初三数学2020年1月松江一模
- 格式:pdf
- 大小:90.14 KB
- 文档页数:2
2024年上海市松江区中考一模数学试题(满分150分,完卷时间100分钟)考生注意1.本试卷含三个大题,共25题;没有特殊说明,几何题均视为在同一个平面内研究问题.2.答题时,务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明.或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】l.下列函数中,属千二次函数的是(A. y=x-2B. y = x 2C.y = x 2一(x + 1)22D.y =2X2.已知在Rtt.ABC 中,乙C=90°,乙A=a ,BC=m,那么AB 的长为()A msma:B.mc os a :C.二:smaD.二.cos a3.关于二次函数y =-2(x-1)2的图像,下列说法正确的是()A升口向上C.对称轴右侧的部分是下降的4下列条件中,不能判定a II b 的是()A. a I I c, b II c ;B. a=-c, b = 2cB经过原点D 顶点坐标是(-1,0)C. a =-2bD. liil =31叶5如图,在Rt6ABC 中,乙BAC=90°,斜边BC 上的高AH=3,矩形DEFG 的边DE 在边BC 上,顶点G 、F 分别在边AB 、AC 上,如果GF 正好经过c.ABC 的重心,那么BD·EC 的积等千()AB DH E CA.4B.I16-25c 9-25D6某同学对“两个相似的四边形”进行探究四边形ABCD 和四边形A 1B 1C 1D 1是相似的图形,点A 与点ABA I、点B与点队、点C与点C l、点D与点D I分别是对应顶点,已知一—=k该同学得到以下两个结A IB I论@四边形ABCD和四边形A1B1C i D1的而积比等千k2:@四边形ABCD和四边形A i B1C)队的两条对角线的和之比等千k.对千结论@和@,下列说法正确的是()A @正确,@错误B @错误,@正确C @和@都错误 D.@和@都正确二、填空题(本大题共12题,每题4分,满分48分)Y I m,Y7.若一=-,则一=.X 2 X+ y8.A、B两地的实际距离AB=250米,画在地图上的距离为5厘米,则地图上的距离与实际距离的比是9.某印刷厂一月份印书50万册,如果从二月份起,每月印书量的增长率都为x,那么三月份的印书量y (万册)与x的函数解析式是____.l0已知点P是线段AB的黄金分割点,且AP>BP,如果AB=5,那么AP=·11.在直角坐标平面中,将抛物线y= -(x +1)2 + 2,先向左平移l个单位,再向下平移2个单位,那么平移后的抛物线表达式是12.如果一个二次函数图像的顶点在r轴上,且在y轴的右侧部分是上升的.请写出一个符合条件的函数解析式:13如图,一辆小车沿养坡度为1:2.4的斜坡从A点向上行驶了50米,到达8点,那么此时该小车上升的高度为米.BA 水平面14如图,梯形ABCD中,ABII CD,且AB 4=-CD 3,若A B=m,A万=n•请用m,11来表示AC=A B15如图,已知直线l1、/2、/3分别交白线m于点A、B、C,交直线n于点D、E、F,且l1// I2 //l3, AB=2BC, DF=6,那么EF=.l16如图,在梯形ABCD中,ADIi BC,点E是AD的中点,BE、CD的延长线交千点F,如果AD:B C=2:3,那么S心EDF:S b.,\£8 = ·FB cl7在t.A BC中,AB=AC,点D、E分别是边AB、AC的中点,BE与CD相交千点O,如果公OBC是等边三角形,那么tanL.ABC=.18如图,矩形ABCD中,AB=2,BC=3,将边AB绕点A逆时针旋转,点B落在B'处,连接BB'、C B',若LBB'C=90°,则BB'=·”('三、解答题(本大题共7题,满分78分)19.二次函数y= a x2 +bx+c(a ;1:. 0)的图像上部分点的横坐标x、纵坐标y的对应值如下表.X ... 。
2020年-上海中考数学一模-24题合集上海中考数学一模-2020年-24题合集1.(2020?松江区一模)如图,已知抛物线2y x bx c=-++经过点(3,0)B.点A,点(0,3) M m在线段OA上(与点A,O不重合),过点M作x轴的垂线与线段AB交于点P,(,0)与抛物线交于点Q,联结BQ.(1)求抛物线表达式;∠=∠时,求PQ的长度;(2)联结OP,当BOP PBQ为等腰三角形时,求m的值.(3)当PBQ的两个交点分别为(1,0)A -,(3,0)B ,与y 轴相交于点C .(1)求抛物线的表达式;(2)联结AC 、BC ,求ACB ∠的正切值;(3)点P 在抛物线上,且PAB ACB ∠=∠,求点P 的坐标.(2,3)A -和点(5,0)B ,顶点为C .(1)求这条抛物线的表达式和顶点C 的坐标;(2)点A 关于抛物线对称轴的对应点为点D ,联结OD 、BD ,求ODB ∠的正切值;(3)将抛物线2y x bx c =++向上平移(0)t t >个单位,使顶点C 落在点E 处,点B 落在点F 处,如果BE BF =,求t 的值.4.(2020?杨浦区一模)已知在平面直角坐标系xOy 中,抛物线224(0)y mx mx m =-+≠与x 轴交于点A ,B (点A 在点B 的左侧),且6AB =.(1)求这条抛物线的对称轴及表达式;(2)在y 轴上取点(0,2)E ,点F 为第一象限内抛物线上一点,联结BF ,EF ,如果10OEFB S =四边形,求点F 的坐标;(3)在第(2)小题的条件下,点F 在抛物线对称轴右侧,点P 在x 轴上且在点B 左侧,如果直线PF 与y 轴的夹角等于EBF ∠,求点P 的坐标.5.(2020?黄浦区一模)在平面直角坐标系xOy 中,平移一条抛物线,如果平移后的新抛物线经过原抛物线顶点,且新抛物线的对称轴是y 轴,那么新抛物线称为原抛物线的“影子抛物线”.(1)已知原抛物线表达式是225y x x =-+,求它的“影子抛物线”的表达式;(2)已知原抛物线经过点(1,0),且它的“影子抛物线”的表达式是25y x =-+,求原抛物线的表达式;(3)小明研究后提出:“如果两条不重合的抛物线交y 轴于同一点,且它们有相同的“影子抛物线”,那么这两条抛物线的顶点一定关于y 轴对称.”你认为这个结论成立吗?请说明理由.6.(2020?嘉定区一模)在平面直角坐标系xOy 中,将点1(,)P ab a -定义为点(,)P a b 的“关联点”.已知:点(,)A x y 在函数2y x =的图象上(如图所示),点A 的“关联点”是点1A .(1)请在如图的基础上画出函数22y x =-的图象,简要说明画图方法;(2)如果点1A 在函数22y x =-的图象上,求点1A 的坐标;(3)将点2(,)P a b na -称为点(,)P a b 的“待定关联点”(其中,0)n ≠.如果点(,)A x y 的“待定关联点”2A 在函数2y x n =-的图象上,试用含n 的代数式表示点2A 的坐标.7.(2020?虹口区一模)在平面直角坐标系中,抛物线2y x bx c =-++与x 轴交于(1,0)A -、B 两点,与y 轴交于点C (0,3),点P 在该抛物线的对称轴上,且纵坐标为.(1)求抛物线的表达式以及点P 的坐标;(2)当三角形中一个内角α是另一个内角β的两倍时,我们称α为此三角形的“特征角”.①当D 在射线AP 上,如果DAB ∠为ABD ?的特征角,求点D 的坐标;②点E 为第一象限内抛物线上一点,点F 在x 轴上,CE EF ⊥,如果CEF ∠为ECF ?的特征角,求点E 的坐标.8.(2020?徐汇区一模)如图,将抛物线2443y x =-+平移后,新抛物线经过原抛物线的顶点C ,新抛物线与x 轴正半轴交于点B ,联结BC ,tan 4B =,设新抛物线与x 轴的另一交点是A ,新抛物线的顶点是D .(1)求点D 的坐标;(2)设点E 在新抛物线上,联结AC 、DC ,如果CE 平分DCA∠,求点E 的坐标.(3)在(2)的条件下,将抛物线2443y x =-+沿x 轴左右平移,点C 的对应点为F ,当DEF ?和ABC ?相似时,请直接写出平移后得到抛物线的表达式.9.(2020?崇明一模)如图,抛物线与x 轴相交于点(3,0)A -、点(1,0)B ,与y 轴交于点C(0,3),点D 是抛物线上一动点,连接OD 交线段AC 于点E .(1)求这条抛物线的解析式,并写出顶点坐标;(2)求ACB ∠的正切值;(3)当AOE ?与ABC ?相似时,求点D 的坐标.10.(2020?长宁金山区一模)如图,在平面直角坐标系xOy 中,抛物线213y x mx n =++经过点(6,1)B ,(5,0)C ,且与y 轴交于点A .(1)求抛物线的表达式及点A 的坐标;(2)点P 是y 轴右侧抛物线上的一点,过点P 作PQ OA ⊥,交线段OA 的延长线于点Q ,如果45PAB ∠=?.求证:PQA ACB ??∽;(3)若点F 是线段AB (不包含端点)上的一点,且点F 关于AC 的对称点F '恰好在上述抛物线上,求FF '的长.11.(2020?普陀区一模)在平面直角坐标系xOy 中(如图),已知抛物线28((0)3y ax a x c a =+++≠经过点(3,2)A --,与y 轴交于点B (0,2)-,抛物线的顶点为点C ,对称轴与x 轴交于点D .(1)求抛物线的表达式及点C 的坐标;(2)点E 是x 轴正半轴上的一点,如果AED BCD ∠=∠,求点E 的坐标;(3)在(2)的条件下,点P 是位于y 轴左侧抛物线上的一点,如果PAE ?是以AE 为直角边的直角三角形,求点P 的坐标.12.(2020?静安区一模)在平面直角坐标系xOy 中(如图),已知二次函数2y ax bx c=++(其中a 、b 、c 是常数,且0)a ≠的图象经过点(0,3)A -、(1,0)B 、(3,0)C ,联结AB 、AC .(1)求这个二次函数的解析式;(2)点D 是线段AC 上的一点,联结BD ,如果:3:2ABD BCD S S ??=,求tan DBC ∠的值;(3)如果点E 在该二次函数图象的对称轴上,当AC 平分BAE ∠时,求点E 的坐标.13.(2020?闵行区一模)已知:在平面直角坐标系xOy 中,对称轴为直线2x =-的抛物线经过点(0,2)C ,与x 轴交于(3,0)A -、B 两点(点A 在点B 的左侧).(1)求这条抛物线的表达式;(2)联结BC ,求BCO ∠的余切值;(3)如果过点C 的直线,交x 轴于点E ,交抛物线于点P ,且CEO BCO ∠=∠,求点P 的坐标.14.(2020?青浦区一模)如图,在平面直角坐标系xOy中,抛物线2y x bx c=++与x轴交于A、B两点,与y轴交于点C,对称轴为直线2 x=,点A的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)点P为抛物线上一点(不与点A重合),连接PC.当PCB ACB∠=∠时,求点P的坐标;(3)在(2)的条件下,将抛物线沿平行于y轴的方向向下平移,平移后的抛物线的顶点为⊥时,求抛物线平移的距离.点D,点P的对应点为点Q,当OD DQ15.(2020?宝山区一模)在平面直角坐标系内,反比例函数和二次函数2(1)y a x x =+-的图象交于点(1,)A a 和点(1,)B a --.(1)求直线AB 与y 轴的交点坐标;(2)要使上述反比例函数和二次函数在某一区域都是y 随着x 的增大而增大,求a 应满足的条件以及x 的取值范围;(3)设二次函数的图象的顶点为Q ,当Q 在以AB 为直径的圆上时,求a 的值.。
初三数学 第1页 共10页松江区2019学年度第一学期期末质量监控试卷初三数学(满分150分,完卷时间100分钟)2020.01考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.已知二次函数c bx ax y ++=2(A )>0,>0,>0; (B )<0,<0,<0; a b c a b c (C )<0,>0,>0;(D )<0,<0,>0.a b c a b c 2.如果点A (1,3)、B (m ,3)是抛物线上两个不同的点,2(2)y a x h =-+ 那么m 的值为(▲)(A )2;(B )3;(C )4;(D )5.3.在以O 为坐标原点的直角坐标平面内,有一点A (3,4),射线OA 与x 轴正半轴的夹角为,那么的值为( ▲ )ααcos (A );(B );(C );(D ).354345344.下列两个三角形不一定相似的是(▲)(A )两条直角边的比都是2:3的两个直角三角形;(B )腰与底的比都是2:3的两个等腰三角形;(C )有一个内角为50°的两个直角三角形;(D )有一个内角是50°的两个等腰三角形.5.如果,,且,下列结论正确的是 (▲)a b c += 3a b c -=(A );(B );=a b +20a b =(C )a 与b方向相同;(D )a 与b方向相反.(第1题图)初三数学 第2页 共10页6.如图,两条宽度都为1的纸条,交叉重叠放在一起,它们的夹角为锐角,它们重叠部α分(图中阴影部分)的面积是1.5,那么的值为(▲)sin α(A );(B );(C );(D ).34122332二、填空题:(本大题共12题,每题4分,满分48分)7.已知:,那么= ▲ . 23x y =2x yx y-+8.已知线段a 是线段b 、c 的比例中项,如果a =2,b =3,那么c = ▲ . 9.如果两个相似三角形的面积比为3∶4,那么它们的相似比为 ▲ . 10.已知点P 是线段AB 的黄金分割点(AP >BP ),若AP =2,则BP = ▲ . 11.已知Rt △ABC 中,若∠C =90°,AC =3,BC =2,则∠A 的余切值为 ▲ . 12.已知二次函数图像的对称轴为直线x =4,则 ▲ .(填()212f x x bx c =++()1f ()3f “>”或“<”)13.在直角坐标平面中,将抛物线先向上平移1个单位,再向右平移1个单位,22(1)y x =+那么平移后的抛物线表达式是 ▲ .14.如图,已知D 是△ABC 的边AC 上一点,且.如果,,那么2AD DC =a AB =AC b =向量关于、的分解式是 ▲ .BDa b 15.如图, 在正方形网格中,点A ,B ,C 是小正方形的顶点,那么tan∠BAC 的值为 ▲ .16.如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米.那么斜面AB 的坡度为 ▲ .18.如图,矩形ABCD 中,AD =1,AB =k .将矩形ABCD 绕着点B 顺时针旋转90°得到矩形A ′BC ′D ′.联结A D ′,分别交边CD ,A ′B 于E 、F .如果,那么k = ▲.'AE F =(第15题图)CBA(第14题图)ACBD(第16题图)(第18题图)F ED C BAC′A′D′初三数学 第3页 共10页三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:223(2cos 45)3tan 302sin 60cos 60cot 30︒︒︒︒︒-+--20.(本题满分10分,第(1)小题4分,第(2)小题6分)已知二次函数.241y x x =--(1)将函数的解析式化为的形式,并指出该函数图像顶241y x x =--()k m x a y ++=2点B 坐标.(2)在平面直角坐标系xOy 中,设抛物线与y 轴交点为C ,抛物线的对称241y x x =--轴与x 轴交点为A .求四边形OABC 的面积.21.(本题满分10分)如图,在梯形ABCD 中,AD ∥BC ,∠C =90°,AD=AB=13,BD=24.求边DC 的长.22.(本题满分10分)如图,小岛A 在港口P 的南偏西45°方向上,一艘船从港口P ,沿着正南方向,以每小时12海里的速度航行,1小时30分钟后到达B 处,在B 处测得小岛A 在它的南偏西60°的方向上.小岛A 离港口P 有多少海里?(第22题图)东CA DB(第21题图)23.(本题满分12分,第(1)小题5分,第(2)小题7分)已知:如图,点D 、F 在△ABC 边AC 上,点E在边BC 上,且DE ∥AB ,.2CD CF CA =⋅(1)求证:EF ∥BD ;(2)如果,求证:.AC CF BC CE ⋅=⋅2BD DE BA =⋅24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)如图,已知抛物线y =﹣x 2+bx +c 经过点A (3,0),点B (0,3).