3.4课导学案doc
- 格式:doc
- 大小:33.50 KB
- 文档页数:3
3.4 函数的应用(一)1.能够利用给定的函数模型或建立函数模型解决实际问题;2.经历建立函数模型解决实际问题的过程,提高综合运用数学知识和方法解决实际问题的能力。
1.教学重点:建立函数模型解决实际问题;2.教学难点:选择适当的方案和函数模型解决实际问题。
1.一次函数、反比例函数、二次函数、幂函数的解析式分别是什么?一次函数:;反比例函数:;二次函数:;幂函数:。
一、探索新知例1 .设小王的专项扣除比例、专项附加扣除金额、依法确定的其他扣除金额与3.1.2例8相同,全年综合所得收入额为x(单位:元),应缴纳综合所得个税税额为y(单位:元).(1)求y关于x的函数解析式;(2)如果小王全年的综合所得由189600元增加到249600元,那么他全年应缴纳多少综合所得个税?例2 一辆汽车在某段路程中的行驶速率v(单位:km/h)与时间t(单位:h)的关系如图1所示,(1)求图1中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立行驶这段路程时汽车里程表读数s km与时间t h的函数解析式,并作出相应的图象.1.某商人将彩电先按原价提高40%,然后在广告上写上“大酬宾,八折优惠”结果是每台彩电比原价多赚了270元,则每台彩电的原价为________元.2.某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加10万元.又知总收入K是单位产品数Q的函数,K(Q)=40Q-120Q2,则总利润L(Q)的最大值是________万元.3.某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图所示:(1)月通话为100分钟时,应交话费多少元;(2)当x⩾100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?这节课你的收获是什么?参考答案:知识梳理:一次函数:)0(≠+=k b kx y 反比例函数:)0(≠=k x k y二次函数:)0(2≠++=a c bx ax y 幂函数 )(为常数ααx y = 学习过程:例题解析见教材93页例1.,94页例2. 达标检测1.【解析】 设彩电的原价为a ,∴a (1+0.4)·80%-a =270,∴0.12a =270,解得a =2 250. ∴每台彩电的原价为2 250元. 【答案】 2 2502.【解析】 L (Q )=40Q -120Q 2-10Q -2 000=-120Q 2+30Q -2 000=-120(Q -300)2+2 500,当Q =300时,L (Q )的最大值为2 500万元. 【答案】 2 500【新教材】3.4 函数的应用(一)(人教A 版)1、能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数、幂函数、分段函数模型解决实际问题;2、感受运用函数概念建立模型的过程和方法,体会一次函数、二次函数、幂函数、分段函数模型在数学和其他学科中的重要性.重点:运用一次函数、二次函数、幂函数、分段函数模型的处理实际问题;难点:运用函数思想理解和处理现实生活和社会中的简单问题.一、预习导入阅读课本93-94页,填写。
3.4.实际问题与一元一次方程(行程问题)一、课前练习:想一想回答下面的问题:1、A、B两车分别从相距S千米的甲、乙两地同时出发,相向而行,两车会相遇吗?2、如果两车相遇,则相遇时两车所走的路程与甲、乙两地的距离有什么关系?3、如果两车同向而行,B车先出发a小时,在什么情况下两车能相遇?4、如果A车能追上B车,你能画出线段图吗?二、相遇问题(相向而行)例1、 A、B两车分别停靠在相距240千米的甲、乙两地, A车每小时行50千米, B车每小时行30千米。
(1)若两车同时相向而行,请问B车行了多长时间后与A车相遇?(2)若两车同时相向而行,请问B车行了多长时间后两车相距80千米?变式练习1、 A、B两车分别停靠在相距115千米的甲、乙两地,A车每小时行50千米,B车每小时行30千米,A车出发1.5小时后B车再出发。
