121.6667,31.3000, 0.7000, 2.8000, 0.1000, 58333, 31.9500,118.8500, 8.2000, 8.5000,16.9000, 0.1000, 58334, 31.3333,118.3833, 4.9000,58.1000, 9.0000, 0.1000, 58335, 31.5667,118.5000, 5.4000,26.0000,11.0000, 0.8000, 58336, 31.7000,118.5167, 3.6000,27.8000,15.3000, 0.6000, 58337, 31.0833,118.1833, 7.0000, 6.4000,15.3000, 0.2000, 58341, 31.9833,119.5833,11.5000, 5.4000,16.1000, 0.0000, 58342, 31.7500,119.5500,32.6000,37.9000, 5.8000, 0.0000, 58343, 31.7667,119.9333,20.7000,24.3000, 5.3000, 0.0000, 58344, 31.9500,119.1667,12.4000, 5.9000,16.3000, 0.0000, 58345, 31.4333,119.4833,21.8000,18.1000, 9.8000, 0.1000, 58346, 31.3667,119.8167, 0.1000,12.7000, 5.1000, 0.2000, 58349, 31.2667,120.6333, 1.1000, 5.1000, 0.0000, 0.0000, 58351, 31.8833,120.2667,22.9000,15.5000, 6.2000, 0.0000, 58352, 31.6500,120.7333,15.1000, 5.4000, 2.4000, 0.0000, 58354, 31.5833,120.3167, 0.1000,12.5000, 2.4000, 0.0000, 58356, 31.4167,120.9500, 5.1000, 4.9000, 0.4000, 0.0000, 58358, 31.0667,120.4333, 2.4000, 3.4000, 0.0000, 0.8000, 58359, 31.1500,120.6333, 1.5000, 3.8000, 0.5000, 0.1000, 58360, 31.9000,121.2000, 5.6000, 3.2000, 2.9000, 0.1000, 58361, 31.1000,121.3667, 3.5000, 0.6000, 0.2000, 0.7000, 58362, 31.4000,121.4833,33.0000, 4.1000, 0.9000, 0.0000, 58365, 31.3667,121.2500,17.7000, 2.2000, 0.1000, 0.0000, 58366, 31.6167,121.4500,75.2000, 0.4000, 1.5000, 0.0000, 58367, 31.2000,121.4333, 7.2000, 2.8000, 0.2000, 0.2000, 58369, 31.0500,121.7833, 3.2000, 0.3000, 0.0000, 0.3000, 58370, 31.2333,121.5333, 7.0000, 3.4000, 0.2000, 0.2000, 58377, 31.4667,121.1000, 7.8000, 7.2000, 0.3000, 0.0000, 58426, 30.3000,118.1333, 0.0000, 0.0000,17.6000, 6.2000, 58431, 30.8500,118.3167, 5.1000, 2.3000,16.5000, 0.1000, 58432, 30.6833,118.4000, 3.6000, 1.4000,20.5000, 0.2000, 58433, 30.9333,118.7500, 2.1000, 3.4000, 8.5000, 0.2000, 58435, 30.3000,118.5333, 0.0000, 0.0000,13.6000, 8.5000, 58436, 30.6167,118.9833, 0.0000, 0.0000, 5.3000, 0.5000, 58438, 30.0833,118.5833, 0.0000, 0.0000,27.6000,21.8000, 58441, 30.8833,119.4167, 0.1000, 1.6000, 1.6000, 1.0000, 58442, 31.1333,119.1833, 3.0000, 8.8000, 5.4000, 0.2000, 58443, 30.9833,119.8833, 0.1000, 2.7000, 