点M (m ,0)在线段OA 上(与点A ,O 不重合),过点M 作x 轴的垂线与线段AB 交于点P ,与抛物线交于点Q ,联结BQ .(1)求抛物线表达式;(2)联结OP ,当∠BOP =∠PBQ 时,求PQ 的长度;(3)当△PBQ 25.(本题满分14分,第(1)小题4分,第(2)、(3)小题各5分)已知tan ∠MON =2,矩形 ABCD 的边AB 在射线OM 上,AD =2,AB =m ,CF ⊥ON ,垂足为点F.(1)如图(1),作AE ⊥ON ,垂足为点E.当m =2时,求线段EF 的长度;(2)如图(2),联结OC ,当m =2,且CD 平分∠FCO 第25题图(1)(第24题备用图)F CBADE (第23题图)第25题图(2)(第24题图)初三数学 第5页 共10页2019学年第一学期松江区初三数学期末质量监控试卷参考答案一、选择题:1.C ;2.B ;3.A ;4.D ;5.D ;6.C .二、填空题:7.; 8.;;;11.; 12.>;15431-3213.; 14.; 15.2; 16..22+1y x =23a b →→-+31:21+三、解答题:(本大题共7题,满分78分)19.解:原式…………………(5分)……(2分)……(1分)=……(2分)20.解:(1)……………(3分)2241(2)5y x x x =--=--顶点坐标为B (2,-5)……………(1分)(2)点A (2,0)、点B (2,-5),点C (0,-1)……………(2分)……………(4分)1(15)262OABC S =+⨯=21.解:作AE ⊥BD ,垂足为E ……………(1分)∵AD =AB ∴BE =DE初三数学 第6页 共10页∵BD =24∴DE =12……………………………(1分)∴AE =5……………………………(1分)∴…………………(2分)5sin 13ADB ∠=∵AD ∥BC∴…………………(1分)ADB CBD ∠=∠∴…………………(1分)5sin 13CBD ∠=∴……(2分)5sin 2413CD CD CBD BD ∠===∴……………………………(1分)12013CD =22.解:作AC ⊥PB ,垂足为C ……………(1分)…………………(1分)12 1.518PB =⨯=令BC =x ……………………………(1分)在Rt △ABC 中,∵∠ABC =60°∴…………(1分)AC =在Rt △APC 中,∵∠APC =45°∴…………(1分)AC PC ==…………(1分)18x =+解得…………(1分)9x =+∴PC =…………(1分)27∴(1分)AP ==+答:小岛A离港口P 有海里.………(1分)+(第21题图)东初三数学 第7页 共10页23.证明:(1)∵DE ∥AB∴………(1分)CD CECA CB=∵2CD CF CA=⋅∴………(1分)CD CFCA CD =∴………(2分)CE CF CB CD=∴EF ∥BD ………(1分)(2)∵AC CF BC CE ⋅=⋅∴CA CECB CF=∵∠C =∠C∴△CAB ∽△CEF ………(1分)∴∠CAB =∠CEF ………(1分)∵EF ∥BD∴∠CBD =∠CEF ………(1分)∴∠CBD =∠CAB ………(1分)∵DE ∥AB ,∴∠BDE =∠DBA ………(1分)∴△BDE ∽△ABD ………(1分)∴BD ABDE BD=∴………(1分)2BD DE BA =⋅24.解:(1)∵抛物线y =﹣x 2+bx +c 经过点A (3,0),点B (0,3).∴………………………………(1分)3,930.c b c =⎧⎨-++=⎩∴b =2,c =3………(1分)∴抛物线表达式为y =﹣x 2+2x +3………(1分)A(第23题图)A(第23题图)(第24题图)初三数学 第8页 共(2)∵PM ⊥x 轴∴PM ∥y 轴∴∠OBP =∠BPQ ∵∠BOP =∠PBQ∴△OBP ∽△BPQ ………………(1分)∴OB BPBP PQ=∴………(1分)2BP OB PQ =⋅∴22)3(2+3+3)m m m =-+-即222-39m m m =+解得(m =0舍去)………(1分)95m =………(1分)5425PQ =(3)当QP =QP 时点Q (2,3)此时m =2………(1分)当BQ =BP 时,点Q (1,4)此时m =1………(2分)当PB =PQ 时2233m m m =-++-+(2分)3m =25.解:(1)过点D 作DP ⊥CF 于点P ,交AE 于点Q 则∠PDC =∠DAQ =∠MON ……(1分)∵在Rt △CDP 中DC =2,tan ∠PDC =2可得,……(1分)PD =第25题图(1)初三数学 第9页 共10页在Rt △ADQ 中AD =2,tan ∠DAQ =2可得,……(1分)QD =∴……(1分)QP =∴(1分)EF =(2)∵CD 平分∠FCO 时∴∠FOD =∠OCD ∵CD ∥OM ∴∠COM =∠OCD∴……(1分)21tan 2CB COM OB OB ∠===∴OB =4……(1分)∴(1分)OC =延长CD 交ON 于K,过点K 作KQ ⊥OM ,垂足为Q KQ=2,OQ=1,CK=3(1分)CF =……(1分)3sin 5COF ∠=(3)由题意可知∠CDF =∠ADF=135°……(1分)当∠FCD =∠FAD 时△FCD ≌△FADCD =AD =2,即m =2……(1分)当∠FCD =∠AFD ∵△CDF ∽△FDA初三数学 第10页 共10页∴DC DFDF DA=∴……(1分)2DF DC DA =⋅令HF =t ,则DH =t 1tan FCD +m 2t t ∠==t =mDF ==∴……(1分)2)2m =∴m =1(m =0舍去)……(1分)。
2020-2021学年上海市松江区九年级(上)期末数学试卷(一模)1.如果两个相似三角形对应边的比为1:4,那么它们的周长比是()A. 1:2B. 1:4C. 1:8D. 1:162.在Rt△ABC中,∠C=90°,∠A=α,BC=2,那么AC的长为()A. 2sinαB. 2cosαC. 2tanαD. 2cotα3.将抛物线y=2x2向右平移3个单位,能得到的抛物线是()A. y=2x2+3B. y=2x2−3C. y=2(x+3)2 D. y=2(x−3)24.已知a⃗=2b⃗ ,下列说法中不正确的是()A. a⃗−2b⃗ =0B. a⃗与b⃗ 方向相同C. a⃗//b⃗D. |a⃗|=2|b⃗ |5.如图,一艘船从A处向北偏东30°的方向行驶10千米到B处,再从B处向正西方向行驶20千米到C处,这时这艘船与A的距离()A. 15千米B. 10千米C. 10√3千米D. 5√3千米6.如图,已知在Rt△ABC中,∠C=90°,点G是△ABC的重心,GE⊥AC,垂足为E,如果CB=8,则线段GE的长为()A. 53B. 73C. 83D. 1037.已知xy =53,则x−yy=______.8.已知线段MN的长是4cm,点P是线段MN的黄金分割点,则较长线段MP的长是______cm.9.计算:sin30°⋅cot60°=______ .10.在Rt△ABC中,∠C=90°,AC=6,cosA=34,那么AB的长为______ .11.一个边长为2厘米的正方形,如果它的边长增加x(x>0)厘米,则面积随之增加y平方厘米,那么y关于x的函数解析式为______ .12.已知点A(2,y1)、B(3,y2)在抛物线y=x2−2x+c(c为常数)上,则y1______ y2(填“>”、“=”或“<”).13.如图,已知直线l1、l2、l3分别交直线l4于点A、B、C,交直线l5于点D、E、F,且l1//l2//l3,AB=4,AC=6,DF=10,则DE=______ .14. 如图,△ABC 在边长为1个单位的方格纸中,△ABC 的顶点在小正方形顶点位置,那么∠ABC 的正弦值为______ .15. 如图,已知点D 、E 分别在△ABC 的边AB 和AC 上,DE//BC ,DE BC =34,四边形DBCE 的面积等于7,则△ADE 的面积为______ .16. 如图,在梯形ABCD 中,AD//BC ,BC =2AD ,设向量AB ⃗⃗⃗⃗⃗ =a ⃗ ,AD ⃗⃗⃗⃗⃗⃗ =b ⃗ ,用向量a ⃗ 、b ⃗ 表示AC ⃗⃗⃗⃗⃗ 为______ .17.如图,正方形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上.已知△ABC的边BC=16cm,高AH为10cm,则正方形DEFG的边长为______ cm.18.如图,已知矩形纸片ABCD,点E在边AB上,且BE=1,将△CBE沿直线CE翻折,使点B落在对角线AC上的点F处,联结DF,如果点D、F、E在同一直线上,则线段AE的长为______ .19.用配方法把二次函数y=3x2−6x+5化为y=a(x+m)2+k的形式,并指出这个函数图象的开口方向、对称轴和顶点坐标.20.如图,已知AB//CD,AD、BC相交于点E,AB=6,BE=4,BC=9,联结AC.(1)求线段CD的长;(2)如果AE=3,求线段AC的长.21.如图,已知在Rt△ABC中,∠C=90°,sin∠ABC=3,点D在边BC上,5BD=4,联结AD,tan∠DAC=2.3(1)求边AC的长;(2)求cot∠BAD的值.22.如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处(点A、B、C在同一直线上).某测量员从悬崖底C点出发沿水平方向前行60米到D点,再沿斜坡DE方向前行65米到E点(点A、B、C、D、E在同一平面内),在点E处测得5G信号塔顶端A的仰角为37°,悬崖BC的高为92米,斜坡DE的坡度i=1:2.4.(1)求斜坡DE的高EH的长;(2)求信号塔AB的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)23.如图,已知在▱ABCD中,E是边AD上一点,联结BE、CE,延长BA、CE相交于点F,CE2=DE⋅BC.(1)求证:∠EBC=∠DCE;(2)求证:BE⋅EF=BF⋅AE.24.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx−2经过点A(2,0)和B(−1,−1),与y轴交于点C.(1)求这个抛物线的表达式;(2)如果点P是抛物线位于第二象限上一点,PC交x轴于点D,PDDC =23.①求P点坐标;②点Q在x轴上,如果∠QCA=∠PCB,求点Q的坐标.25.如图,已知在等腰△ABC中,AB=AC=5√5,tan∠ABC=2,BF⊥AC,垂足为F,点D是边AB上一点(不与A,B重合).(1)求边BC的长;(2)如图2,延长DF交BC的延长线于点G,如果CG=4,求线段AD的长;(3)过点D作DE⊥BC,垂足为E,DE交BF于点Q,联结DF,如果△DQF和△ABC相似,求线段BD的长.答案和解析1.【答案】B【解析】解:∵两个相似三角形对应边的比为1:4,∴它们的周长比是:1:4.故选:B.直接利用相似三角形的性质得出答案.此题主要考查了相似三角形的性质,正确掌握相关性质是解题关键.2.【答案】D【解析】解:∵cotA=AC,BC=2,BC∴AC=BC⋅cotα=2cotα,故选:D.根据锐角三角函数的意义求解后,再做出判断即可.本题考查锐角三角函数,掌握锐角三角函数的意义是解决问题的关键.3.【答案】D【解析】解:由“左加右减”的原则可知,抛物线y=2x2向右平移3个单位,能得到的抛物线是y=2(x−3)2.故选:D.根据“左加右减、上加下减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.4.【答案】A【解析】解:A、由a⃗=2b⃗ 得到:a⃗−2b⃗ =0⃗,故本选项说法不正确.B、由a⃗=2b⃗ 知,a⃗与b⃗ 方向相同,故本选项说法正确.C、由a⃗=2b⃗ 知,a⃗与b⃗ 方向相同,则a⃗//b⃗ ,故本选项说法正确.D、由a⃗=2b⃗ 知,|a⃗|=2|b⃗ |,故本选项说法正确.故选:A.根据平面向量的性质进行一一判断.本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.5.【答案】C【解析】解:如图,∵BC⊥AE,∴∠AEB=90°,∵∠EAB =30°,AB =10米, ∴BE =5米,AE =5√3米, ∴CE =BC −CE =20−5=15(米),∴AC =√CE 2+AE 2=√152+(5√3)2=10√3(米),故选:C .根据直角三角形的三角函数得出AE ,BE ,进而得出CE ,利用勾股定理得出AC 即可.此题考查解直角三角形的应用,关键是根据直角三角形的三角函数得出AE ,BE 解答.6.【答案】C【解析】解:延长AG 交BC 于D ,如图,∵点G 是△ABC 的重心,∴CD =BD =12BC =4,AG =2GD , ∵GE ⊥AC ,∴∠AEG =90°,而∠C =90°,∴GE//CD ,∴△AEG∽△ACD ,∴EGCD =AGAD=AG AG+GD =23, ∴EG =23CD =23×4=83. 故选:C .延长AG 交BC 于D ,如图,利用三角形重心的性质得到CD =BD =4,AG =2GD ,再证明GE//CD ,则可判断△AEG∽△ACD ,然后利用相似比可求出EG 的长.本题考查了三角形的重心:三角形的重心是三角形三边中线的交点;重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了相似三角形的判定与性质.7.【答案】23【解析】解:由题意,设x =5k ,y =3k ,∴x−yy =5k−3k3k=23. 故答案为23.根据题意,设x =5k ,y =3k ,代入即可求得x−yy 的值.本题考查了比例的基本性质,是基础题.已知几个量的比值时,常用的解法是:设一个未知数,把题目中的几个量用所设的未知数表示出来,实现消元.8.【答案】(2√5−2)【解析】解:∵P 是线段MN 的黄金分割点,∴MP =√5−12MN , 而MN =4cm ,∴MP=4×√5−12=(2√5−2)cm.故答案为(2√5−2).根据黄金分割的概念得到MP=√5−12MN,把MN=4cm代入计算即可.本题考查了黄金分割的概念:如果一个点把一条线段分成两条线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点;较长线段是整个线段的√5−12倍.9.【答案】√36【解析】解:原式=12×√33=√36.故答案为:√36.直接利用特殊角的三角函数值化简得出答案.此题主要考查了特殊角的三角函数值,正确化简各数是解题关键.10.【答案】8【解析】解:∵cosA=ACAB =34,AC=6,∴AB=ACcosA=8,故答案为:8.根据锐角三角函数的意义求解后,再做出判断即可.本题考查锐角三角函数,掌握锐角三角函数的意义是解决问题的关键.11.【答案】y=x2+4x【解析】解:由题意得,y=(2+x)2−22=x2+4x,故答案为:y=x2+4x.根据“面积的增加量就是边长增加前后的两个正方形的面积差”可得答案.本题考查函数关系式,理解题目中的数量关系是解决问题的关键.12.【答案】<【解析】解:∵y=x2−2x+c,∴抛物线的开口向上,对称轴是直线x=−−22×1=1,∴在对称轴的右侧,y随x的增大而增大,∵1<2<3,∴y1<y2,故答案为:<.先求得开口方向和对称轴,再根据二次函数的性质进行判断即可.本题考查了二次函数图象上点的坐标特点和二次函数的性质,能熟练掌握二次函数的性质是解此题的关键.13.【答案】203【解析】解:∵l1//l2//l3,∴DEDF =ABAC,即DE10=46,∴DE=203.故答案为203.直接根据平行线分线段成比例定理得到DEDF =ABAC,然后根据比例的性质可计算出DE的长.本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.14.【答案】√55【解析】解:由图可得,AC=√12+12=√2,AB=√12+32=√10,BC=√22+22=2√2,∴AC2+BC2=AB2,∴△ACB是直角三角形,∴sin∠ABC=ACAB =√2√10=√55,故答案为:√55.根据题意和图形,可以求得AC、BC和AB的长,然后根据勾股定理的逆定理可以判断△ACB的形状,然后即可求得∠ABC的正弦值.