(1)若两车相向而行,请问B车行了多长时间后与A车相遇?(2)若两车相向而行,请问B车行了多长时间后两车相距10千米?三、追及问题(同向而行、同时不同地出发)例2、小明每天早上要在7:50之前赶到距离家1000米的学校上学,一天,小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上他。
(1)爸爸追上小明用了多少时间?(2)追上小明时,距离学校还有多远?变式练习2、小王、叔叔在400米长的环形跑道上练习跑步,小王每秒跑4米,叔叔每秒跑6米。
(1)若两人同时同地反向出发,多长时间两人首次相遇?(2)若两人同时同地同向出发,多长时间两人首次相遇?课后巩固:一、解方程(1) 27(3y+7)=2 - 32y (2)35.012.02=+--x x (5)124362x x x -+--= (6) x x 23231423 =⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-二、列一元一次方程解应用题:1、甲乙二人在400米的环形跑道上行走。
甲每分钟走80米,乙每分钟走60米。
3.3一元一次方程的应用——销售问题【教学目标】能熟练地找出销售问题中的相等关系列方程解应用题【复习引入】1.一种药品现在售价56.10元,比原来降低了15%,问原售价为__56.10×(1+1 5%)=64.515__元.2.“五一”黄金周期间,为了促销商品,甲、乙两个商店都采取优惠措施,甲店推出八折后再打八折,乙店则一次性六折优惠,若同样价格的商品,下列结论正确的是( B )A.甲比乙优惠B.乙比甲优惠C.两店优惠条件相同D.不能进行比较【知识点梳理】销售问题中常用的关系式:(1)利润=进价×利润率,(2)利润=售价-进价.【应用举例】例1某种商品的进价为100元,若要使利润率达20%,则该商品的销售价格应为多少元?此时每件商品可获利润多少元?分析:若设售价x元,则利润为_20 元或用x表示为x-100元,可列方程为__ x-100 =__20 ,解之得x=_120_.针对性练习某商店出售甲、乙两种成衣,其中甲种成衣卖价120元盈利20%,乙种成衣卖价也是120元但亏损20%,问该商店在本次销售中实际上是盈还是亏,盈或亏多少钱?答案:解:设甲种成衣的进价为x元,乙种成衣的进价为y元。
则由题意的x x-120=20%=-yy120-20%解得x=100 解得y=150甲种成衣盈利=120-100=20元乙种成衣亏损=150-120=30元该次销售实际是亏损=30-20=10元例2某种鲜花进货价为每枝5元,若按标价的八折出售仍可获利3元,问标价为每枝多少元?分析:若设标价为每枝x元,则售价为_80%x__元,利润为_3_元,用x表示为80%x-5元,可列方程为_80%x-5 =3_ _,解之得x=_10__.针对性练习1.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,问这种商品的定价是多少?答案:解:设这种商品的定价是x元。
由题意得75%x+25=90%x-20移项合并同类项得,-0.15x=45系数化为1得,x=300答:这种商品的定价为300元。
3.3一元一次方程的应用——行程问题【教学目标】1.能熟练地找出行程问题中的相等关系列方程解应用题;2.培养学生分析问题、解决问题的能力.【复习引入】1.A、B两地相距480千米,一列慢车从A地开出,每小时行驶60千米,一列快车从B地开出,每小时65千米.两车同时开出,⑴若相向而行,x小时后相遇,则可列方程为;⑵若相背而行,x小时后两车相距640千米,则可列方程为;⑶同向而行,快车在慢车后面,x小时后快车追上慢车,则可列方程为;⑷同向而行,慢车在快车后,x小时后两车相距640千米,则可列方程为.答案:解:(1)(60+65)x=480(2) (60+65)x+480=640(3)60x+480=65x(4)65x+480=60x+640【知识点梳理】行程问题中常用的关系式:路程=速度×时间.一般行程问题包括三种情况:⑴相遇问题常用的相等关系是:甲走的路程+乙走的路程=两地间的距离即速度和×时间=路程和;⑵追及问题①同地不同时出发时:前者走的路程=后者走的路程;②同地不同时出发时:前者走的路程-后者走的路程=两地间的距离即速度差×时间=路程差.