0.1000, 0.9000,58446, 30.9667,119.6833, 0.0000, 0.1000, 5.1000, 2.5000, 58448, 30.2333,119.7000, 0.0000, 0.0000,15.1000, 6.9000, 58449, 30.0500,119.9500, 0.0000, 0.0000,23.5000, 8.2000, 58450, 30.8500,120.0833, 0.0000, 0.7000, 0.0000, 4.1000, 58451, 30.8500,120.9000, 0.5000, 0.1000, 0.0000, 3.8000, 58452, 30.7833,120.7333, 0.3000, 0.0000, 0.0000, 3.0000, 58453, 30.0000,120.6333, 0.0000, 0.0000, 0.0000,18.2000, 58454, 30.5333,120.0667, 0.0000, 0.0000, 0.5000, 4.9000, 58455, 30.5167,120.6833, 0.0000, 0.0000, 0.0000, 4.6000, 58456, 30.6333,120.5333, 0.0000, 0.0000, 0.0000, 4.2000, 58457, 30.2333,120.1667, 0.0000, 0.0000, 2.0000,12.6000, 58459, 30.2000,120.3167, 0.0000, 0.0000, 0.0000,15.0000, 58460, 30.8833,121.1667, 1.2000, 0.1000, 0.0000, 2.3000, 58461, 31.1333,121.1167, 4.0000, 1.4000, 0.4000, 0.2000, 58462, 31.0000,121.2500, 2.7000, 0.3000, 0.4000, 1.7000, 58463, 30.9333,121.4833, 1.7000, 0.1000, 0.0000, 0.8000, 58464, 30.6167,121.0833, 0.0000, 0.0000, 0.0000, 3.6000, 58467, 30.2667,121.2167, 0.0000, 0.0000, 0.0000, 1.8000, 58468, 30.0667,121.1500, 0.0000, 0.1000, 5.1000, 2.5000, 58472, 30.7333,122.4500, 0.3000, 0.6000, 0.0000, 4.9000, 58477, 30.0333,122.1000, 0.0000, 0.0000, 0.0000, 0.0000, 58484, 30.2500,122.1833, 0.0000, 0.0000, 0.0000, 0.0000, 58530, 29.8667,118.4333, 0.0000, 0.0000,27.5000,23.6000, 58531, 29.7167,118.2833, 0.0000, 0.0000, 3.7000,11.5000, 58534, 29.7833,118.1833, 0.0000, 0.0000, 9.3000, 6.5000, 58542, 29.8167,119.6833, 0.0000, 0.0000, 0.0000,27.6000, 58550, 29.7000,120.2500, 0.0000, 0.0000, 0.0000, 4.9000, 58562, 29.9667,121.7500, 0.0000, 0.0000, 0.0000, 0.9000]);> lat:=col(l,2);> lon:=col(l,3); > sd1:=col(l,4);> sd2:=col(l,5); > sd3:=col(l,6); > sd4:=col(l,7);> abc1:=seq([lat[i],lon[i],sd1[i]],i=1..91);> abc2:=seq([lat[i],lon[i],sd2[i]],i=1..91);> abc3:=seq([lat[i],lon[i],sd3[i]],i=1..91);> abc4:=seq([lat[i],lon[i],sd4[i]],i=1..91);> with(plots):> pointplot3d([abc1],color=green,axes=boxed);> surfdata([abc1],labels=["x","y","z"],axes=boxed);> with(stats):> with(fit):> with(plots):fx1:=leastsquare[[x,y,z],z=x^3+y^3+a*x^2+b*y^2+c*x*y+d*x+e*y+f,{a,b,c,d ,e,f}]([abc1]);> plot3d(fx1,x=25..35,y=119..135);> pointplot3d([abc2],color=blue,axes=boxed);> surfdata([abc2],labels=["x","y","z"],axes=boxed);>fx2:=leastsquare[[x,y,z],z=x^3+y^3+a*x^2+b*y^2+c*x*y+d*x+e*y+f,{a,b,c,d ,e,f}]([abc2]);> plot3d(fx2,x=25..35,y=119..135);> pointplot3d([abc3],color=red,axes=boxed)> surfdata([abc3],labels=["x","y","z"],axes=boxed);>fx3:=leastsquare[[x,y,z],z=x^3+y^3+a*x^2+b*y^2+c*x*y+d*x+e*y+f,{a,b,c,d ,e,f}]([abc3]);> surfdata([abc4],labels=["x","y","z"],axes=boxed);>fx4:=leastsquare[[x,y,z],z=x^3+y^3+a*x^2+b*y^2+c*x*y+d*x+e*y+f,{a,b,c,d ,e,f}]([abc4]);五.如何在评价方法中考虑公众感受的数学模型建立.1660.1 2.5 2.666.11212.12525.16060.1z } 1.00 {0≤≤=z z R } 5.21.0 {1≤≤=z z R } 66.2 {2≤≤=z z R } 121.6 {3≤≤=z z R } 251.12 {4≤≤=z z R } 601.25 {5≤≤=z z R } 1.60 {6≥=z z R 0ˆR 1ˆR 2ˆR 3ˆR 4ˆR 5ˆR 6ˆR } 1)( {ˆ000R z z z R ∈≤=,μ} 1)( {ˆ111R z z z R ∈≤=,μ} 1)( {ˆ222R z z z R ∈≤=,μ } 1)( {ˆ333R z z z R ∈≤=,μ} 1)( {ˆ444R z z z R ∈≤=,μ} 1)( {ˆ555R z z z R ∈≤=,μ } 1)( {ˆ666R z z z R ∈≤=,μ)(z i μ i 1z ∈i R i R )(z i μ i 16i R ˆ i 1 2)(z i μ i 1⎩⎨⎧≤<+-≤≤=1.006.0 , 5.22506.00, 1)(0z z z z μ)(1z μ] 2369277587.0e [2369277587.0112)3.1(----z 5.21.0≤≤z )(2z μ] 20555762126.0e [20555762126.0112)3.4(----z 66.2≤≤z)(3z μ] 2287787270.0e [2287787270.0119.5)05.9(2----z 121.6≤≤z )(4z μ] 70397557815.0e[70397557815.0119.12)55.18(2----z 251.12≤≤z)(5z μ] 00475951221.0e[00475951221.011100)55.42(2----z 601.25≤≤z)(6z μ2)]5.60(5 [11--+z 1.60≥z 74)(z i μ及iR ˆ i =0,1,…,6合并可得} 0 {≥=z z R 上的模糊集合} , 1)( {ˆR z z z R∈≤=μ.其中R 是论域,)(z μ是模糊集合R ˆ的隶属函数,由)(z i μ分段合)(z μ小雨的隶属函数图特大暴雨隶属函数图大暴雨隶属函数图暴雨隶属函数图⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>≤<≤<≤<≤<≤<≤≤=60)(6025)(2512)(126)(65.2)(5.21.0)(1.00)()(6543210z z z z z z z z z z z z z z t μμμμμμμμ 5 353⨯47imnkZ ~)(z μ53⨯47=M mnk⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111..................μμμμμμ=M imnk~⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111~...~~............~...~~μμμμμμi ),(y x Z =i mnk ∏∆mnk M =M i mnk~⎪⎪⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯⨯i i i i i i 47532531534712111..................λλλλλλ 6imnkΓ∆∑∑=⨯=⨯4712531)(47531j i j i i λ i Ω∆∑=16411641i imnkΓ 8 i 2i i i mnk ∏5347imnk Γi mnk ∏i Ω411Ω2Ω 1Ω2Ω1D 2D19811999。