本题考查勾股定理的逆定理、解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.15.【答案】9【解析】解:∵DE//BC,∴△ADE∽△ABC,∴S△ADES△ABC =(DEBC)2=916,∴S△ADES四边形DBCE =97,∵四边形DBCE的面积等于7,∴S△ADE=9.故答案为:9.由DE//BC可判定△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方,可得S△ADES△ABC=(DEBC)2=916,从而求得S△ADES四边形DBCE =97,即可求得△ADE的面积为9.本题考查了相似三角形的判定与性质,熟练掌握相关性质及定理是解题的关键.16.【答案】a⃗+2b⃗【解析】解:如图,在梯形ABCD 中,∵AD//BC ,BC =2AD ,AD⃗⃗⃗⃗⃗⃗ =b ⃗ , ∴BC ⃗⃗⃗⃗⃗ =2AD ⃗⃗⃗⃗⃗⃗ =2b ⃗ ,∴AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =a ⃗ +2b ⃗ ,故答案是:a ⃗ +2b ⃗ .根据梯形的性质和三角形法则解答.此题考查了平面向量的知识以及梯形的性质.注意利用图形求解是关键.17.【答案】8013 【解析】解:如图,设正方形DEFG 的边长为x cm ,则DE =PH =x cm ,∴AP =AH −PH =(10−x)cm ,∵DG//BC ,∴△ADG∽△ABC ,∴DG BC =AP AH ,即x 16=10−x 10, ∴x =8013(cm),故答案为8013.设正方形DEFG 的边长为x cm ,则DE =PH =xcm ,所以AP =(10−x)cm ,再证明△ADG∽△ABC ,则利用相似比得到x 16=10−x10,然后根据比例的性质求出x .本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;也考查了正方形的性质.18.【答案】1+√52【解析】解:∵四边形ABCD 是矩形,∴AD =BC ,AB =CD ,∠ADC =∠B =∠DAE =90°,∵把△BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,∴CF =BC ,∠CFE =∠B =90°,EF =BE =1,∠CEB =∠CEF ,∵矩形ABCD 中,DC//AB ,∴∠DCE =∠CEB ,∴∠CEF =∠DCE ,∴DC =DE ,设AE =x ,则AB =CD =DE =x +1,∵∠AFE =∠CFD =90°,∴∠AFE =∠DAE =90°,∵∠AEF =∠DEA ,∴△AEF∽△DEA ,∴AE EF =DE AE ,∴x 1=x+1x ,解得x =1+√52或x =1−√52(舍去),∴AE=1+√52.故答案为:1+√52.根据矩形的性质得到AD=BC,∠ADC=∠B=∠DAE=90°,根据折叠的性质得到CF=BC,∠CFE=∠B= 90°,EF=BE=1,DC=DE,证明△AEF∽△DEA,根据相似三角形的性质即可得到结论.本题考查了翻折变换(折叠问题),平行线的性质,相似三角形的判定和性质,矩形的性质,正确的识别图形是解题的关键.19.【答案】解:y=3x2−6x+5=3(x2−2x)+5=3(x2−2x+1−1)+5=3(x−1)2+2,开口向上,对称轴为直线x=1,顶点(1,2).【解析】利用配方法把一般式化为顶点式,根据二次函数的性质解答.本题考查的是二次函数三种形式的转化、二次函数的性质,掌握配方法、二次函数的性质是解题的关键.20.【答案】解:(1)∵AB//CD,∴△ABE∽△DCE,∴ABCD =BECE,∵AB=6,BE=4,BC=9,∴6CD =45,∴CD=152;(2)∵AE=3,△ABE∽△DCE,∴AEDE =BECE,∴3DE =45,∴DE=154,∵ABBC =69=23,CEDC=5152=23,∴ABBC =CEDC,∵AB//DC,∴∠ECD=∠ABC,∴△ABC∽△ECD,∴ABAC =CEDE,∴6AC =5154,∴AC=92.【解析】(1)证明△ABE∽△DCE ,由相似三角形的性质得出AB CD =BE CE ,则可得出答案; (2)由相似三角形的性质求出DE =154,证明△ABC∽△ECD ,由相似三角形的性质得出AB AC =CE DE ,则可求出答案.本题考查了平行线的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键. 21.【答案】解:(1)设AC =3x ,∵∠C =90°,sin∠ABC =35,∴AB =5x ,BC =4x ,∵tan∠DAC =23, ∴CD =2x ,∵BD =4,BC =CD +BD ,∴4x =2x +4,解得x =2,∴AC =3x =6;(2)作DE ⊥AB 于点E ,由(1)知,AB =5x =10,AC =6,BD =4,∵AB⋅DE 2=BD⋅AC 2, ∴10×DE2=4×62, 解得DE =125,∵AC =6,CD =2x =4,∠C =90°,∴AD =√62+42=2√13,∴AE =√AD 2−DE 2=√(2√13)2−(125)2=345,∴cot∠BAD =AE DE =345125=176,即cot∠BAD 的值是176.【解析】(1)根据题意和锐角三角函数,可以求得AC 的长;(2)根据(1)中的结果,可以得到AC 、CD 的长,然后根据勾股定理可以得到AD 的长,再根据等面积法可以求得DE 的长,从而可以求得AE 的长,然后即可得到cot∠BAD 的值.本题考查解直角三角形、锐角三角函数、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.22.【答案】解:(1)过点E 作EM ⊥AC 于点M ,∵斜坡DE的坡度(或坡比)i=1:2.4,DE=65米,CD=60米,∴设EH=x,则DH=2.4x.在Rt△DEH中,∵EH2+DH2=DE2,即x2+(2.4x)2=652,解得,x=25(米)(负值舍去),∴EH=25米;答:斜坡DE的高EH的长为25米;(2)∵DH=2.4x=60(米),∴CH=DH+DC=60+60=120(米).∵EM⊥AC,AC⊥CD,EH⊥CD,∴四边形EHCM是矩形,∴EM=CH=120米,CM=EH=25米.在Rt△AEM中,∵∠AEM=37°,∴AM=EM⋅tan37°≈120×0.75=90(米),∴AC=AM+CM=90+25=115(米).∴AB=AC−BC=115−92=23(米).答:信号塔AB的高度为23米.【解析】(1)过点E作EM⊥DC交DC的延长线于点M,根据斜坡DE的坡度(或坡比)i=1:2.4可设EH=x,则DH=2.4x,利用勾股定理求出x的值,进而可得出EH;(2)结合(1)得DH的长,故可得出CH的长.由矩形的判定定理得出四边形EHCM是矩形,故可得出EM=HC,CM=EH,再由锐角三角函数的定义求出AM的长,进而可得出答案.本题考查的是解直角三角形的应用−仰角俯角问题、坡度坡角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.【答案】证明:(1)∵四边形ABCD是平行四边形,∴AD//BC,∴∠DEC=∠BCE,∵CE2=DE⋅BC,∴DECE =CEBC,∴△DEC∽△ECB,∴∠EBC=∠DCE;(2)∵AD//BC,AB//CD,∴∠AEB=∠EBC,∠F=∠ECD,∴∠AEB=∠F,又∵∠ABE=∠EBF,∴△ABE∽△EBF,∴BEBF =EFAE,∴BE⋅EF=BE⋅AE.【解析】(1)通过证明△DEC∽△ECB,可得结论;(2)通过证明△ABE∽△EBF,可得△ABE∽△EBF,可得结论.本题考查了相似三角形的判定和性质,平行四边形的性质,熟练运用相似三角形的判定定理是本题的关键.24.【答案】解:(1)∵抛物线y=ax2+bx−2经过点A(2,0)和B(−1,−1),∴{−1=a −b −20=4a +2b −2,解得:{a =23b =−13, ∴抛物线解析式为:y =23x 2−13x −2;(2)①如图1,过点P 作PE ⊥x 轴于E ,∵抛物线y =ax 2+bx −2与y 轴交于点C ,∴点C(0,−2),∴OC =2,∵PE//OC ,∴PEOC =PD DC =23=EDDO ,∴PE =43,∴43=23x 2−13x −2,∴x =−2或x =52(不合题意舍去),∴点P(−2,43);②如图2,过点B 作BH ⊥CO 于H ,由①可知DO =25×3=65,∵B(−1,−1),点C(0,−2),A(2,0)∴OA=OC=2,BH=CH=1,∴∠BCH=45°=∠OCA,∴∠BCA=90°,当点Q在线段AO上时,∵∠QCA=∠PCB,∴∠DCO=∠QCO,又∵CO=CO,∠DOC=∠QOC=90°,∴△DOC≌△QOC(ASA),∴DO=QO=65,∴点Q坐标为(65,0),当点Q′在射线OA上时,∵∠Q′CA=∠PCB,∴∠DCQ′=90°,∴∠CDO+∠DQ′C=90°,∠DCO+∠CDO=90°,∴∠DQ′C=∠DCO,又∵∠DOC=∠Q′OC=90°,∴△DOC∽△COQ′,∴DOCO =COQ′O,∴4=65×Q′O,∴Q′O=103,∴点Q′(103,0),综上所述:点Q坐标为(65,0)或(103,0).【解析】(1)由待定系数法可求解析式;(2)①过点P作PE⊥x轴于E,由平行线分线段成比例可求PE的长,代入解析式可求解;②分两种情况讨论,利用全等三角形的性质和相似三角形的性质可求解.本题二次函数综合题,考查了待定系数法求解析式,二次函数的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,灵活运用这些知识解决问题是解题的关键.25.【答案】解(1)如图1,过点A作DH⊥BC于H,∴∠AHB=90°,∵AB=AC=5√5,∴BC=2BH,在Rt△AHB中,tan∠ABC=AHBH=2,∴AH=2BH,根据勾股定理得,AH2+BH2=AB2,∴(2BH)2+BH2=(5√5)2,∴BH=5,∴BC=2BH=10;(2)∵AB=AC,∴∠ABC=∠ACB,∵tan∠ABC=2,∴tan∠ACB=2,由(1)知,BC=10,∵BF⊥AC,∴∠BFC=90°,在Rt△BFC中,tan∠ACB=BFCF=2,∴BF=2CF,根据勾股定理得,BF2+CF2=BC2,∴(2CF)2+CF2=102,∴CF=2√5,∴AF=AC−CF=5√5−2√5=3√5,如图2,过点C作CK//AB交FG于K,∴△CFK∽△AFD,∴CKAD =CFAF,∴CKAD =2√53√5=23,∴△CGK∽△BGD,∴CKBD =CGBG,∴CG=4,∴CKBD =410+4=27,∴ADBD =37,∴ADAB =310,∴AD=310AB=310×5√5=3√52;(3)如备用图,在Rt△BFC中,根据勾股定理得,BF=√BC2−CF2=√102−(2√5)2=4√5,∵DE⊥BC,∴∠BEQ=90°=∠BFC,∵∠EBQ=∠FBC,∴△BEQ∽△BFC,∴EQCF =BQBC,∵CF=2√5,BC=10,∴2√5=BQ10,∴EQBQ =√55,∴设EQ=√5m,则BQ=5m,根据勾股定理得,BE=2√5m,在Rt△BEQ中,tan∠ABC=DEBE=2,∴DE=2BE=4√5m,根据勾股定理得,BD=10m,∴DQ=DE−EQ=3√5m,∵DE⊥BC,∴∠BEQ=90°,∴∠CBF+∠BQE=90°,∵∠BQE=∠DQF,∴∠CBF+∠DQF=90°,∵∠BFC=90°,∴∠CBF+∠C=90°,∴∠DQF=∠C,∵AB=AC,∴∠ABC=∠C=∠DQF,∵△DQF和△ABC相似,∴①当△DQF∽△ACB时,∴DQAC =QFBC,∴√5m5√5=QF10,∴QF=6m,∵BF=4√5,∴5m+6m=4√5,∴m=4√511,∴BD=10m=40√511,②当△DQF∽△BCA时,DQBC =FQAC,∴3√5m10=5√5,∴FQ=152m,∴152m+5m=4√5,∴m=8√525,∴BD=10m=16√55,即BD的长为40√511或16√55.【解析】(1)先利用等腰三角形的性质判断出BC=2BH,再用三角函数和勾股定理求出BH,即可得出结论;(2)先利用勾股定理和三角函数求出CF,再判断出△CFK∽△AFD和△CGK∽△BGD,得出比例式,即可得出结论;(3)先求出BF=4√5,再判断出△BEQ∽△BFC,得出EQBQ =√55,设EQ=√5m,则BQ=5m,BE=2√5m,进而表示出BD=10m,DQ=3√5m,∠DQF=∠C,再分两种情况,利用相似得出比例式表示出FQ,最后用BF=4√5建立方程求出m,即可得出结论.此题是相似形综合题,主要考查了等腰三角形的性质,锐角三角函数,勾股定理,相似三角形的判定和性质,利用方程的思想解决问题是解本题的关键.。
上海松江区中考一模数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】已知在Rt△ABC中,∠C=90°,如果BC=2,∠A=α,则AC的长为()A.2sinα B.2cosα C.2tanα D.2cotα【答案】D【解析】试题分析:根据锐角三角函数的定义得出cotA=,代入求出即可.∵在Rt△ABC中,∠C=90°,∴cotA=,∵BC=2,∠A=α,∴AC=2cotα,故选D.考点:锐角三角函数的定义.【题文】下列抛物线中,过原点的抛物线是()A.y=x2﹣1 B.y=(x+1)2 C.y=x2+x D.y=x2﹣x﹣1【答案】C.【解析】试题分析:A、y=x2﹣1中,当x=0时,y=﹣1,不过原点;B、y=(x+1)2中,当x=0时,y=1,不过原点;C、y=x2+x中,当x=0时,y=0,过原点;D、y=x2﹣x﹣1中,当x=0时,y=﹣1,不过原点;故选:C.考点:二次函数图象上点的坐标特征.【题文】小明身高1.5米,在操场的影长为2米,同时测得教学大楼在操场的影长为60米,则教学大楼的高度应为()A.45米 B.40米 C.90米 D.80米【答案】A.【解析】试题分析:∵在相同时刻,物高与影长组成的直角三角形相似,∴1.5:2=教学大楼的高度:60,解得教学大楼的高度为45米.故选A.考点:相似三角形的应用.【题文】已知非零向量,,,下列条件中,不能判定∥的是()A.∥∥ B. C. =-2 D. =2,=【答案】B.【解析】试题分析:A、∥∥则、都与平行,三个向量都互相平行,故本选项错误;B、表示两个向量的模的数量关系,方向不一定相同,故不一定平行,故本选项正确;C、 =-2,说明两个向量方向相反,互相平行,故本选项错误;D、 =2,=则、都与平行,三个向量都互相平行,故本选项错误;故选:B.考点:平面向量.【题文】如图,在▱ABCD中,点E是边BA延长线上的一点,CE交AD于点F.下列各式中,错误的是()A. B. C.D.【答案】C.【解析】试题分析:∵AD∥BC∴,故A正确;∵CD∥BE,AB=CD,∴△CDF∽△EBC∴,故B正确;∵AD∥BC,∴△AEF∽△EBC∴,故D正确.∴C错误.故选C.考点:相似三角形的判定与性质;平行四边形的性质.【题文】如图,已知在△ABC中,cosA=,BE、CF分别是AC、AB边上的高,联结EF,那么△AEF和△ABC 的周长比为()A.1:2 B.1:3 C.1:4 D.1:9【答案】B.【解析】试题分析:∵BE、CF分别是AC、AB边上的高,∴∠AEB=∠AFC=90°,∵∠A=∠A,∴△AEB∽△AFC,∴=,∴=,∵∠A=∠A,∴△AEF∽△ABC,∴△AEF与△ABC的周长比=AE:AB,∵cosA==,∴∴△AEF与△ABC的周长比=AE:AB=1:3,故选B.考点:相似三角形的判定与性质.【题文】已知,则的值为.【答案】.【解析】试题分析:用a表示出b,然后代入比例式进行计算.∵,∴b=a,∴==.故答案为:.考点:比例的性质.【题文】计算:(﹣3)﹣(+2)=.【答案】.【解析】试题分析:根据平面向量的加法计算法则和向量数乘的结合律进行计算.本题考查了平面向量,熟记计算法则即可解题,属于基础题型.(﹣3)﹣(+2)=﹣3﹣﹣×2)=.故答案是:.考点:平面向量.【题文】已知抛物线y=(k﹣1)x2+3x的开口向下,那么k的取值范围是.【答案】k<1.【解析】试题分析:由开口向下可得到关于k的不等式,可求得k的取值范围.∵y=(k﹣1)x2+3x的开口向下,∴k﹣1<0,解得k<1,故答案为:k<1.