⑶航行问题(以后另讲)【应用举例】例1甲、乙两人在10千米的环形公路上跑步,甲每分钟跑230米,乙每分钟跑170米.⑴若甲先跑10分,乙再从同地同向出发,还要多长时间相遇?⑵若甲先跑10分,乙再从同地反向出发,还要多长时间相遇?答案:解:1. (1) 设需要的时间为x秒(230-170)x=1000060x=10000 x=166.6分钟(2) 设需要的时间为x秒230×10+(230-170)x=1000060x=7700 x=128.3分钟答:⑴若甲先跑10分,乙再从同地同向出发,还要166.6分钟相遇?⑵若甲先跑10分,乙再从同地反向出发,还要128.3分钟相遇?例2一列火车行驶途中,经过一条长300m的隧道需要20s的时间.隧道的顶上有一盏固定的灯,垂直向下发光,灯光在火车上照了10s.求这列火车的长为多少?答案:解:经过一条长300m的隧道要20s:这里的20s是指隧道的长度加上火车的长度,即火车从进隧道,到完全的出隧道的长度。
3.4 实际问题与一元一次方程《第1课时产品配套问题和工程问题》教案【教学目标】:1.掌握产品配套问题、工程问题中常见的数量关系.2.掌握用一元一次方程解决实际问题的基本过程.【教学重点】:弄清题意,用列方程解决实际问题.【教学难点】:寻找实际问题中的等量关系,建立数学模型.【教学过程】:一、复习巩固解下列方程(1)10x-4(3-x)-5(2+7x)=15x-9(x-2);(2)3(2-3x)-3[3(2x-3)+3]=5;(3)(x+1)+(x+2)-3=-(x+3).二、提出问题,探究新知问题1(课本P100例1):某车间有22名工人生产螺钉和螺母,每人每天平均生产螺钉1 200个或螺母2 000个,一个螺钉要配两个螺母.为了使每天的产品刚好配套,应该安排多少名工人生产螺钉,多少名工人生产螺母?练习1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?问题2:要用20张白卡纸做包装盒,每张白卡纸可以做盒身两个或者做盒底盖3个.如果一个盒身和两个盒底盖可以做成一个包装盒,那么能否把这白卡纸分成两部分,一部分做盒身,一部分做盒底盖,使做成的盒身和盒底盖正好配套?请设计一种分法.(想一想:如果一张白卡纸可以适当的剪裁出一个盒身和一个盒底盖,那么,怎样分这些白卡纸,才能既使做出的盒身和盒底盖配套,又能充分地利用白卡纸?)练习2:(1)用白铁皮做罐头盒,每张铁皮可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒.现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分地利用白铁皮?(2)某车间每天能生产甲种零件120个,或者乙种零件100个.甲、乙两种零件分别取3个、2个才能配成一套.要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?教学过程:问题3:课本P100例2:整理一批图书:由一个人做要40 h完成.现计划由一部分人先做4 h,然后增加2人与他们一起做8 h,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?1.逐句阅读题目,熟悉题中已知条件,回答问题:(1)由一个人要做40小时完成,这句话的作用?(2)根据题意,整项工作分成几部分?(3)借助线段图进一步理解题意.2.根据线段图,题目反映的相等关系是什么?3.设未知数,列方程解答.4.例题变式练习:(1)整理一批图书,由一个人做要40 h完成,现计划由一部分人先做4 h,然后增加2人与他们一起做6 h,完成这项工作的,假设这些人的工作效率相同,具体应先安排多少人工作?(2)整理一批图书,由一个人做要40 h完成,现计划由2人先做4 h,然后增加若干人与他们一起又做4 h完成了这项工作,问增加了多少人?三、归纳总结1.归纳:用一元一次方程解决实际问题的基本过程.2.学生独立练习:(有困难的个别指导)(1)课本P101练习第2题(2)货车早上6:40从A城出发,15:40到达B城,一辆客车上午8:00从A城出发,14:00到达B城.求客车追上货车是什么时刻?提示:①由已知条件如何表示出货车与客车的速度?