优秀的数学建模论文范文第1篇摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。
建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。
本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。
关键词:数学建模;高等数学;教学研究一、引言建模思想使高等数学教育的基础与本质。
从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。
但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。
其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。
二、高等数学教学现状高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。
他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。
同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。
但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。
因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。
三、将数学建模思想融入高等数学的重要性第一,能够激发学生学习高数的兴趣。
建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。
把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。
研究生数学建模竞赛优秀论文(最终版)C全国第三届研究生数学建模竞赛题目维修线性流量阀时的内筒设计问题(C 题)针对问题1,首先考察了内孔为四种特殊形状的情况下,“过流面积”随曲线下降距离的变化情况,得到凸凹圆曲线与严格线性面积特性曲线偏差的平方和最小,线性关系保持得比较良好。
此后利用微元法证明了“过流面积”呈严格线性变化时曲线和外孔圆交点横坐标的差为定值这一性质,得出了在此种情况下曲线在两交点处的斜率应为无穷大。
基于以上分析,利用最小二乘原理建立了无约束泛函极值模型,采用了变分法将其转化为微分方程,再转化为等效的变分原理,采用Ritz 算法近似求解。
最后通过对内筒孔曲线的合理假设,得到了满足线性关系较好的内孔曲线形状(见图11),其样本点的偏差平方和为0.064412。
针对问题2,利用最小二乘原理建立了有约束泛函极值模型。
根据文中第四节中的引理,给出理想状态下的内孔形状。
之后对其进行了微调,通过牺牲严格的线性关系来使其逐渐满足两个约束75%h Q ≥和85%S Q ≥,并最终找到了合适的内孔设计方案(见图13(b ))。
最后针对外孔磨损情况提出了基于自动控制理论和逆向工程技术等的解决办法。
本文提出的模型是从考察内孔的特殊形状中得到启发的,从而具有实际应用价值和准确性。
关键词:线性阀体最小二乘法泛函极值模型变分原理非线性规划一、问题的提出阀体是我们日常工作和生活中一种十分常见的工具。
它种类繁多,其中线性阀体可使阀体的旋转角度和流量成正比。
因而它可使人们方便地对流量进行控制。
而如何设计线性阀体成为当今控制领域中研究的热点问题之一。
现在我们需要设计出一种阀体,它由两个同心圆柱筒组成。
外筒固定,其侧面上有一个孔,形状为两个直径不等的圆柱体的交线。
内筒和外筒轴向之间没有相对运动,内筒可以自由转动。
内筒的侧面上也有一个孔,但它原来的形状未知。
要求设计出内筒孔的形状,使得“过流面积”与内筒旋转角成近似线性关系;在线性区间至少达“最大范围”区间长度的75%以上,而且主要工作区的最大“过流面积”至少要达到外筒孔面积的85%以上,并且使“过流面积”和内筒的旋转角度之间的“线性关系”尽量好的约束限制下,重新设计内筒孔的形状。
2023全国研究生数学建模竞赛c题数学建模竞赛是促进数学教育和科研创新的重要平台,对于培养学生的综合素质和创新能力起到了积极的推动作用。
2023年全国研究生数学建模竞赛C题是一道涉及到车辆行驶路径规划的问题。
本文将从问题背景、模型建立、解决方案和实施效果等方面进行论述。
1. 问题背景题目所描述的背景为某城市的道路网格以及道路上的车流量数据。
我们需要使用给定的数据进行最佳路径规划,即通过合理的算法找到两个道路网格之间的最短路径,并在此基础上进行路径优化。
这样可以实现减少行驶距离、提高交通效率的目标。
2. 模型建立在建立数学模型之前,我们首先需要对问题进行分析和抽象。
通过对题目的仔细阅读和理解,我们可以将其抽象为一个图论中的最短路径问题。