考点:二次函数的性质.【题文】把抛物线y=x2向右平移4个单位,所得抛物线的解析式为.【答案】y=(x﹣4)2.【解析】试题分析:直接根据“左加右减”的原则进行解答即可,将y=x2向右平移4个单位,所得函数解析式为:y=(x﹣4)2.故答案为:y=(x﹣4)2.考点:二次函数图象与几何变换.【题文】已知在△ABC中,∠C=90°,sinA=,BC=6,则AB的长是.【答案】8.【解析】试题分析:利用锐角三角函数定义求出所求即可,∵在△ABC中,∠C=90°,sinA=,BC=6,∴sinA=,即=,解得:AB=8.考点:解直角三角形.【题文】如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、C、E和点B、D、F,如果AC:CE=3:5,BF=9,那么DF=.【答案】.【解析】试题分析:根据平行线分线段成比例定理即可得到结论,∵AC:CE=3:5,∴AC:AE=3:8,∵AB∥CD∥EF,∴,∴BD=,∴DF=,考点:平行线分线段成比例.【题文】已知点A(2,y1)、B(5,y2)在抛物线y=﹣x2+1上,那么y1 y2.(填“>”、“=”或“<”)【答案】>【解析】试题分析:分别计算自变量为2、5时的函数值,然后比较函数值的大小即可,当x=2时,y1=﹣x2+1=﹣3;当x=5时,y2=﹣x2+1=﹣24;∵﹣3>﹣24,∴y1>y2.考点:二次函数图象上点的坐标特征.【题文】已知抛物线y=ax2+bx+c过(﹣1,1)和(5,1)两点,那么该抛物线的对称轴是直线.【答案】x=2.【解析】试题分析:根据函数值相等的点到对称轴的距离相等可求得答案,∵抛物线y=ax2+bx+c过(﹣1,1)和(5,1)两点,∴对称轴为x==2,考点:二次函数的性质.【题文】在△ABC中,AB=AC=5,BC=8,AD⊥BC,垂足为D,BE是△ABC 的中线,AD与BE相交于点G,那么AG的长为.【答案】2.【解析】试题分析:先根据等腰三角形的性质和勾股定理求出AD,再判断点G为△ABC的重心,然后根据三角形重心的性质来求AG的长,∵在△ABC中,AB=AC,AD⊥BC,∴AD==3,∵中线BE与高AD相交于点G,∴点G为△ABC的重心,∴AG=3×=2.考点:三角形的重心;等腰三角形的性质;勾股定理.【题文】在一个距离地面5米高的平台上测得一旗杆底部的俯角为30°,旗杆顶部的仰角为45°,则该旗杆的高度为米.(结果保留根号)【答案】5+5.【解析】试题分析:作CF⊥AB于点F.根据题意可得:在△FBC中,有BF=CE=5米.在△AFC中,有AF=FC×tan30°=5米.则AB=AF+BF=5+5米考点:解直角三角形的应用-仰角俯角问题.【题文】如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为.【答案】.【解析】试题分析:设CE=x,连接AE,由线段垂直平分线的性质可知AE=BE=BC+CE,在Rt△ACE中,利用勾股定理即可求出CE的长度,∵DE是线段AB的垂直平分线,∴AE=BE=BC+CE=3+x,∴在Rt△ACE中,AE2=AC2+CE2,即(3+x)2=42+x2,解得x=.考点:线段垂直平分线的性质.【题文】如图,在△ABC中,∠ACB=90°,AB=9,cosB=,把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E,则点A、E之间的距离为.【答案】4.【解析】试题分析:∵在△ABC中,∠ACB=90°,AB=9,cosB=,∴BC=AB•cosB=9×=6,AC==3.∵把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E,∴△ABC≌△EDC,BC=DC=6,AC=EC=3,∠BCD=∠ACE,∴∠B=∠CAE.作CM⊥BD于M,作CN⊥AE于N,则∠BCM=∠BCD,∠ACN=∠ACE,∴∠BCM=∠ACN.∵在△ANC中,∠ANC=90°,AC=3,cos∠CAN=cosB=,∴AN=AC•cos∠CAN=3×=2,∴AE=2AN=4.考点:旋转的性质;解直角三角形.【题文】计算:.【答案】.【解析】试题分析:直接将特殊角的三角函数值代入求出答案.试题解析:原式====.【考点】实数的运算;特殊角的三角函数值.【题文】如图,已知点D是△ABC的边BC上一点,且BD=CD,设=, =.(1)求向量(用向量、表示);(2)求作向量在、方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)【答案】略【解析】试题分析:(1)在△ABD中,利用平面向量的三角形加法则进行计算;(2)根据向量加法的平行四边形法则,过向量的起点作BC的平行线,即可得出向量向量在、方向上的分向量.试题解析:(1)∵,∴∵,∴∵,且∴;(2)解:如图,所以,向量、即为所求的分向量.【考点】*平面向量.【题文】如图,已知AC∥BD,AB和CD相交于点E,AC=6,BD=4,F是BC上一点,S△BEF:S△EFC=2:3.(1)求EF的长;(2)如果△BEF的面积为4,求△ABC的面积.【答案】(1);(2)25.【解析】试题分析:(1)先根据S△BEF:S△EFC=2:3得出CF:BF的值,再由平行线分线段成比例定理即可得出结论;(2)先根据AC∥BD,EF∥BD得出EF∥AC,故△BEF∽△ABC,再由相似三角形的性质即可得出结论.试题解析:(1)∵AC∥BD,∴∵AC=6,BD=4,∴∵△BEF和△CEF同高,且S△BEF:S△CEF=2:3,∴,∴.∴EF∥BD,∴,∴,∴(2)∵AC∥BD,EF∥BD,∴EF∥AC,∴△BEF∽△ABC,∴.∵,∴.∵S△BEF=4,∴,∴S△ABC=25.【考点】相似三角形的判定与性质.【题文】某大型购物商场在一楼和二楼之间安装自动扶梯AC,截面如图所示,一楼和二楼地面平行(即AB 所在的直线与CD平行),层高AD为8米,∠ACD=20°,为使得顾客乘坐自动扶梯时不至于碰头,A、B之间必须达到一定的距离.(1)要使身高2.26米的姚明乘坐自动扶梯时不碰头,那么A、B之间的距离至少要多少米?(精确到0.1米)(2)如果自动扶梯改为由AE、EF、FC三段组成(如图中虚线所示),中间段EF为平台(即EF∥DC),AE 段和FC段的坡度i=1:2,求平台EF的长度.(精确到0.1米)(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【答案】(1)6.3;(2)6.2【解析】试题分析:(1)连接AB,作BG⊥AB交AC于点G,在Rt△ABG中,利用已知条件求出AB的长即可;(2)设直线EF交AD于点P,作CQ⊥EF于点Q,设AP=x,则PE=2x,PD=8﹣x,在Rt△ACD中利用已知数据可求出CD的长,进而可求出台EF的长度.试题解析:(1)连接AB,作BG⊥AB交AC于点G,则∠ABG=90°∵AB∥CD,∴∠BAG=∠ACD=20°,在Rt△ABG中,,∵BG=2.26,tan20°≈0.36,∴,∴AB≈6.3,答:A、B之间的距离至少要6.3米.(2)设直线EF交AD于点P,作CQ⊥EF于点Q,∵AE和FC的坡度为1:2,∴,设AP=x,则PE=2x,PD=8﹣x,∵EF∥DC,∴CQ=PD=8﹣x,∴FQ=2(8﹣x)=16﹣2x,在Rt△ACD中,,∵AD=8,∠ACD=20°,∴CD≈22.22∵PE+EF+FQ=CD,∴2x+EF+16﹣2x=22.22,∴EF=6.22≈6.2答:平台EF的长度约为6.2米.【考点】解直角三角形的应用-坡度坡角问题.【题文】如图,Rt△ABC中,∠ACB=90°,D是斜边AB上的中点,E是边BC上的点,AE与CD交于点F,且AC2=CE•CB.(1)求证:AE⊥CD;(2)连接BF,如果点E是BC中点,求证:∠EBF=∠EAB.【答案】略【解析】试题分析:(1)先根据题意得出△ACB∽△ECA,再由直角三角形的性质得出CD=AD,由∠CAD+∠ABC=90°可得出∠ACD+∠EAC=90°,进而可得出∠AFC=90°;(2)根据AE⊥CD可得出∠EFC=90°,∠ACE=∠EFC,故可得出△ECF∽△EAC,再由点E是BC的中点可知CE=BE,故,根据∠BEF=∠AEB得出△BEF∽△AEB,进而可得出结论.试题解析:(1)∵AC2=CE•CB,∴.又∵∠ACB=∠ECA=90°∴△ACB∽△ECA,∴∠ABC=∠EAC.∵点D是AB的中点,∴CD=AD,∴∠ACD=∠CAD∵∠CAD+∠ABC=90°,∴∠ACD+∠EAC=90°∴∠AFC=90°,∴AE⊥CD(2)∵AE⊥CD,∴∠EFC=90°,∴∠ACE=∠EFC又∵∠AEC=∠CEF,∴△ECF∽△EAC∴∵点E是BC的中点,∴CE=BE,∴∵∠BEF=∠AEB,∴△BEF∽△AEB∴∠EBF=∠EAB.【考点】相似三角形的判定与性质.【题文】如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,联结BC,BE,求∠CBE的正切值;(3)点M是抛物线对称轴上一点,且△DMB和△BCE相似,求点M坐标.【答案】(1)y=﹣x2+2x+3,(1,4);(2);(3)(1,)或(1,﹣2).【解析】试题分析:(1)利用待定系数法求出二次函数的解析式,根据二次函数的性质解答即可;(2)过点E作EH⊥BC于点H,根据轴对称的性质求出点E的坐标,根据三角形的面积公式求出EH、BH,根据正切的定义计算即可;(3)分和两种情况,计算即可.试题解析:(1)∵抛物线y=﹣x2+bx+c经过点B(3,0)和点C(0,3)∴,解得,∴抛物线解析式为y=﹣x2+2x+3,y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线顶点D的坐标为(1,4),(2)由(1)可知抛物线对称轴为直线x=1,∵点E与点C(0,3)关于直线x=1对称,∴点E(2,3),过点E作EH⊥BC于点H,∵OC=OB=3,∴BC=,∵,CE=2,∴,解得EH=,∵∠ECH=∠CBO=45°,∴CH=EH=,∴BH=2,∴在Rt△BEH中,;(3)当点M在点D的下方时设M(1,m),对称轴交x轴于点P,则P(1,0),∴BP=2,DP=4,∴,∵,∠CBE、∠BDP均为锐角,∴∠CBE=∠BDP,∵△DMB与△BEC相似,∴或,①,∵DM=4﹣m,,,∴,解得,,∴点M(1,)②,则,解得m=﹣2,∴点M(1,﹣2),当点M在点D的上方时,根据题意知点M不存在.综上所述,点M的坐标为(1,)或(1,﹣2).【考点】二次函数综合题.【题文】如图,已知四边形ABCD是矩形,cot∠ADB=,AB=16.点E在射线BC上,点F在线段BD上,且∠DEF=∠ADB.(1)求线段BD的长;(2)设BE=x,△DEF的面积为y,求y关于x的函数关系式,并写出函数定义域;(3)当△DEF为等腰三角形时,求线段BE的长.【答案】(1)20;(2),定义域为0<x≤24;(3)20或24或.【解析】试题分析:(1)由矩形的性质和三角函数定义求出AD,由勾股定理求出BD即可;(2)证明△EDF∽△BDE,得出,求出CE=|x﹣12|,由勾股定理求出DE,即可得出结果;(3)当△DEF是等腰三角形时,△BDE也是等腰三角形,分情况讨论:①当BE=BD时;②当DE=DB时;③当EB=ED时;分别求出BE即可.试题解析:(1)∵四边形ABCD是矩形,∴∠A=90°,在Rt△BAD中,,AB=16,∴AD=12∴;(2)∵AD∥BC,∴∠ADB=∠DBC,∵∠DEF=∠ADB,∴∠DEF=∠DBC,∵∠EDF=∠BDE,∴△EDF∽△BDE,∴,∵BC=AD=12,BE=x,∴CE=|x﹣12|,∵CD=AB=16∴在Rt△CDE中,,∵,∴,∴,定义域为0<x≤24(3)∵△EDF∽△BDE,∴当△DEF是等腰三角形时,△BDE也是等腰三角形,①当BE=BD时∵BD=20,∴BE=20②当DE=DB时,∵DC⊥BE,∴BC=CE=12,∴BE=24;③当EB=ED时,作EH⊥BD于H,则BH=,cos∠HBE=cos∠ADB,即∴,解得:BE=;综上所述,当△DEF时等腰三角形时,线段BE的长为20或24或.【考点】四边形综合题.。
上海市松江区2019-2020学年中考数学一月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在扇形CAB 中,CA=4,∠CAB=120°,D 为CA 的中点,P 为弧BC 上一动点(不与C ,B 重合),则2PD+PB 的最小值为( )A .B .C .10D .2.如图所示:有理数,a b 在数轴上的对应点,则下列式子中错误..的是( )A .0ab >B .0a b +<C .1a b <D .0a b -<3.已知∠BAC=45。
,一动点O 在射线AB 上运动(点O 与点A 不重合),设OA=x ,如果半径为1的⊙O 与射线AC 有公共点,那么x 的取值范围是( )A .0<x≤1B .1≤x <2C .0<x≤2D .x >24.下列图标中,是中心对称图形的是( )A .B .C .D .5.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .406.已知两组数据,2、3、4和3、4、5,那么下列说法正确的是( )A .中位数不相等,方差不相等B .平均数相等,方差不相等C .中位数不相等,平均数相等D .平均数不相等,方差相等7.为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( ) 中位数众数 平均数 方差 9.29.3 9.1 0.3 A .中位数 B .众数 C .平均数 D .方差8.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-29.将一把直尺和一块含30°和60°角的三角板ABC 按如图所示的位置放置,如果∠CDE=40°,那么∠BAF 的大小为( )A .10°B .15°C .20°D .25° 10.13的负倒数是( ) A .13 B .-13C .3D .﹣3 11.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( ) A .16 B .13 C .12 D .2312.2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为( )A .0.76×104B .7.6×103C .7.6×104D .76×102二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(2016辽宁省沈阳市)如图,在Rt △ABC 中,∠A=90°,AB=AC ,BC=20,DE 是△ABC 的中位线,点M 是边BC 上一点,BM=3,点N 是线段MC 上的一个动点,连接DN ,ME ,DN 与ME 相交于点O .若△OMN 是直角三角形,则DO 的长是______.14.如图,已知直线////a b c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 和B 、D 、F ,如果3AC =,5CE =,4DF =,那么BD =______.15.已知一组数据1,2,x ,2,3,3,5,7的众数是2,则这组数据的中位数是 .16.计算52a a ÷的结果等于_____________.17.如图,四边形ABCD 内接于⊙O ,BD 是⊙O 的直径,AC 与BD 相交于点E ,AC=BC ,DE=3,AD=5,则⊙O 的半径为___________.18.如图,在矩形ABCD 中,E 是AD 边的中点,BE AC ⊥,垂足为点F ,连接DF ,分析下列四个结论:AEF V ①∽CAB V ;CF 2AF =②;DF DC =③;tan CAD 2.∠=④其中正确的结论有______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)(1)求这7天内小申家每天用水量的平均数和中位数;(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.20.(6分)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元.21.