②当客车在途中追上货车时,两车的行驶时间有什么关系?行驶路程有什么关系?③以什么量为未知数,什么量为相等关系列方程,求出方程的解后又如何求解题目问题.强调:弄清货车与客车出发时间的先后,与到达时间的先后,以理解题意.四、课时小结通过以下问题引导学生反思小结:1.通过这节课的学习,你有什么收获?2.在解决配套、分配等问题方面你获得了哪些经验?这些问题中的相等关系有什么特点?五、课堂作业课本P101练习第1题,P106习题3.4第2、3题.课本P106第4、5题.第三章一元一次方程3.4 实际问题与一元一次方程《第1课时产品配套问题和工程问题》同步练习用一元一次方程解决配套问题1.某土建工程共需动用15台挖运机械,每台机械每小时能挖土3 m3或者运土2 m3,为了使挖土和运土工作同时结束,安排了x台机械运土,这里x应满足的方程是( )A.2x=3(15-x)B.3x=2(15-x)C.15-2x=3xD.3x-2x=152.甲队有27人,乙队有19人共同完成一项工作.由于工作时间需提前,现从其他队抽调20人支援,使甲队人数是乙队人数的2倍,应调往甲队_____人,乙队_____人.3.加工某种产品需要两个工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1 200件.现有7位工人参加这两道工序,应怎样安排人力,才能使每天第一、第二道工序所完成的件数相等?4.红光服装厂要生产某种型号学生服一批,已知每3米长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的这种布料生产学生服,应分别用多少布料生产上衣和裤子,才能使上衣和裤子恰好配套?共能生产多少套?5.某家具厂生产一种方桌,1立方米的木材可做50个桌面或300条桌腿,现有10立方米的木材,怎样分配生产桌面和桌腿使用的木材,才能使桌面、桌腿刚好配套,共可生产多少张方桌?(一张方桌有1个桌面,4条桌腿)用一元一次方程解决工程问题1.加工1 500个零件,甲单独做需要12小时,乙单独做需要15小时,若两人合做x 小时可以完工,依题意可列方程为( )2.某工程由甲、乙两队单独施工分别需要3小时和5小时,若两队合做这项工程的80%,需______小时.3.一项工作,甲独做需18天,乙独做需24天,如果两人合做8天后,余下的工作再由甲独做x 天完成,那么所列方程为_______.4.甲车由A 城到B 城需4小时,乙车由B 城到A 城需6小时,若两车同时出发,相向而行,多少小时在中途相遇?5.一项工作,由1人做要40小时完成,现计划由2人先做4小时,剩下的11 1 500 1 500A.()x 1 500 B.()x 1 50012151215+=+=1 1 500 1 500 1 500C.()x 1 500 D.()x 112151215+=+=工作要8小时完成,问还需增加几人?(假定每个人的工作效率都相同)参考答案用一元一次方程解决配套问题1、【解析】选A.安排x 台机械运土,则安排(15-x)台机械挖土,故共挖土3(15-x) m3,运土2x m3,故所列方程为2x=3(15-x).2、【解析】设调往甲队x 人,则调往乙队(20-x)人.根据题意,得:27+x=2(19+20-x),解得x=17,所以20-x=20-17=3.答案:17 33、【解析】设应安排x 人在第一道工序,则安排(7-x)人在第二道工序.根据题意,得:900x=1 200(7-x),解得:x=4,所以7-x=3.答:应安排4人在第一道工序,安排3人在第二道工序.4、【解析】设用x 米布料生产上衣,根据题意得解得x=360.600-x=600-360=240,答:用360米布料生产上衣,用240米布料生产裤子,共能生产240套.5、【解析】设用x 立方米的木材做桌面,则用(10-x)立方米的木材做桌腿. 根据题意,得4×50x=300(10-x),解得,x=6,所以10-x=4,可做方桌为50×6=300(张).答:用6立方米的木材做桌面,4立方米的木材做桌腿,可做300张方桌.用一元一次方程解决工程问题x 600x 23,33-⨯=⨯1、第三章一元一次方程3.4 实际问题与一元一次方程《第1课时产品配套问题和工程问题》导学案【学习目标】:1.理解配套问题、工程问题的背景.2.