在这个问题中,每一个网格可以看作是图的一个节点,道路可以看作是节点之间的边,车流量则可以看作是边的权重。
基于上述分析,我们可以使用迪杰斯特拉算法来解决最短路径问题。
该算法可以在有向图中找到从一个节点到其他节点的最短路径,并且可以通过添加权重来优化路径。
3. 解决方案(1)数据预处理:首先,我们需要对车流量数据进行预处理,将车流量转化为边的权重。
可以根据车流量数据的大小来设定不同的权重,例如车流量越小,权重越大。
(2)最短路径规划:我们使用迪杰斯特拉算法来计算两个节点之间的最短路径。
算法的具体步骤如下:a. 创建一个距离数组dist[],用于存储每个节点到起始节点的最短距离,初始化为无穷大。
b. 创建一个visited[]数组,用于标记节点是否已经被访问过,初始化为False。
c. 设置起始节点的最短距离为0,将其加入到已访问节点集合中。
d. 遍历与起始节点相连的节点,更新节点的最短距离,即若通过当前节点到达其他节点的距离小于已知最短距离,则更新最短距离。
e. 选择一个未被访问的节点中最小距离的节点,将其标记为已访问,并重复上述步骤。
(3)路径优化:基于最短路径规划的结果,我们可以通过添加权重来进一步优化路径。
2023 数学建模 c题
2023年数学建模竞赛C题:
题目:在工业生产中,原料的纯度是一个重要的质量指标。
例如,在半导体行业中,高纯度硅是制造集成电路的重要原料。
为了获得高纯度的硅,需要从含有多种杂质的硅原料中去除杂质。
本题将探讨如何通过数学建模和优化方法来提高硅原料的纯度。
具体问题:假设你是一家半导体公司的工程师,需要从含有多种杂质的硅原料中去除杂质。
给定原料中各杂质的含量,以及可用的净化设备和操作参数,你的任务是制定一个有效的净化方案,以最大限度地提高最终产品的纯度。
要求:
1. 分析影响硅原料纯度的主要因素;
2. 建立一个数学模型,描述杂质去除的过程,并使用该模型进行优化;
3. 根据给定的数据和约束条件,提出一个可行的净化方案;
4. 使用适当的软件或编程语言实现该方案,并模拟净化过程;
5. 根据模拟结果,评估所提出方案的性能,并给出改进建议。
注意事项:
1. 硅原料的纯度可以通过测量杂质含量来评估;
2. 净化设备的操作参数可能受到物理和化学限制;
3. 净化过程可能需要多个步骤,每个步骤都可能影响最终产品的纯度。
提示:为了解决这个问题,你可能需要考虑杂质去除的机制、操作参数的选择、多步骤净化的策略、数学建模和优化方法的应用等多个方面。
数学建模论文(精选4篇)数学建模论文模板篇一1数学建模竞赛培训过程中存在的问题1.1学生数学、计算机基础薄弱,参赛学生人数少以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区(包括民族地区)的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.1.2无专职数学建模培训教师,培训教师水平有限,培训方法落后数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.1.3学校重视程度不够,相关配套措施还有待完善任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.2针对存在问题所采取的相应措施2.1扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.2.2成立数学建模指导教师组,分批培养培训教师,改进培训方法近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.2.3学校逐渐重视,加大了相关投入,完善了激励措施最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.3结束语对我们这类院校而言,最重要的数学建模赛事就是一年一度的全国大学生数学建模竞赛了.竞赛结果大体可以衡量老师和学生的付出与收获,但不是绝对的,教育部组织这项赛事的初衷主要是为了促进各个院校数学建模教学的有效开展.如果过分的看重获奖等次和数量,对学校的数学建模教学和组织工作都是一种伤害.参赛的过程对学生而言,肯定是有益的,绝大多数参加过数学建模竞赛的学生都认为这个过程很重要.这个过程可能是四年的大学学习过程中体会最深的,它用枯燥的理论知识解决了活生生的现实中存在的问题,虽然这种解决还有部分的理想化.由于我校地处偏远山区,教育经费相对紧张,投入不可能跟重点院校的水平比,只能按照自身实际来.只要学校、老师、学生三方都重视并积极参与这一赛事,数学建模活动就能开展的更好.数学建模论文模板篇二培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。
2021数学建模计算中C语言的运用范文 摘要: 为了将所学语言应用到解决实际问题中, 介绍C语言的特点, 详细说明C语言在数学计算中的应用, 并以全国大学生数学建模竞赛题为例, 详细分析如何利用C语言来对建立的模型进行求解, 旨在扩大C语言的在生活中的应用范围。