(6分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地要走多少千米?开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)22.(8分)计算:(﹣2018)0﹣4sin45°82﹣1.23.(8分)在“双十二”期间,,A B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在,A B两个超市的标价相同,根据商场的活动方式:(1)若一次性付款4200元购买这种篮球,则在B商场购买的数量比在A商场购买的数量多5个,请求出这种篮球的标价;(2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)24.(10分)(1)计算:2﹣2﹣12+(16)0+2sin60°.(2)先化简,再求值:(121x xx x---+)÷22121xx x-++,其中x=﹣1.25.(10分)问题提出(1)如图1,在△ABC中,∠A=75°,∠C=60°,AC=2,求△ABC的外接圆半径R的值;问题探究(2)如图2,在△ABC中,∠BAC=60°,∠C=45°,AC=86,点D为边BC上的动点,连接AD以AD为直径作⊙O交边AB、AC分别于点E、F,接E、F,求EF的最小值;问题解决(3)如图3,在四边形ABCD中,∠BAD=90°,∠BCD=30°,AB=AD,BC+CD=123,连接AC,线段AC的长是否存在最小值,若存在,求最小值:若不存在,请说明理由.26.(12分)如图,抛物线l:y=(x﹣h)2﹣2与x轴交于A,B两点(点A在点B的左侧),将抛物线ι在x轴下方部分沿轴翻折,x轴上方的图象保持不变,就组成了函数ƒ的图象.(1)若点A的坐标为(1,0).①求抛物线l的表达式,并直接写出当x为何值时,函数ƒ的值y随x的增大而增大;②如图2,若过A点的直线交函数ƒ的图象于另外两点P,Q,且S△ABQ=2S△ABP,求点P的坐标;(2)当2<x<3时,若函数f的值随x的增大而增大,直接写出h的取值范围.27.(12分)如图,AB为⊙O的直径,直线BM⊥AB于点B,点C在⊙O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为⊙O的切线交BM于点F.(1)求证:CF=DF;(2)连接OF,若AB=10,BC=6,求线段OF的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根据勾股定理得到PP′=,求得2PD+PB≥4,于是得到结论.【详解】如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2,∵=2,∴△APD∽△ABP′,∴BP′=2PD,∴2PD+PB=BP′+PB≥PP′,∴PP′=,∴2PD+PB≥4,∴2PD+PB的最小值为4,故选D .【点睛】本题考查了轴对称-最短距离问题,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.2.C【解析】【分析】从数轴上可以看出a 、b 都是负数,且a <b ,由此逐项分析得出结论即可.【详解】由数轴可知:a<b<0,A 、两数相乘,同号得正,ab >0是正确的;B 、同号相加,取相同的符号,a+b <0是正确的;C 、a <b <0,1a b >,故选项是错误的; D 、a-b=a+(-b )取a 的符号,a-b <0是正确的.故选:C .【点睛】此题考查有理数的混合运算,数轴,解题关键在于结合数轴进行解答.3.C【解析】如下图,设⊙O 与射线AC 相切于点D ,连接OD ,∴∠ADO=90°,∵∠BAC=45°,∴△ADO 是等腰直角三角形,∴AD=DO=1,∴OA=2,此时⊙O 与射线AC 有唯一公共点点D ,若⊙O 再向右移动,则⊙O 与射线AC 就没有公共点了,∴x 的取值范围是02<≤x .故选C.4.B【解析】【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.B【解析】试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B.考点:规律型:图形变化类.6.D【解析】【分析】分别利用平均数以及方差和中位数的定义分析,进而求出答案.【详解】2、3、4的平均数为:13(2+3+4)=3,中位数是3,方差为:13[(2﹣3)2+(3﹣3)2+(3﹣4)2]=23;3、4、5的平均数为:13(3+4+5)=4,中位数是4,方差为:13[(3﹣4)2+(4﹣4)2+(5﹣4)2]=23;故中位数不相等,方差相等.故选:D.【点睛】本题考查了平均数、中位数、方差的意义,解答本题的关键是熟练掌握这三种数的计算方法.7.A【解析】【分析】根据中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案.【详解】如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数.故选A .点睛:本题主要考查了中位数,关键是掌握中位数定义.8.A【解析】【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x 的不等式x-b>0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->Qx b ∴>综合上述可得32b -≤<-故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.9.A【解析】【分析】先根据∠CDE=40°,得出∠CED=50°,再根据DE ∥AF ,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF 的大小.【详解】由图可得,∠CDE=40° ,∠C=90°,∴∠CED=50°,又∵DE ∥AF ,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°−50°=10°,故选A.【点睛】本题考查了平行线的性质,熟练掌握这一点是解题的关键.10.D【解析】【分析】根据倒数的定义,互为倒数的两数乘积为1,2×13=1.再求出2的相反数即可解答.【详解】根据倒数的定义得:2×13=1. 因此13的负倒数是-2. 故选D .【点睛】本题考查了倒数,解题的关键是掌握倒数的概念.11.D【解析】试题解析:设小明为A ,爸爸为B ,妈妈为C ,则所有的可能性是:(ABC ),(ACB ),(BAC ),(BCA ),(CAB ),(CBA ),∴他的爸爸妈妈相邻的概率是:4263 ,故选D . 12.B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:7600=7.6×103, 故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.256或5013.【解析】由图可知,在△OMN中,∠OMN的度数是一个定值,且∠OMN不为直角. 故当∠ONM=90°或∠MON=90°时,△OMN是直角三角形. 因此,本题需要按以下两种情况分别求解.(1) 当∠ONM=90°时,则DN⊥BC.过点E作EF⊥BC,垂足为F.(如图)∵在Rt△ABC中,∠A=90°,AB=AC,∴∠C=45°,∵BC=20,∴在Rt△ABC中,2cos cos4520102 AC BC C BC=⋅=⋅︒==∵DE是△ABC的中位线,∴1110252 22CE AC==⨯=∴在Rt△CFE中,2sin sin45525EF CE C BC=⋅=⋅︒==,5FC EF==.∵BM=3,BC=20,FC=5,∴MF=BC-BM-FC=20-3-5=12. ∵EF=5,MF=12,∴在Rt△MFE中,5 tan12EFEMFMF∠==,∵DE是△ABC的中位线,BC=20,∴11201022DE BC==⨯=,DE∥BC,∴∠DEM=∠EMF,即∠DEO=∠EMF,∴5 tan tan12DEO EMF∠=∠=,∴在Rt△ODE中,525tan10126 DO DE DEO=⋅∠=⨯=.(2) 当∠MON=90°时,则DN⊥ME.过点E作EF⊥BC,垂足为F.(如图)∵EF=5,MF=12,∴在Rt△MFE中,222212513ME MF EF+=+=,∴在Rt△MFE中,5 sin13EFEMFME∠==,∵∠DEO=∠EMF,∴5 sin sin13DEO EMF∠=∠=,∵DE=10,∴在Rt△DOE中,550sin101313 DO DE DEO=⋅∠=⨯=.综上所述,DO的长是256或5013.故本题应填写:256或5013.点睛:在解决本题的过程中,难点在于对直角三角形中直角的分类讨论;关键点是通过等角代换将一个在原直角三角形中不易求得的三角函数值转换到一个容易求解的直角三角形中进行求解. 另外,本题也可以用相似三角形的方法进行求解,不过利用锐角三角函数相对简便.14.12 5【解析】【分析】由直线a∥b∥c,根据平行线分线段成比例定理,即可得AC BDCE DF=,又由AC=3,CE=5,DF=4,即可求得BD的长.【详解】解:由直线a∥b∥c,根据平行线分线段成比例定理,即可得AC BD CE DF=,又由AC=3,CE=5,DF=4可得:354BD =解得:BD=12 5.故答案为12 5.【点睛】此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用. 15.2.1【解析】试题分析:∵数据1,2,x,2,3,3,1,7的众数是2,∴x=2,∴这组数据的中位数是(2+3)÷2=2.1;故答案为2.1.考点:1、众数;2、中位数16.a3【解析】试题解析:x5÷x2=x3.考点:同底数幂的除法.17.15 2【解析】【分析】如图,作辅助线CF;证明CF⊥AB(垂径定理的推论);证明AD⊥AB,得到AD∥OC,△ADE∽△COE;得到AD:CO=DE:OE,求出CO的长,即可解决问题.【详解】如图,连接CO并延长,交AB于点F;∵AC=BC,∴CF⊥AB(垂径定理的推论);∵BD是⊙O的直径,∴AD⊥AB;设⊙O的半径为r;∴AD∥OC,△ADE∽△COE,∴AD:CO=DE:OE,而DE=3,AD=5,OE=r-3,CO=r,∴5:r=3:(r-3),解得:r=152, 故答案为152. 【点睛】该题主要考查了相似三角形的判定及其性质、垂径定理的推论等几何知识点的应用问题;解题的关键是作辅助线,构造相似三角形,灵活运用有关定来分析、判断.18.①②③【解析】【分析】①证明∠EAC=∠ACB ,∠ABC=∠AFE=90°即可;②由AD ∥BC ,推出△AEF ∽△CBF ,得到AE AF BC CF =,由AE=12AD=12BC ,得到12AF CF =,即CF=2AF ; ③作DM ∥EB 交BC 于M ,交AC 于N ,证明DM 垂直平分CF ,即可证明;④设AE=a ,AB=b ,则AD=2a ,根据△BAE ∽△ADC ,得到2b a a b =,即a ,可得tan ∠CAD=22b a =. 【详解】 如图,过D 作DM ∥BE 交AC 于N ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC=90°,AD=BC ,∵BE ⊥AC 于点F ,∴∠EAC=∠ACB ,∠ABC=∠AFE=90°,∴△AEF ∽△CAB ,故①正确;∵AD ∥BC ,∴△AEF ∽△CBF , ∴AE AF BC CF=, ∵AE=12AD=12BC , ∴12AF CF =,即CF=2AF , ∴CF=2AF ,故②正确;作DM ∥EB 交BC 于M ,交AC 于N ,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12 BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,∴2b aa b=,即2a,∴tan∠CAD=222ba=,故④错误;故答案为:①②③.【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)平均数为800升,中位数为800升;(2)12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,一个月估计可以节约用水3000升.【解析】试题分析:(1)根据平均数和中位数的定义求解可得;(2)用洗衣服的水量除以第3天的用水总量即可得;(3)根据条形图给出合理建议均可,如:将洗衣服的水留到冲厕所.试题解析:解:(1)这7天内小申家每天用水量的平均数为(815+780+800+785+790+825+805)÷7=800(升),将这7天的用水量从小到大重新排列为:780、785、790、800、805、815、825,∴用水量的中位数为800升;(2)100800×100%=12.5%.答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,每天可节约用水100升,一个月估计可以节约用水100×30=3000升.20.(1)一天可获利润2000元;(2)①每件商品应降价2元或8元;②当2≤x≤8时,商店所获利润不少于2160元.【解析】:(1)原来一天可获利:20×100=2000元;(2)①y=(20-x)(100+10x)=-10(x2-10x-200),由-10(x2-10x-200)=2160,解得:x1=2,x2=8,∴每件商品应降价2或8元;②观察图像可得21.(1)开通隧道前,汽车从A地到B地要走2)千米;(2)汽车从A地到B地比原来少走的路程为23)]千米.【解析】【分析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.【详解】(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=CDBC,BC=80千米,∴CD=BC•sin30°=80×12=40(千米),AC=CD402sin45︒=(千米),AC+BC=80+1-8(千米),答:开通隧道前,汽车从A地到B地要走(80+1-8)千米;(2)∵cos30°=BDBC,BC=80(千米),∴BD=BC•cos30°=80×3=4032(千米),∵tan45°=CDAD,CD=40(千米),∴AD=CD40tan45︒=(千米),∴AB=AD+BD=40+403(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=80+1-8﹣40﹣403=40+40(23)-(千米).答:汽车从A地到B地比原来少走的路程为[40+40(23)-]千米.【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.22.1 2 .【解析】【分析】根据零指数幂和特殊角的三角函数值进行计算【详解】解:原式=1﹣4×2+22﹣12=1﹣2+2﹣=1 2【点睛】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.23.(1)这种篮球的标价为每个50元;(2)见解析【解析】【分析】(1)设这种篮球的标价为每个x 元,根据题意可知在B 超市可买篮球42000.8x个,在A 超市可买篮球42003000.9x+个,根据在B 商场比在A 商场多买5个列方程进行求解即可; (2)分情况,单独在A 超市买100个、单独在B 超市买100个、两家超市共买100个进行讨论即可得.【详解】(1)设这种篮球的标价为每个x 元, 依题意,得4200420030050.80.9x x+-=, 解得:x=50,经检验:x=50是原方程的解,且符合题意,答:这种篮球的标价为每个50元;(2)购买100个篮球,最少的费用为3850元,单独在A 超市一次买100个,则需要费用:100×50×0.9-300=4200元, 在A 超市分两次购买,每次各买50个,则需要费用:2(50×50×0.9-300)=3900元, 单独在B 超市购买:100×50×0.8=4000元, 在A 、B 两个超市共买100个,根据A 超市的方案可知在A 超市一次购买:20000.950⨯=4449,即购买45个时花费最小,为45×50×0.9-300=1725元,两次购买,每次各买45个,需要1725×2=3450元,其余10个在B 超市购买,需要10×50×0.8=400元,这样一共需要3450+400=3850元, 综上可知最少费用的购买方案:在A 超市分两次购买,每次购买45个篮球,费用共为3450元;在B 超市购买10个,费用400元,两超市购买100个篮球总费用3850元.