分清有关数量关系,能正确找出作为列方程依据的主要等量关系.(重点)3.掌握用一元一次方程解决实际问题的基本过程.(重点)【学习重点】:1.配套问题:某车间工人生产螺钉和螺母,一个螺钉要配两个螺母,要使生产的产品刚好配套,则应生产的螺母数量恰好是螺钉数量的2倍2.工程问题:(1)工作时间、工作效率、工作量之间的关系:①工作量=工作时间×工作效率.②工作时间=工作量÷工作效率.③工作效率=工作量÷工作时间.(2)通常设完成全部工作的总工作量为1,如果一项工作分几个阶段完成,那么各阶段工作量的和=总工作量,这是工程问题列方程的依据..(3)一项工作,甲用a小时完成,若总工作量可看成1,则甲的工作效率是1/a .若这项工作乙用b小时完成,则乙的工作效率是1/b .(4)人均工作效率:人均工作效率表示平均每人单位时间完成的工作量.例如,一项工作由m个人用n小时完成,那么人均工作效率为1/mn ,a个人b小时完成的工作量=人均工作效率×a×b.【学习过程】一、自主学习判断 (打“√”或“×”)(1)用纸板折无盖的纸盒,则一个盒身与两个盒底配套.( )(2)一件工作,某人5小时单独完成,其工作效率为 ( )(3)一项工程,甲单独做4小时能完成,乙单独做3小时能完成,则两人合作1小时完成全部工作的 ( )二、合作探究知识点 1 用一元一次方程解决配套问题【例1】用白铁皮做罐头盒,每张铁皮可制盒身25个或制盒底40个,1个盒身与2个盒底配成1个罐头盒.现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?【解题探究】1.设x张铁皮制盒身,则36-x张铁皮制盒底.2.用x怎样表示所制盒身、盒底的个数?提示:由题意可知制盒身25x个,盒底40(36-x)个.3.制成的盒身与盒底有什么数量关系?提示:盒身个数的2倍=盒底的个数.4.所以可列方程:2×25x=40(36-x)5.解方程,得:x=166.用16张制盒身,20张制盒底.配套问题的两个未知量及两个等量关系1.两个未知量:这类问题有两个未知数,设其中哪个为x都可以,另一个用含x的代数式表示,两种设法所列方程没有繁简或难易的区别.2.两个等量关系:例如本题,一个是“制盒身的铁皮张数+制盒底的铁皮张数=36”,此关系用来设未知数.另一个是制成的盒身数与盒底数的倍数关系,这是用来列方程的等量关系.知识点 2 用一元一次方程解决工程问题【例2】一本稿件,甲打字员单独打20天可以完成,甲、乙两打字员合打,12天可以完成,现由两人合打7天后,余下部分由乙打,还需多少天完成?【思路点拨】先求出甲一天的工作效率,甲、乙合作一天的工作效率及甲乙合打7天的工作量,再求出乙一天的工作效率,设乙还需x天完成,用含x的代数式表示乙x天的工作量,根据“两人合打7天的工作量+乙x天的工作量=1”,列出方程,求解并作答.【自主解答】设乙还需x 天完成,根据题意,得解这个方程,得x=12.5.答:乙还需12.5天完成.【总结提升】解决工程问题的思路1.三个基本量:工程问题中的三个基本量:工作量、工作效率、工作时间,它们之间的关系是:工作量=工作效率×工作时间.若把工作量看作1,则工作效率= 2.相等关系:(1)按工作时间,各时间段的工作量之和=完成的工作量.(2)按工作者,若一项工作有甲、乙两人参与,则甲的工作量+乙的工作量=完成的工作量.711()x 1.121220+-=1.工作时间。
新教科版科学三年级上册3.4《测量降水量》教案一. 教材分析《测量降水量》是新教科版科学三年级上册的一课,主要让学生通过实践活动,了解降水的形式和测量降水量的方法。
本课内容紧密联系学生的生活实际,激发学生探究欲望,培养学生合作交流、动手操作的能力。
二. 学情分析三年级的学生已经具备了一定的观察和探究能力,对自然现象有好奇心,但降水量的测量对他们来说是一个新的领域。
在教学过程中,教师要关注学生的个体差异,引导他们通过观察、操作、讨论等方式,掌握测量降水量的方法。
三. 教学目标1.让学生了解降水的形式,知道降水量的测量方法。
2.培养学生合作交流、动手操作的能力。
3.培养学生关注天气现象,热爱科学的情感。
四. 教学重难点1.重点:降水量的测量方法。
2.难点:如何准确地测量降水量。
五. 教学方法1.采用问题驱动法,引导学生主动探究降水量的测量方法。