关键词: C语言;数学建模; 应用; Abstract: Introducesthe features of the C language, in order to apply the language learned to practical problems, explains the application of C language in mathematical calculation in detail, and takes the National Mathematical Modeling Contest of college students as an example, analyzes how to use the C language to solve the established model. The purpose is to expand the application range of C language in life. Keyword: CLanguage; Mathematical Modeling; Application; 0、引言 近年来数学建模竞赛越来越受到学校与学生的重视,数学建模竞赛在提高学生运用计算机能力来解决实际问题上起到了积极的作用。
现在很多非数学学生都参与了数学建模竞赛, 有的是计算机相关的专业, 有的是物理相关的专业, 有的是数学相关的专业, 还有自动化相关的专业等, 在现在大学的课程当中, 有很多的理科专业都会学一门基础的计算机语言类课程, 那就是C语言。
对于一些从来没有学过MATLAB的学生来讲, 在数学建模中应用C语言来解决问题遇到的问题, 无疑就是首选了。
数学建模竞赛优秀大学生论文随着科学技术的高速发展,数学的应用价值越来越得到众人的重视,因此数学建模也被逐渐的引起重视了。
下面是店铺为大家整理的数学建模优秀论文,供大家参考。
数学建模优秀论文篇一:《数学建模用于生物医学论文》1数学建模的过程1.1模型准备首先要了解实际背景,寻找内在规律,形成一个比较清晰的轮廓,提出问题。
1.2模型假设在明确目的、掌握资料的基础上,抓住问题的本质,舍弃次要因素,对实际问题做出合理的简化假设。
1.3模型建立在所作的假设条件下,用适当的数学方法去刻画变量之间的关系,得出一个数学结构,即数学模型。
原则上,在能够达到预期效果的基础上,选择的数学方法应越简单越好。
1.4模型求解建模后要对模型进行分析、求解,求解会涉及图解、定理证明及解方程等不同数学方法,有时还需用计算机求数值解。
1.5模型分析、检验、应用模型的结果应当能解释已存的现象,处理方法应该是最优的决策和控制方案,所以,对模型的解需要进行分析检验。
把求得的数学结果返回到实际问题中去,检验其合理性。
如果理论结果符合实际情况,那么就可以用它来指导实践,否则需再重新提出假设、建模、求解,直到模型结果与实际相符,才能进行实际应用。
总之,数学建模是一项富有创造性的工作,不可能用一些条条框框的规则规定的十分死板,只要是能够做到全面兼顾、能抓住问题的本质、最终检验结果合理,都是一个好的数学模型。
2数学建模在生物医学中的应用2.1DNA序列分类模型DNA分子是遗传信息存储的基本单位,许多生命科学中的重大问题都依赖于对这种特殊分子的深入了解。
因此,关于DNA分子结构与功能的问题,成为二十一世纪最重大的课题之一。
DNA序列分类问题是研究DNA分子结构的基础,它常用的方法是聚类分析法。
聚类分析是使用数据建模简化数据的一种方法,它将数据分成不同的类或者簇,同一个簇中的数据有很大的同质性,而不同的簇中的数据有很大的相异性。
在对DNA序列进行分类时,需首先引入样品变量,比如说单个碱基的丰度、两碱基丰度之比等;然后计算出每条DNA序列的样品变量值,存入到向量中;最后根据相似度度量原理,计算出所有序列两两之间的Lance与Williams距离,依据距离的远近进行分类。
城市出租车交通规划综合模型一、问题重述城市中出租车的需求随着经济发展、城市规模扩大及居民生活方式改变而不断变化。
目前某城市中出租车行业管理存在一定的问题,城市居民普遍反映出租车价格偏高,另一方面,出租车司机却抱怨劳动强度大,收入相对来说偏低,整个出租车行业不景气,长此以往将影响社会稳定。
现为了配合该城市发展的战略目标,最大限度地满足城市中各类人口的出行需要,并协调市民、出租车司机和社会三者的关系,实现该城市交通规划可持续发展,需解决以下的问题:(1)从该城市当前经济发展、城市规模及总体人口规划情况出发,类比国内城市情况,预测该城市居民的出行强度和出行总量,这里的居民指的是该城市的常住人口。
同时结合人口出行特征,进一步给出该城市当前与今后若干年乘坐出租车人口的预测模型。
(2)根据该城市的公共出行情况与出租车主要状况,建立出租车最佳数量预测模型。
(3)油价调整(3.87元/升与4.30元/升)会影响城市居民与出租车司机的双方的利益关系,给出能够使双方都满意的价格调节最优方案。