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.24.(1)54-(2)20172018 【解析】【分析】(1)根据负整数指数幂、二次根式、零指数幂和特殊角的三角函数值可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【详解】解:(1)原式=14﹣=14﹣54; (2)原式=2(1)(1)(2)(+1)(1)21x x x x x x x x -+--⋅+-=222 12(+1)(1)21 x x x xx x x--+⋅+-=2 21(+1) (1)21 x xx x x-⋅+-=+1 xx,当x=﹣1时,原式=2018+12018--=20172018.【点睛】本题考查分式的化简求值、绝对值、零指数幂、负整数指数幂和特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.25.(1)△ABC的外接圆的R为1;(2)EF的最小值为2;(3)存在,AC的最小值为92.【解析】【分析】(1)如图1中,作△ABC的外接圆,连接OA,OC.证明∠AOC=90°即可解决问题;(2)如图2中,作AH⊥BC于H.当直径AD的值一定时,EF的值也确定,根据垂线段最短可知当AD 与AH重合时,AD的值最短,此时EF的值也最短;(3)如图3中,将△ADC绕点A顺时针旋转90°得到△ABE,连接EC,作EH⊥CB交CB的延长线于H,设BE=CD=x.证明EC=AC,构建二次函数求出EC的最小值即可解决问题.【详解】解:(1)如图1中,作△ABC的外接圆,连接OA,OC.∵∠B=180°﹣∠BAC﹣∠ACB=180°﹣75°﹣10°=45°,又∵∠AOC=2∠B,∴∠AOC=90°,∴AC=2,∴OA=OC=1,∴△ABC的外接圆的R为1.(2)如图2中,作AH⊥BC于H.∵AC=86,∠C=45°,∴AH=AC•sin45°=86×22=83,∵∠BAC=10°,∴当直径AD的值一定时,EF的值也确定,根据垂线段最短可知当AD与AH重合时,AD的值最短,此时EF的值也最短,如图2﹣1中,当AD⊥BC时,作OH⊥EF于H,连接OE,OF.∵∠EOF=2∠BAC=20°,OE=OF,OH⊥EF,∴EH=HF,∠OEF=∠OFE=30°,∴EH=OF•cos30°=43•3=1,∴EF=2EH=2,∴EF的最小值为2.(3)如图3中,将△ADC绕点A顺时针旋转90°得到△ABE,连接EC,作EH⊥CB交CB的延长线于H,设BE=CD=x.∵∠AE=AC,∠CAE=90°,∴EC=2AC,∠AEC=∠ACE=45°,∴EC的值最小时,AC的值最小,∵∠BCD=∠ACB+∠ACD=∠ACB+∠AEB=30°,∴∠∠BEC+∠BCE=10°,∴∠EBC=20°,∴∠EBH=10°,∴∠BEH=30°,∴BH=12x,EH=3x,∵CD+BC=23,CD=x,∴BC=23﹣x∴EC2=EH2+CH2=(3x)2+211232x x⎛⎫+-⎪⎝⎭=x2﹣23x+432,∵a=1>0,∴当x=﹣123-=13时,EC的长最小,此时EC=18,∴AC=22EC=92,∴AC的最小值为92.【点睛】本题属于圆综合题,考查了圆周角定理,勾股定理,解直角三角形,二次函数的性质等知识,解题的关键是学会添加常用辅助线,学会构建二次函数解决最值问题,属于中考压轴题.26.(1)①当1<x<3或x>5时,函数ƒ的值y随x的增大而增大,②P(,);(2)当3≤h≤4或h≤0时,函数f的值随x的增大而增大.【解析】试题分析:(1)①利用待定系数法求抛物线的解析式,由对称性求点B的坐标,根据图象写出函数ƒ的值y随x的增大而增大(即呈上升趋势)的x的取值;②如图2,作辅助线,构建对称点F和直角角三角形AQE,根据S△ABQ=2S△ABP,得QE=2PD,证明△PAD∽△QAE,则,得AE=2AD,设AD=a,根据QE=2FD列方程可求得a的值,并计算P 的坐标;(2)先令y=0求抛物线与x轴的两个交点坐标,根据图象中呈上升趋势的部分,有两部分:分别讨论,并列不等式或不等式组可得h的取值.试题解析:(1)①把A(1,0)代入抛物线y=(x﹣h)2﹣2中得:(x﹣h)2﹣2=0,解得:h=3或h=﹣1,∵点A在点B的左侧,∴h>0,∴h=3,∴抛物线l的表达式为:y=(x﹣3)2﹣2,∴抛物线的对称轴是:直线x=3,由对称性得:B(5,0),由图象可知:当1<x<3或x>5时,函数ƒ的值y随x的增大而增大;②如图2,作PD⊥x轴于点D,延长PD交抛物线l于点F,作QE⊥x轴于E,则PD∥QE,由对称性得:DF=PD,∵S△ABQ=2S△ABP,∴AB•QE=2×AB•PD,∴QE=2PD,∵PD∥QE,∴△PAD∽△QAE,∴,∴AE=2AD,设AD=a,则OD=1+a,OE=1+2a,P(1+a,﹣[(1+a﹣3)2﹣2]),∵点F、Q在抛物线l上,∴PD=DF=﹣[(1+a﹣3)2﹣2],QE=(1+2a﹣3)2﹣2,∴(1+2a﹣3)2﹣2=﹣2[(1+a﹣3)2﹣2],解得:a=或a=0(舍),∴P(,);(2)当y=0时,(x﹣h)2﹣2=0,解得:x=h+2或h﹣2,∵点A在点B的左侧,且h>0,∴A(h﹣2,0),B(h+2,0),如图3,作抛物线的对称轴交抛物线于点C,分两种情况:①由图象可知:图象f在AC段时,函数f的值随x的增大而增大,则,∴3≤h≤4,②由图象可知:图象f点B的右侧时,函数f的值随x的增大而增大,即:h+2≤2,h≤0,综上所述,当3≤h≤4或h≤0时,函数f的值随x的增大而增大.考点:待定系数法求二次函数的解析式;二次函数的增减性问题、三角形相似的性质和判定;一元二次方程;一元一次不等式组.27.(1)详见解析;(2)OF=254.【解析】【分析】(1)连接OC,如图,根据切线的性质得∠1+∠3=90°,则可证明∠3=∠4,再根据圆周角定理得到∠ACB=90°,然后根据等角的余角相等得到∠BDC=∠5,从而根据等腰三角形的判定定理得到结论;(2)根据勾股定理计算出AC=8,再证明△ABC∽△ABD,利用相似比得到AD=252,然后证明OF为△ABD的中位线,从而根据三角形中位线性质求出OF的长.【详解】(1)证明:连接OC,如图,∵CF为切线,∴OC⊥CF,∴∠1+∠3=90°,∵BM⊥AB,∴∠2+∠4=90°,∵OC=OB,∴∠1=∠2,∴∠3=∠4,∵AB为直径,∴∠ACB=90°,∴∠3+∠5=90°,∠4+∠BDC=90°,∴∠BDC=∠5,∴CF=DF;(2)在Rt△ABC中,AC=8,∵∠BAC=∠DAB,∴△ABC∽△ABD,∴AB ACAD AB=,即10810AD=,∴AD=25 2,∵∠3=∠4,∴FC=FB,而FC=FD,∴FD=FB,而BO=AO,∴OF为△ABD的中位线,∴OF=12AD=254.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理.Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。
2020年上海市松江区中考一模数学试卷1.(2020·上海松江区·模拟)已知二次函数y=ax2+bx+c的图象如图所示,那么下列判断正确的是( )A.a>0,b>0,c>0B.a<0,b<0,c<0C.a<0,b>0,c>0D.a<0,b<0,c>02.(2020·上海松江区·模拟)如果点A(1,3),B(m,3)是抛物线y=a(x−2)2+ℎ上两个不同的点,那么m的值为( )A.2B.3C.4D.53.(2020·上海松江区·模拟)在以O为坐标原点的直角坐标平面内,有一点A(3,4),射线OA与x轴正半轴的夹角为α,那么cosα的值为( )A.35B.43C.45D.344.(2020·上海松江区·模拟)下列两个三角形不一定相似的是( )A.两条直角边比都是2:3的两个直角三角形B.腰与底的比都是2:3的两个等腰三角形C.有一个内角为50∘的两个直角三角形D.有一个内角为50∘的两个等腰三角形5.(2020·上海松江区·模拟)如果a⃗+b⃗⃗=c⃗,a⃗−b⃗⃗=3c⃗,且c⃗≠0⃗⃗,下列结论正确的是( )A.∣a⃗∣=∣∣b⃗⃗∣∣B.a⃗+2b⃗⃗=0C.a⃗与b⃗⃗方向相同D.a⃗与b⃗⃗方向相反6.(2020·上海松江区·模拟)如图,两条宽度都为1的纸条,交叉重叠放在一起,它们的夹角为锐角α,它们重叠部分(阴影部分)的面积是1.5,那么sinα的值为( )A . 34B . 12C . 23D . 327. (2020·上海松江区·模拟)已知:xy =23,那么 2x−y x+y= .8. (2020·上海松江区·模拟)已知线段 a 是线段 b ,c 的比例中项,如果 a =2,b =3,那么 c = .9. (2020·上海松江区·模拟)若两个相似三角形的面积比为 3:4,则它们的相似比为 .10. (2020·上海松江区·模拟)已知点 P 是线段 AB 上黄金分割点,AP >PB ,且 AP =2,那么PB = .11. (2020·上海松江区·模拟)已知 Rt △ABC 中,若 ∠C =90∘,AC =3,BC =2,则 ∠A 的余切值为 .12. (2020·上海松江区·模拟)已知二次函数 f (x )=12x 2+bx +c 图象的对称轴为直线 x =4,则f (1) f (3).(填“>”或“<”)13. (2020·上海松江区·模拟)在直角坐标平面中,将抛物线 y =2(x +1)2 先向上平移 1 个单位,再向右平移 1 个单位,那么平移后的抛物线表达式是 .14. (2020·上海松江区·模拟)如图,已知 D 是 △ABC 的边 AC 上一点,且 AD =2DC .如果AB ⃗⃗⃗⃗⃗⃗=a ⃗,AC ⃗⃗⃗⃗⃗⃗=b ⃗⃗,那么向量 BD ⃗⃗⃗⃗⃗⃗⃗ 关于 a ⃗,b⃗⃗ 的分解式是 .15.(2020·上海松江区·模拟)如图,在正方形网格中,点A,B,C是小正方形的顶点,那么tan∠BAC的值为.16.(2020·上海松江区·模拟)如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米.那么斜面AB的坡度为.17.(2020·上海松江区·模拟)以一个等腰直角三角形的腰为边分别向形外做等边三角形,我们把这两个等边三角形重心之间的距离称作这个等腰直角三角形的“肩心距”.如果一个等腰直角三角形的腰长为2,那么它的“肩心距” .18.(2020·上海松江区·模拟)如图,矩形ABCD中,AD=1,AB=k.将矩形ABCD绕着点B顺时针旋转90∘得到矩形AʹBCʹDʹ.连接ADʹ,分别交边CD,AʹB于E,F.如果AE=√2DʹF,那么k=..19.(2020·上海松江区·模拟)计算:3−(2cos45∘)2+3tan30∘2sin260∘−cos60∘−cot30∘20.(2020·上海松江区·模拟)已知二次函数y=x2−4x−1.(1) 将函数y=x2−4x−1的解析式化为y=a(x+m)2+k的形式,并指出该函数图象顶点B坐标;(2) 在平面直角坐标系中xOy中,设抛物线y=x2−4x−1与y轴交点为C,抛物线的对称轴与x轴交点为A.求四边形OABC的面积.21.(2020·上海松江区·模拟)如图:在梯形ABCD中,AD∥BC,∠C=90∘,AD=AB=13,BD=24.求边DC的长.22.(2020·上海松江区·模拟)如图,小岛A在港口P的南偏西45∘方向上,一艘船从港口P,沿着正南方向,以每小时12海里的速度航行,1小时30分钟后到达B处,在B处测得小岛A 在它的南偏西60∘的方向上.小岛A离港口P有多少海里?23.(2020·上海松江区·模拟)已知:如图,点D,F在△ABC边AC上,点E在边BC上,且DE∥AB,CD2=CF⋅CA.(1) 求证:EF∥BD;(2) 如果AC⋅CF=BC⋅CE,求证:BD2=DE⋅BA.24.(2020·上海松江区·模拟)如图,已知抛物线y=−x2+bx+c过点A(3,0)、点B(0,3).点M(m,0)在线段OA上(与点A,O不重合),过点M作x轴的垂线与线段AB交于点P,与抛物线交于点Q,连接BQ.(1) 求抛物线表达式;(2) 连接OP,当∠BOP=∠PBQ时,求PQ的长度;(3) 当△PBQ为等腰三角形时,求m的值.25.(2020·上海松江区·模拟)已知tan∠MON=2,矩形ABCD的边AB在射线OM上,AD=2,AB=m,CF⊥ON,垂足为点F.(1) 如图(1),作AE⊥ON,垂足为点E.当m=2时,求线段EF的长度;(2) 如图(2),连接OC,当m=2,且CD平分∠FCO时,求∠COF的正弦值;(3) 如图(3),当△AFD与△CDF相似时,求m的值.答案1. 【答案】C【解析】抛物线开口向下a<0;对称轴在y轴右侧,b>0(与a异号);图象交y正半轴,c>0.2. 【答案】B【解析】∵点A(1,3),B(m,3)是抛物线y=a(x−2)2+ℎ上两个不同的点,∴这两个点关于抛物线的对称轴对称,∴由顶点式可知对称轴是x=2,对称轴位于A点的右侧,∴2<m,=2,解之得:m=3.∴1+m23. 【答案】A【解析】∵在以O为坐标原点的直角坐标平面内有一点A(3,4),∴OA=√32+42=5,.∴cosα=354. 【答案】D【解析】A.两条直角边的比都是2:3的两个直角三角形,根据两边对应成比例且夹角相等,两个三角形相似判断,两个三角形相似,故正确,不符合题意;B.腰与底的比都是2:3的两个等腰三角形,等腰三角形,两条腰相等,根据三边对应成比例,两个三角形相似判断,两个三角形相似,故正确,不符合题意;C.有一个内角为50∘的两个直角三角形,两角对应相等两三角形相似判断,两个三角形相似,故正确,不符合题意;D.有一个内角为50∘的两个等腰三角形,内角是50∘的等腰三角形需要注意的是,这个角是顶角还是底角,情况不一样不一定相似.5. 【答案】D【解析】将a⃗+b⃗⃗=c⃗代入a⃗−b⃗⃗=3c⃗,计算得:a⃗=−2b⃗⃗(方向相反).6. 【答案】C【解析】如图示:作BC⊥CD交CD于C点,AD⊥CD交CD于D点,由阴影部分是两条宽度都为1的纸条,交叉重叠放在一起可知,阴影部分是一个菱形,则有AB=AE,AD=1,,∴AB=AE=1sinα∴S阴影=AB⋅AD=1sinα×1=1.5,解之得:sinα=23.7. 【答案】15【解析】∵xy =23,∴设x=2k,则y=3k,代入2x−yx+y 得:2×2k−3k2k+3k=k5k=15.8. 【答案】43【解析】∵线段a是线段b,c的比例中项,∴a2=bc,即22=3×c,∴c=43.9. 【答案】√32【解析】∵两个相似三角形面积的比为3:4,∴它们的相似比=√34=√32.10. 【答案】√5−1【解析】由于P为线段AB的黄金分割点,且AP是较长线段;则AP=AB×√5−12=2,∴PB =AB −PA =√5+1−2=√5−1.11. 【答案】 32【解析】如图.∵∠C =90∘,AC =3,BC =2,cot∠A =AC BC=32.12. 【答案】 >【解析】 ∵ 二次函数 f (x )=12x 2+bx +c 的图象开口向上,对称轴为直线 x =4, ∴ 当 x 的取值越靠近 4 函数值就越小,反之越大, ∴f (1)>f (3).13. 【答案】 y =2x 2+1【解析】根据二次函数图象平移的特征:函数平移遵循“上加下减,左加右减”则抛物线 y =2(x +1)2 平移后为:y =2[(x −1)+1]2+1=2x 2+1.14. 【答案】 23b ⃗⃗−a ⃗【解析】 ∵AD =2DC ,∴AD ⃗⃗⃗⃗⃗⃗=23AC⃗⃗⃗⃗⃗⃗. 根据题意,可得:DB ⃗⃗⃗⃗⃗⃗⃗=AB ⃗⃗⃗⃗⃗⃗−AD ⃗⃗⃗⃗⃗⃗=a ⃗−23AC ⃗⃗⃗⃗⃗⃗=a ⃗−23b⃗⃗. ∴BD ⃗⃗⃗⃗⃗⃗⃗=23b ⃗⃗−a ⃗.15. 【答案】 2【解析】如图示: 连接 BC , 根据题意可得: AC 2=32+12=10, AB 2=12+12=2, BC 2=22+22=8, ∴AB 2+BC 2=AC 2,∴在Rt△ABC中,tan∠BAC=BCAB =√8√2=2.16. 【答案】23【解析】斜面AB的坡度为:2030=23.17. 