2.运用小组合作法,培养学生的团队精神和沟通能力。
3.采用实践操作法,让学生动手操作,提高实际操作能力。
六. 教学准备1.准备降水量的测量工具:雨量器、尺子等。
2.准备相关资料:降水量的图片、视频等。
3.准备实验材料:水、容器等。
七. 教学过程1.导入(5分钟)利用图片、视频等资料,引导学生关注降水现象,激发学生的探究欲望。
2.呈现(10分钟)介绍降水量的测量工具——雨量器,讲解雨量器的使用方法。
3.操练(10分钟)学生分组进行实验,亲自动手操作,测量降水量。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)学生相互交流实验结果,讨论如何准确地测量降水量。
教师总结降水量的测量方法,强调注意事项。
5.拓展(5分钟)引导学生关注生活中的降水现象,思考如何运用所学知识解决实际问题。
6.小结(5分钟)总结本节课所学内容,强调降水量的测量方法和注意事项。
7.家庭作业(5分钟)布置作业:测量家附近的降水量,并记录下来,下节课分享。
8.板书(5分钟)降水量的测量方法1.选择合适的位置放置雨量器。
3\4课导学案
同学们,第3、4课都是关于读书文章,书籍是人类进步的阶梯,书是全世界的营养品!我们要爱读书,更要会读书!这两课就告诉读书我们的衣橱和方法!请同学们认真阅读课文完成下列题目.
一、认真阅读《走遍天下书为侣》,完成以下练习。
1、出下列词语的近义词。
欣赏()忽略()思考()
2、读下面的句子,再根据自己读书的感受仿写句子。
一本你喜爱的书就是一位朋友,也是一处你随时想去就去的故地。
一本你喜爱的书就是,也是。
3、第7自然段中用了表示顺序的词语“首先…然后…最后…”,请用上这些词语写一段话。
4、“我”是怎样一遍又一遍地读那本书?把作者反复读一本书的方式的句子用横线划出来。
5、找出能够体现作者读书顺序的词语:()、()、()、()。
6、作者的读书方法,概括讲是:()
7、文中与课文的题目《走遍天下书为侣》相呼应、相对照的一句话是:
_____________________________________________________________________
二、认真阅读《我的长生果》,完成以下练习。
作者说自己的作文《秋天来了》,老师在文中“又圈又点”。
现在请你对描写秋天的那段文字加以圈点,你会圈点些什么?
答:
10.俗话说“开卷有益”,读了本文,你认为作者告诉我们读书有哪些益处?
答:
11.有人建议本文题目改为“我的营养品”,你是否同意?请说出理由。
答:
12.读了本文,你最深的感受是什么?联系实际谈一谈。
答:
同步练习题
基础知识点点记
一、我能把字写漂亮(看拼音,写词语)。
biān xiěhūluâɡǎn tàn pín wâi
bēi sînɡdiūqìlínɡxīnɡjiàzhōu
二、一锤定音(在带点字正确的读音后画“√”)。
娱乐(yúwù)某人(mïmïu )
环绕(ráo rào )似乎(sìshì)
三、填字组词。
lǚ:()行伴()姓()()锅yú:( ) 快()乐富()()船四、汉字变脸(换偏旁组字组词)。
桶()()()
偏()()()
五、在括号内填上合适的词。
一()扑克一()口琴一()图画
一()旅行一()战船一()骏马
六、写近义词和反义词。
(课文中找答案)。
近义词:熟识()忽视()思索()反义词:陌生()放弃()结伴()七、择优录取(选词填空)。
环绕围绕缠绕
1、我独自驾舟()世界旅行。
2、栅栏被瓜藤层层地()着。
3、()世博会的问题,大家展开了讨论。
继续连续持续陆续
4、会议快开始了,大家()走进会场。
5、这个夏天()的高温增加了城市的用电量。
6、你已经()三次迟到了,到底是怎么回事儿?
7、这个问题不要再争论了,我们()开会。
八、句子模仿秀(照样子写句子)。
你不会因为以前见过你的朋友就不愿再见到他们了吧?
你不会因为__________________________________
就_______________________________________吧?
一本你喜欢的书就是一位朋友,也是一处你随时想去就去的故地。
一本你喜欢的书就是_____________________,也是_____________________。