(4)针对当前的数据采集情况,提出更合理且实际可行的数据采集方案。
(5)从公用事业管理部门的角度考虑出租车规划的问题,写一篇短文介绍自己的方案。
二、模型假设1.常住人口和暂住人口的出行特征相近,划分为第一类人,在所有分析过程中假设其出行特征完全一样。
而短期及当日进出人口为第二类。
2.由于短期及当日进出人口情况复杂,假设第二类人口在于乘坐出租车方面相关出行特征(如乘车出行强度等)在未来几年内保持不变。
3.由于城市地理状况和居民的生活习惯在短时期内不易改变,所以在各交通小4.假设居民中出行人口占总人口数的比例不变。
5.假设对于出行人口而言,在出行方式选择方面的比例与出行人次的比例一样。
6.假设在未来几年内,出租车固定营运成本不变。
7.由于每次一起打车的人数,与居民的生活习惯相关,所以假设出租车每趟载客人次不变,即不受出租车数目和收费方案的不同而改变。
8.基于题目给出的图表数据,假定出行与公交数据的统计口径只针对常住人口,不包括其他人口。
9.由于数据的采集统计等存在误差,本文假定所有计算数据在5%~10%误差范围内可以接受。
三、问题分析题目中要求考虑城市的发展战略目标,人民群众的出行需要,减少环境污染和资源消耗,并结合该城市经济和自身特点,类比国内外城市情况,预测该城市居民出行强度和出行总量。
由于题目附录给出的历史数据几乎只有2004年一年的数据,而做一次出行调查将耗费大量人力物力,所以对一个城市而言也无法得到太多出行特征的历史数据。
为了更好地预测该城市居民的出行强度,必须通过对我国其他城市特别是规模相近城市的居民出行特征的分析,总结出规律并以此来预测。
对于乘坐出租车人口的预测的问题,由于人们生活习惯相对固定,所以在各交通小区之间采用的出行方式也相对固定。
所以针对规划期中交通总量在各区中的增长,通过交通分布的OD矩阵如何计算出未来各区的交通量成为预测乘坐出租车的人口准确与否的关键。
再者,题目给出的只是常住人口的出行方式的数据,而乘坐出租车的人口中即包括了常住人口也包括了流动人口,而且流动人口由于对城市的不熟悉,坐出租车的机会更大,所以必须充分考虑第二类人口对预测的影响。
如何预测该城市出租车的最佳数量,除了考虑乘坐出租车人口数量外,还必须考虑出租车的运行状况,通过考虑出租车所承担的城市客运交通量和出租车的空驶率的关系,从而确定出租车的最佳拥有量和实际运营数量。
如何评价一种出租车收费方案的优劣,如何在油价调整后给出一种可行的收费方案,除了考虑空驶率外,应该兼顾公众、出租车方和社会环境等综合因素给出,本文将紧紧围绕这一线索在下文展开建模、求解和分析的过程。
四、符号定义下标r 、t 、 :分别表示常住人口(Resident)、暂住人口(Temporary)、短期及当日进出人口(Shortdated)。
而1表示第一类人,2表示第二类人。
s k Pop :表示k 类人口的数量,如表示常住人口的数量。
r Pop TraffickPop :表示乘坐某种交通工具的k 类人口的数量。
,k year TI :表示year 年k 类人的出行强度(Travel Intensity),如表示2004年常住人口的出行强度,单位:人次。
,2004r TI ,k year TQ :表示year 年k 类人的日均出行总量(Travel Quantum),如表示2004年常住人口的日均出行总量,单位:人次/日;,2004r TQ i GI :分别表示表示i 年的人均可支配收入(Governable Incoming) ,单位:元。
j i CGI , :表示到i 年j 月累计人均可支配收入(Cumulative Governable Incoming)单位:元,Traffic year Q :表示year 年以Traffic 交通方式出行的OD 分布矩阵,如表示2004年公交出行的OD 分布矩阵,而表示2004年全方式出行的OD 分布矩阵。
其中(t 是Traffic 交通方式单词的开头字母)表示从i 区到,2004Bus Q ,2004All Q ij t j 区的以Traffic 交通方式出行量。
Traffic R :表示在各交通小区之间采用的Traffic 出行方式所占的比例的OD 分布矩阵,其中(t 是Traffic 交通方式单词的开头字母)表示从i 区到'ij t j 区的以Traffic 交通方式出行占所有交通模式的比例。
该矩阵在未来几年内保持不变。
i G :表示各交通小区的交通发生量,单位:人次。
i j A :表示各交通小区j 的交通吸引量,单位:人次。
gi F :表示交通小区i 的发生交通量的增长系数gi F 、aj F 。
aj F :表示交通小区j 的吸引交通量的增长系数gi F 、aj F 。
C :表示常量。
e Dist :表示日均每辆出租车有效(Effective )行驶里程(Distance ),即出租车载客时的日均行驶里程。