【答案】3√2+√63【解析】如图示:等腰直角三角形的腰长为2,即AB=AC=2,∵△DBA和△EAC是等边三角形,△ABC等腰直角三角形∴BC=2√2,DM=EN=√3.延长DF交边BC于点F.∵G1,G2分别是等边△ABD和等边△ACE的重心,∴DM垂直且平分AB,EN垂直且平分AC,G1M=G2N=√33,又∵∠BAC=90∘,∴AC∥DF.∴点F是BC的中点.同理可得EN的延长线也交BC于点F.∴MF=12AC=1,FN=12AB=1,MN=12BC=√2.∵FNNG2=√33,FMMG1=√33,∴FNNG2=FMMG1.∴MN∥G1G2.∴MNG1G2=FMFG1,即√2G1G2=1+√33,解得G1G2=√2+√63.18. 【答案】√2+1【解析】∵将矩形ABCD绕着点B顺时针旋转90∘得到矩形AʹBCʹDʹ,∴AD=AʹDʹ=1,AB=AʹB=k,∠Aʹ=∠DAB=90∘=∠DCB=∠ABC,∴AʹDʹ∥BA∥CD,∴∠AʹDʹF=∠FEC=∠DEA,且∠D=∠Aʹ=90∘,∴△ADE∽△FAʹDʹ,∴ADAʹF =DEAʹDʹ=AEDʹF,且AE=√2DʹF,∴DE=√2AʹDʹ=√2,AʹF=√2=√22,∵∠Aʹ=∠DCF=90∘,∠AʹFDʹ=∠EFC,∴△AʹDʹF∽△CEF,∴ECAʹDʹ=FCAʹF,∴k−√21=k−1−√22√22,∴k=√2+1.19. 【答案】原式=3−(2×√22)2+3×√332×(√32)2−12−√3=−2−√3.20. 【答案】(1) y=x2−4x−1=(x−2)2−5,该函数图象顶点B坐标为(2,−5).(2) 如图.令y=0,x=−1,∴C(0,−1).∵B(2,−5),∴A(2,0).∴四边形OABC的面积=12×(AB+OC)×OA=12×6×2=6.21. 【答案】如图,过点A作AE⊥BD,垂足为E,∵AD∥BC,∴∠ADB=∠DBC,∵AB=AD,∴∠ADB=∠ABD,∴∠ABD=∠DBC,∵AE⊥BD,AB=AD,∴∠AEB=∠C=90∘,BE=DE=12,∴AE=√AB2−BE2=√169−144=5,∵∠ABD=∠DBC,∠AEB=∠C=90∘,∴△ABE∽△DCB,∴ABBD =AECD,即:1324=5CD,∴CD=12013.22. 【答案】过点A作AD⊥PB于点D,根据题意得:PB=12×1.5=18(海里).设BD=x,则AD=√3x,∴x+18=√3x,解得:x=9+9√3,∴AD=27+9√3,∵∠APD=45∘,∴ADAP =27+9√3AP=√22.解得:AP=27√2+9√6.23. 【答案】(1) ∵DE ∥AB ,∴CD CA =CE CB ,∵CD 2=CF ⋅CA∴CD CA =CF CD ,∴CE CB =CF CD ,∴EF ∥BD .(2) ∵AC ⋅CF =BC ⋅CE ,∴AC CE =BC CF ,又 ∠C =∠C ,∴△CEF ∽△CAB ,∴∠CEF =∠A ,∵EF ∥BD ,∴∠CEF =∠EBD ,∴∠EBD =∠A ,∵ED ∥AB ,∴∠EDB =∠DBA ,且 ∠EBD =∠A ,∴△ABD ∽△BDE ,∴BD DE =AB BD ,∴BD 2=BA ⋅DE .24. 【答案】(1) ∵ 将点 A (3,0) 、点 B (0,3) 分别代入抛物线解析式y =−x 2+bx +c得 {−9+3b +c =0,c =3.解之得:{c =3,b =2,∴ 抛物线的解析式为 y =−x 2+2x +3.(2) ∵∠BOP =∠PBQ 且 MQ ∥OB ,∴∠OBP =∠BPQ ,∴△OBP ∽△BPQ ,设 Q (x,−x 2+2x +3),∵P 点在直线 AB 上,并 A (3,0).B (0,3),则直线 AB 的解析式为:y =−x +3,∴P (x,3−x ),∴BP =√2x ,OB =3,PQ =−x 2+3x ,∴OBBP =BPBQ,即√2x=√2x−x2+3x,∴x=0或95(0舍去),∴PQ=5425.(3) ∵M(m,0),P(m,3−m),Q(m,−m2+2m+3),∴BP=√2m,PQ=−m2+3m且∠BPQ=45∘,∴当△BPQ为等腰三角形时,存在如下情况:①如图1,当BQ=PQ时,即∠PBQ=∠BPQ=45∘,∴△BPQ为等腰直角三角形,∴−m2+2m+3=3,∴m=2.②当BP=PQ时,即√2m=−m2+3m,即m=3−√2或0(0舍去).③如图2,当BP=BQ时,∠BQP=∠BPQ=45∘,根据PM=3−m,OM=m,可得PQ=2m,则有−m2+2m+3=3+m,∴m=1.综上所述,m的值为2,3−√2或1.25. 【答案】(1) 如图1,延长FC交OM于点G.∵∠BCG+∠CGB=90∘,∠MON+∠CGB=90∘,∴∠BCG=∠MON,则tan∠BCG=tan∠MON=2.∴BG=2BC=4,CG=√5BC=2√5,在Rt△AOE中,设OE=a,由tan∠MON=2,可得OA=√5a,则OG=√5a+6,OF=√5=a+6√55,∴EF=OF−OE=6√55.(2) 如图2,延长FC交OM于点G.由(1)得CG=2√5.∵CD平分∠FCO,∴∠FCD=∠DCO,∵CD∥OM,∴∠FCD=∠CGO,∠DCO=∠COG,∴∠CGO=∠COG,∴CO=CG=2√5.在Rt△COB中,由BC2+BO2=OC2,得22+(√5a+2)2=(2√5)2,解得 a 1=−6√55(舍去),a 2=2√55. ∴OF =a +6√55=8√55,cos∠COF =OF OC =45. ∴sin∠COF =35.(3) 当 D 在 ∠MON 内部时,①如图 3−1,△FDA ∽△FDC 时,此时 CD =AD =2,∴m =2;②当 △FDA ∽△CDF 时,如图 3−2,延长 CD 交 ON 于点 Q ,过 F 作 FP ⊥CQ 于 P ,则 ∠FDC =∠FDA =135∘,∴∠FDP =45∘,∵PC =FP ⋅tan∠PFC =FP ⋅tan∠MON =2FP =2DP =CD +DP ,∴FP =PD =CD =m ,∴FD =√2m ,∵△FDA ∽△CDF ,∴FD DA =CD FD ,∴FD =√AD ⋅CD =√2m ,∴√2m =√2m ,∴m =1;当 D 在 ∠MON 外部时,∠ADF >90∘,∠DFC >90∘,∴∠ADF =∠DFC ,∴∠DFI =∠FDI ,ID =IF ,如图 3−3,△FDA ∽△DFC 时,此时 △FDA ≌△DFC ,∴CF =AD =2,∵∠DAF =∠FCD =∠FHD ,∴A ,O 重合,延长 BC 交 ON 于 R ,∴FR =2CF =4,CR =2√5,BR =2+2√5,∴m =CD =AB =12BR =1+√5; 如图 3−4,△FDA ∽△CFD 时,设 CF =2√5t (t >0),延长 BC 交 ON 于 R ,过 F 作 FS ⊥CD 于 S ,∵△DFC ≌△FDH ,∴DH =FC ,∴ID =IF =12CF =√5t ,∴IS =t ,FS =2t ,CS =4t ,DS =(√5+1)t ,DH =FC =2√5t ,∵△FDA ∽△CFD ,∴ADDF =DFFC,∴DF2=AD⋅FC=2DH=4√5t,∵DF2=DS2+FS2,∴4√5t=4t2+(√5+1)2t2,解得t1=√5−12,t2=0(舍去)∴DH=2√5t=5−√5>2=AD,矛盾.综上所述:m=1或m=2或m=1+√5.。
上海市松江区2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,在矩形ABCD 中,AB=2,AD=2,以点A 为圆心,AD 的长为半径的圆交BC 边于点E ,则图中阴影部分的面积为( )A .2213π--B .2212π--C .2222π--D .2214π--2.函数y =ax 2与y =﹣ax+b 的图象可能是( )A .B .C .D .3.实数a ,b ,c 在数轴上对应点的位置大致如图所示,O 为原点,则下列关系式正确的是( )A .a ﹣c <b ﹣cB .|a ﹣b|=a ﹣bC .ac >bcD .﹣b <﹣c4.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min )成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y (℃)和时间x (min )的关系如图所示,水温从100℃降到35℃所用的时间是( )A .27分钟B .20分钟C .13分钟D .7分钟5.在下列二次函数中,其图象的对称轴为2x =-的是 A .()22y x =+B .222y x =-C .222y x =--D .()222y x =-6.已知一次函数y =﹣12x+2的图象,绕x 轴上一点P (m ,1)旋转181°,所得的图象经过(1.﹣1),则m 的值为( ) A .﹣2B .﹣1C .1D .27.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是( )A .B .C .D .8.下列四个几何体,正视图与其它三个不同的几何体是( )A .B .C .D .9.已知二次函数y =ax 2+bx+c(a≠1)的图象如图所示,给出以下结论:①a+b+c <1;②a ﹣b+c <1;③b+2a <1;④abc >1.其中所有正确结论的序号是( )A .③④B .②③C .①④D .①②③10.(2016福建省莆田市)如图,OP 是∠AOB 的平分线,点C ,D 分别在角的两边OA ,OB 上,添加下列条件,不能判定△POC ≌△POD 的选项是( )A .PC ⊥OA ,PD ⊥OB B .OC=ODC .∠OPC=∠OPD D .PC=PD11.从1、2、3、4、5、6这六个数中随机取出一个数,取出的数是3的倍数的概率是( ) A .16B .13C .12D .2312.下列计算中,正确的是( ) A .a•3a=4a 2 B .2a+3a=5a 2 C .(ab )3=a 3b 3D .7a 3÷14a 2=2a二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知△ABC 中,AB =AC =5,BC =8,将△ABC 沿射线BC 方向平移m 个单位得到△DEF ,顶点A ,B ,C 分别与D ,E ,F 对应,若以A ,D ,E 为顶点的三角形是等腰三角形,且AE 为腰,则m 的值是______.14.数据:2,5,4,2,2的中位数是_____,众数是_____,方差是_____. 15.25位同学10秒钟跳绳的成绩汇总如下表: 人数 1 2 3 4 5 10 次数15825101720那么跳绳次数的中位数是_____________.16.江苏省的面积约为101 600km 1,这个数据用科学记数法可表示为_______km 1. 17.如图,在菱形ABCD 中,AE DC ⊥于E ,AE 8cm =,2sinD 3=,则菱形ABCD 的面积是______.18.如图,在平行四边形ABCD 中,AB <AD ,∠D=30°,CD=4,以AB 为直径的⊙O 交BC 于点E ,则阴影部分的面积为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格: 组别 成绩(分)频数(人数) 频率 一2 0.04 二10 0.2 三14 b 四a 0.32 五80.16请根据表格提供的信息,解答以下问题:本次决赛共有 名学生参加;直接写出表中a= ,b= ;请补全下面相应的频数分布直方图;若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .20.(6分)菱形ABCD 的边长为5,两条对角线AC 、BD 相交于O 点,且AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的两根,求m 的值.21.(6分)某超市预测某饮料会畅销、先用1800元购进一批这种饮料,面市后果然供不应求,又用8100元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若两次进饮料都按同一价格销售,两批全部售完后,获利不少于2700元,那么销售单价至少为多少元?22.(8分)为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?23.(8分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:x(万元) 1 2 2.5 3 5y A(万元) 0.4 0.8 1 1.2 2信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?24.(10分)某单位为了扩大经营,分四次向社会进行招工测试,测试后对成绩合格人数与不合格人数进行统计,并绘制成如图所示的不完整的统计图.(1)测试不合格人数的中位数是.(2)第二次测试合格人数为50人,到第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,若这两次测试的平均增长率相同,求平均增长率;(3)在(2)的条件下补全条形统计图和扇形统计图.25.(10分)下面是一位同学的一道作图题:已知线段a 、b 、c (如图),求作线段x ,使::a b c x =他的作法如下:(1)以点O 为端点画射线OM ,ON . (2)在OM 上依次截取OA a =,AB b =. (3)在ON 上截取OC c =.(4)联结AC ,过点B 作//BD AC ,交ON 于点D . 所以:线段________就是所求的线段x . ①试将结论补完整②这位同学作图的依据是________③如果4OA =,5AB =,AC π=u u u r u r ,试用向量πu r 表示向量DB uuu r.26.(12分)如图,某校自行车棚的人字架棚顶为等腰三角形,D 是AB 的中点,中柱CD =1米,∠A =27°,求跨度AB 的长(精确到0.01米).27.(12分)解分式方程:21133x x x-+=--. 参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B 【解析】 【分析】先利用三角函数求出∠BAE=45°,则,∠DAE=45°,然后根据扇形面积公式,利用图中阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形EAD 进行计算即可. 【详解】解:∵AE=AD=2,而,∴cos ∠BAE=AB AE =2,∴∠BAE=45°,∴,∠BEA=45°.∵AD ∥BC ,∴∠DAE=∠BEA=45°,∴图中阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形EAD 12﹣2452360π⋅⋅1﹣2π. 故选B . 【点睛】本题考查了扇形面积的计算.阴影面积常用的方法:直接用公式法;和差法;割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积. 2.B 【解析】A 选项中,由图可知:在2y ax =,0a >;在y ax b =-+,0a ->,∴0a <,所以A 错误; B 选项中,由图可知:在2y ax =,0a >;在y ax b =-+,0a -<,∴0a >,所以B 正确;C 选项中,由图可知:在2y ax =,0a <;在y ax b =-+,0a -<,∴0a >,所以C 错误;D 选项中,由图可知:在2y ax =,0a <;在y ax b =-+,0a -<,∴0a >,所以D 错误.故选B .点睛:在函数2y ax =与y ax b =-+中,相同的系数是“a ”,因此只需根据“抛物线”的开口方向和“直线”的变化趋势确定出两个解析式中“a ”的符号,看两者的符号是否一致即可判断它们在同一坐标系中的图象情况,而这与“b”的取值无关. 3.A 【解析】 【分析】根据数轴上点的位置确定出a ,b ,c 的范围,判断即可. 【详解】由数轴上点的位置得:a <b <0<c ,∴ac<bc,|a﹣b|=b﹣a,﹣b>﹣c,a﹣c<b﹣c.故选A.【点睛】考查了实数与数轴,弄清数轴上点表示的数是解本题的关键.4.C【解析】【分析】先利用待定系数法求函数解析式,然后将y=35代入,从而求解.【详解】解:设反比例函数关系式为:kyx=,将(7,100)代入,得k=700,∴700yx =,将y=35代入700yx =,解得20x=;∴水温从100℃降到35℃所用的时间是:20-7=13,故选C.【点睛】本题考查反比例函数的应用,利用数形结合思想解题是关键.5.A【解析】y=(x+2)2的对称轴为x=–2,A正确;y=2x2–2的对称轴为x=0,B错误;y=–2x2–2的对称轴为x=0,C错误;y=2(x–2)2的对称轴为x=2,D错误.故选A.1.6.C【解析】【分析】根据题意得出旋转后的函数解析式为y=-12x-1,然后根据解析式求得与x轴的交点坐标,结合点的坐标即可得出结论.【详解】∵一次函数y=﹣12x+2的图象,绕x轴上一点P(m,1)旋转181°,所得的图象经过(1.﹣1),∴设旋转后的函数解析式为y=﹣12x﹣1,在一次函数y=﹣12x+2中,令y=1,则有﹣12x+2=1,解得:x=4,即一次函数y=﹣12x+2与x轴交点为(4,1).一次函数y=﹣12x﹣1中,令y=1,则有﹣12x﹣1=1,解得:x=﹣2,即一次函数y=﹣12x﹣1与x轴交点为(﹣2,1).∴m=242-+=1,故选:C.【点睛】本题考查了一次函数图象与几何变换,解题的关键是求出旋转后的函数解析式.本题属于基础题,难度不大.7.D【解析】根据俯视图中每列正方形的个数,再画出从正面的,左面看得到的图形:几何体的左视图是:.故选D.8.C【解析】【分析】根据几何体的三视图画法先画出物体的正视图再解答.【详解】解:A、B、D三个几何体的主视图是由左上一个正方形、下方两个正方形构成的,而C选项的几何体是由上方2个正方形、下方2个正方形构成的,故选:C.【点睛】此题重点考查学生对几何体三视图的理解,掌握几何体的主视图是解题的关键.9.C【解析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=1,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<1,故本选项正确;③由抛物线的开口向下知a<1,∵对称轴为1>x=﹣>1,∴2a+b<1,故本选项正确;④对称轴为x=﹣>1,∴a、b异号,即b>1,∴abc<1,故本选项错误;∴正确结论的序号为②③.故选B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>1;否则a<1;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>1;否则c<1;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.10.D【解析】试题分析:对于A,由PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根据AAS判定定理可以判定△POC≌△POD;对于B OC=OD,根据SAS判定定理可以判定△POC≌△POD;对于C,∠OPC=∠OPD,根据ASA判定定理可以判定△POC≌△POD;,对于D,PC=PD,无法判定△POC≌△POD,故选D.考点:角平分线的性质;全等三角形的判定.11.B【解析】考点:概率公式.专题:计算题.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:从1、2、3、4、5、6这六个数中随机取出一个数,共有6种情况,取出的数是3的倍数的可能有3和6两种,故概率为2/ 6 ="1/" 3 .故选B.点评:此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )="m" /n .12.C【解析】【分析】根据同底数幂的运算法则进行判断即可.【详解】解:A 、a•3a=3a 2,故原选项计算错误;B 、2a+3a=5a ,故原选项计算错误;C 、(ab )3=a 3b 3,故原选项计算正确;D 、7a 3÷14a 2=12a ,故原选项计算错误; 故选C .【点睛】本题考点:同底数幂的混合运算.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.258或5或1. 【解析】【分析】根据以点A ,D ,E 为顶点的三角形是等腰三角形分类讨论即可.【详解】解:如图(1)当在△ADE 中,DE=5,当AD=DE=5时为等腰三角形,此时m=5.(2)又AC=5,当平移m 个单位使得E 、C 点重合,此时AE=ED=5,平移的长度m=BC=1,(3)可以AE 、AD 为腰使ADE 为等腰三角形,设平移了m 个单位:则223(m-4)+,AD=m ,得:2223(m-4)=m +,得m=258, 综上所述:m 为258或5或1, 所以答案:258或5或1. 【点睛】本题主要考查等腰三角形的性质,注意分类讨论的完整性.14.2 2 1.1.【解析】【分析】先将这组数据从小到大排列,再找出最中间的数,即可得出中位数;找出这组数据中最多的数则是众数;先求出这组数据的平均数,再根据方差公式S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2]进行计算即可.【详解】解:把这组数据从小到大排列为:2,2,2,4,5,最中间的数是2,则中位数是2;众数为2;∵这组数据的平均数是(2+2+2+4+5)÷5=3,∴方差是:15[(2−3)2+(2−3)2+(2−3)2+(4−3)2+(5−3)2]=1.1.故答案为2,2,1.1.【点睛】本题考查了中位数、众数与方差的定义,解题的关键是熟练的掌握中位数、众数与方差的定义.15.20【解析】分析:根据中位数的定义进行计算即可得到这组数据的中位数.详解:由中位数的定义可知,这次跳绳次数的中位数是将这25位同学的跳绳次数按从小到大排列后的第12个和13个数据的平均数,∵由表格中的数据分析可知,这组数据按从小到大排列后的第12个和第13个数据都是20,∴这组跳绳次数的中位数是20.故答案为:20.点睛:本题考查的是怎样确定一组数据的中位数,解题的关键是弄清“中位数”的定义:“把一组数据按从小到大的顺序排列后,若数据组中共有奇数个数据,则最中间一个数据是该组数据的中位数;若数据组中数据的个数为偶数个,则最中间两个数据的平均数是这组数据的中位数”.16.1.016×105【解析】【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂,【详解】解:101 600=1.016×105 故答案为:1.016×105 【点睛】本题考查科学计数法,掌握概念正确表示是本题的解题关键.17.296cm【解析】【分析】根据题意可求AD 的长度,即可得CD 的长度,根据菱形ABCD 的面积=CD×AE ,可求菱形ABCD 的面积.【详解】∵sinD=23AE AD = ∴823AD = ∴AD=11∵四边形ABCD 是菱形∴AD=CD=11∴菱形ABCD 的面积=11×8=96cm 1.故答案为:96cm 1.【点睛】本题考查了菱形的性质,解直角三角形,熟练运用菱形性质解决问题是本题的关键.18.43π【解析】【分析】连接半径和弦AE ,根据直径所对的圆周角是直角得:∠AEB=90°,继而可得AE 和BE 的长,所以图中弓形的面积为扇形OBE 的面积与△OBE 面积的差,因为OA=OB ,所以△OBE 的面积是△ABE 面积的一半,可得结论.【详解】如图,连接OE 、AE ,∵AB 是⊙O 的直径,∴∠AEB=90°,∵四边形ABCD 是平行四边形,∴AB=CD=4,∠B=∠D=30°,∴AE=12AB=2, ∵OA=OB=OE ,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S阴影=S扇形OBE﹣S△BOE=2120211·36022AE BE π⨯-⨯=4142233 343ππ-⨯⨯=-,故答案为43 3π-.【点睛】本题考查了扇形的面积计算、平行四边形的性质,含30度角的直角三角形的性质等,求出扇形OBE的面积和△ABE的面积是解本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.【解析】试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.试题解析:(1)2÷0.04=50(2)50×0.32=16 14÷50=0.28(3)(4)(0.32+0.16)×100%=48%考点:频数分布直方图20.3m=-.【解析】【分析】由题意可知:菱形ABCD 的边长是5,则AO 2+BO 2=25,则再根据根与系数的关系可得:AO+BO=−(2m−1),AO∙BO=m 2+3;代入AO 2+BO 2中,得到关于m 的方程后,即可求得m 的值.【详解】解:∵AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的两根, 设方程的两根为1x 和2x ,可令1OA x =,2OB x =,∵四边形ABCD 是菱形,∴AC BD ⊥,在Rt AOB V 中:由勾股定理得:222OA OB AB +=,∴222125+=x x ,则()21212225x x x x +-=, 由根与系数的关系得:12(21)x x m +=--,2123x x m ⋅=+,∴[]()22(21)2325m m ---+=, 整理得:22150m m --=,解得:15m =,23m =-又∵>0∆,∴()22(21)430--+>m m ,解得114m <-, ∴3m =-.【点睛】此题主要考查了菱形的性质、勾股定理、以及根与系数的关系,将菱形的性质与一元二次方程根与系数的关系,以及代数式变形相结合解题是一种经常使用的解题方法.21. (1)4元/瓶.(2) 销售单价至少为1元/瓶.【解析】【分析】(1)设第一批饮料进货单价为x 元/瓶,则第二批饮料进货单价为(x+2)元/瓶,根据数量=总价÷单价结合第二批购进饮料的数量是第一批的3倍,即可得出关于x 的分式方程,解之经检验后即可得出结论; (2)由数量=总价÷单价可得出第一、二批购进饮料的数量,设销售单价为y 元/瓶,根据利润=销售单价×销售数量﹣进货总价结合获利不少于2100元,即可得出关于y 的一元一次不等式,解之取其最小值即可得出结论.【详解】(1)设第一批饮料进货单价为x 元/瓶,则第二批饮料进货单价为(x+2)元/瓶, 依题意,得:81002x +=3×1800x,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:第一批饮料进货单价是4元/瓶;(2)由(1)可知:第一批购进该种饮料450瓶,第二批购进该种饮料1350瓶.设销售单价为y元/瓶,依题意,得:(450+1350)y﹣1800﹣8100≥2100,解得:y≥1.答:销售单价至少为1元/瓶.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.22.原计划每天种树40棵.【解析】【分析】设原计划每天种树x棵,实际每天植树(1+25%)x棵,根据实际完成的天数比计划少5天为等量关系建立方程求出其解即可.【详解】设原计划每天种树x棵,实际每天植树(1+25%)x棵,由题意,得1000 x −1000+%x (125)=5,解得:x=40,经检验,x=40是原方程的解.答:原计划每天种树40棵.23.(1)y B=-0.2x2+1.6x(2)一次函数,y A=0.4x(3)该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元【解析】【分析】(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式y B=ax2+bx求解即可;(2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;(3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值【详解】解:(1)y B=-0.2x2+1.6x,(2)一次函数,y A=0.4x,(3)设投资B产品x万元,投资A产品(15-x)万元,投资两种产品共获利W万元,则W=(-0.2x2+1.6x)+0.4(15-x)=-0.2x2+1.2x+6=-0.2(x-3)2+7.8,∴当x=3时,W最大值=7.8,答:该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元.24.(1)1;(2)这两次测试的平均增长率为20%;(3)55%.【解析】【分析】(1)将四次测试结果排序,结合中位数的定义即可求出结论;(2)由第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,可求出第四次测试合格人数,设这两次测试的平均增长率为x,由第二次、第四次测试合格人数,即可得出关于x的一元二次方程,解之取其中的正值即可得出结论;(3)由第二次测试合格人数结合平均增长率,可求出第三次测试合格人数,根据不合格总人数÷参加测试的总人数×100%即可求出不合格率,进而可求出合格率,再将条形统计图和扇形统计图补充完整,此题得解.【详解】解:(1)将四次测试结果排序,得:30,40,50,60,∴测试不合格人数的中位数是(40+50)÷2=1.故答案为1;(2)∵每次测试不合格人数的平均数为(60+40+30+50)÷4=1(人),∴第四次测试合格人数为1×2﹣18=72(人).设这两次测试的平均增长率为x,根据题意得:50(1+x)2=72,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),∴这两次测试的平均增长率为20%;(3)50×(1+20%)=60(人),(60+40+30+50)÷(38+60+50+40+60+30+72+50)×100%=1%,1﹣1%=55%.补全条形统计图与扇形统计图如解图所示.【点睛】本题考查了一元二次方程的应用、扇形统计图、条形统计图、中位数以及算术平均数,解题的关键是:(1)牢记中位数的定义;(2)找准等量关系,正确列出一元二次方程;(3)根据数量关系,列式计算求出统计图中缺失数据.25.①CD ;②平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;③94DB π=-u u u r u r . 【解析】【分析】①根据作图依据平行线分线段成比例定理求解可得;②根据“平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例”可得;③先证OAC OBD ∆∆∽得OA AC OB BD =,即94BD AC =,从而知999DB CA AC 444π==-=-u u u r u u u r u u u r u r . 【详解】①∵//BD AC ,∴OA :AB=OC :CD ,∵OA a =,AB b =,OC c =,::a b c x =,∴线段CD 就是所求的线段x ,故答案为:CD ②这位同学作图的依据是:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;故答案为:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例; ③∵4OA =、5AB =,且//BD AC ,∴OAC OBD ∆∆∽, ∴OA AC OB BD =,即49AC BD=, ∴94BD AC =, ∴999444DB CA AC π==-=-u u u r u u r u u u r u r . 【点睛】本题主要考查作图﹣复杂作图,解题的关键是熟练掌握平行线分线段成比例定理、相似三角形的判定及向量的计算.26.AB≈3.93m .【解析】【分析】想求得AB 长,由等腰三角形的三线合一定理可知AB =2AD ,求得AD 即可,而AD 可以利用∠A 的三角函数可以求出.【详解】∵AC =BC ,D 是AB 的中点,∴CD ⊥AB ,又∵CD =1米,∠A =27°,∴AD =CD÷tan27°≈1.96,∴AB =2AD ,∴AB≈3.93m .【点睛】本题考查了三角函数,直角三角形,等腰三角形等知识,关键利用了正切函数的定义求出AD ,然后就可以求出AB .27.2x =.【解析】试题分析:方程最简公分母为(3)x -,方程两边同乘(3)x -将分式方程转化为整式方程求解,要注意检验.试题解析:方程两边同乘(3)x -,得:213x x --=-,整理解得:2x =,经检验:2x =是原方程的解.考点:解分式方程.。