ine Dist :表示日均每辆出租车无效(Ineffective )行驶里程(Distance ),即出租车在未载客时的日均行驶里程。
e TDist :表示日均全市出租车的总(Total )有效行驶里程。
ine TDist :表示日均全市出租车的总无效行驶里程,Dist :表示日均每辆出租车行驶的总里程,一天中有效行驶里程与无效行驶里程之和。
TDist :表示日均全市出租车行驶的总里程。
T :表示日均每辆出租车运营时间。
woking V :表示平均运营速度,出租车全天行驶总里程与运营时间之比,平均运营速度与出租车行驶速度以及驾驶员等客、休息时间的长短有关。
P :表示平均每趟载客(Passenger )人数。
D :表示平均每趟载客坐出租车的出行距离(Distance )。
N :表示某一年全市出租车的拥有量。
Working N :表示出租车的每天实际运营的量,这是由于部分出租车处于年检或维修而没投入运营。
:表示出租车中每日实际运营的弹性比例。
VR :为空驶率。
五、模型的建立1.城市居民出行强度和出行总量的预测模型由于考虑到出行强度的调查数据只能来自于对城市大规模的交通普查,在现实中考虑到经济成本的原因,只能若干年做一次普查,所以一般不能得到详尽的常住人口出行强度的历史数据。
因此,只能通过对我国其他城市特别是规模相近的城市的居民出行特征的分析来取得对未来各年的常住人口出行强度预测的方法,这里主要采取了截面数据的多元回归预测的方法。
即选择常住人口出行强度为因变量;城市(或区)常住人口规模、城市(或区)建成面积、人均可支配收入为自变量。
(1)城市规模发展预测我国城市在未来一段时间内,规模会不断扩大,人口会不断增加,人民生活水平将不断提高。
针对城市的总体规划,可以根据未来人口规模(2010年及2020年)采用三次样条曲线进行插值。
采用Matlab软件进行数据处理,得到2004年~2020年各年预计的人口规模,如下表:表1.1:2004年~2020年各年预计的人口规模其中第一类人口包括常住人口和暂住人口,第二类人口包括短期及当日进出人口,这是根据出行特征划分的,把出行特征相近的人口划归为一类。
通过观察1980~1998年南京等各主要城市面积与城市人口规模增长率的变化规律,大致呈现城市面积随着人口规模的增大而增大,具体参考文献[2]。
但由于各城市的地理位置不同,具体的增长率亦有所不同。
所以为简化起见,在此假定,该城市发展也大致满足该规律:城市面积的增长率大约等于该城市人口规模增长率的一半左右。
由此可以得到2004年~2020年各年预计的城市面积规模,如下表:表1.2:2004年~2020年各年预计的各年预计的城市建成面积(单位:平方公里)年份 2004200520062007 200820092010……2020 城市建成面积181.77 195.73 208.94221.39233.1 244.06254.27 ……315.14观察附录2中的某城市2002~2004年1~12月份居民累计收入与消费情况,由于给出的数据有4个月份(即1、2、11、12月)的累计数据缺失,故选用了三年各月份都完整的其余8个月份的数据。
首先,利用普通最小二乘(OLS )的思想,找出一个平均的居民可支配收入年增率RGI (Rate of Governable Income )来最小化:()[]()[]{}∑=-++-+1032,2004,20032,2003,200211min j j i j j i j RGI CGI RGI CGI CGI RGI CGI i8617.4812,20042004 在Matlab 中,采用无约束优化中默认的BFGS 算法,求出最近似的年增长率RGI 为:11.09%;接着,根据2004年末居民累计可支配收入额,即2004年度居民累计可支配收入额:==CGI GI (元)最后,由RGI 和得到2004年~2020年各年居民可支配收入,如下表:2004GI 表1.3:2004年~2020年各年预计居民可支配收入(单位:元)年份 2004 2005 2006 2007 2008 …… 2020 每年居民可支配收入8617.489573.1610634.8211814.2213124.42……46363.88综上所述,该城市的整体规模如表1所示:表1:2004年~2020年各年城市总体规划规模人口总数 (万人) 240.15 259.21 277.24 294.23 310.19 325.11 339.00 …… 421.00 建成面积 (平方公里) 181.77195.73 208.94221.39233.1 244.06254.27……315.14每年居民可支配收入(元)8617 9573 1063411814131241457916196 (46363)(2)出行强度(出行总量)预测为了给出该城市常住人口出行强度的预测,这里认为出行强度与城市自身的地理环境、经济情况等多方面有关系;这里仅提炼:城市(或区)常住人口规模、城市(或区)建成面积、人均可支配收入等三个考虑变量,数据来源参考文献[2][3][ 4][ 5]。