《有限元方法25讲》课程教案
- 格式:pdf
- 大小:464.04 KB
- 文档页数:16
有限元课程设计一.问题描述如图所示的平面矩形结构,设E=1,NU=0.25,h=1,考虑以下约束和外载:位移边界条件BC(u):U A=0,V A=0,U D=0,力边界条件BC(p):在CD边上有均布载荷q=1,建模情形:使用四个四节点矩形单元,试在该建模情形下,求各节点的位移以及各个单元的应力分布。
二.Matlab程序(1).函数定义:function k= Quad2D4Node_Stiffness(E,NU,h,xi,yi,xj,yj,xm,ym,xp,yp,ID) syms s t;a = (yi*(s-1)+yj*(-1-s)+ym*(1+s)+yp*(1-s))/4;b = (yi*(t-1)+yj*(1-t)+ym*(1+t)+yp*(-1-t))/4;c = (xi*(t-1)+xj*(1-t)+xm*(1+t)+xp*(-1-t))/4;d = (xi*(s-1)+xj*(-1-s)+xm*(1+s)+xp*(1-s))/4;B1 = [a*(t-1)/4-b*(s-1)/4 0 ; 0 c*(s-1)/4-d*(t-1)/4 ;c*(s-1)/4-d*(t-1)/4 a*(t-1)/4-b*(s-1)/4];B2 = [a*(1-t)/4-b*(-1-s)/4 0 ; 0 c*(-1-s)/4-d*(1-t)/4 ;c*(-1-s)/4-d*(1-t)/4 a*(1-t)/4-b*(-1-s)/4];B3 = [a*(t+1)/4-b*(s+1)/4 0 ; 0 c*(s+1)/4-d*(t+1)/4 ;c*(s+1)/4-d*(t+1)/4 a*(t+1)/4-b*(s+1)/4];B4 = [a*(-1-t)/4-b*(1-s)/4 0 ; 0 c*(1-s)/4-d*(-1-t)/4 ;c*(1-s)/4-d*(-1-t)/4 a*(-1-t)/4-b*(1-s)/4];Bfirst = [B1 B2 B3 B4];Jfirst = [0 1-t t-s s-1 ; t-1 0 s+1 -s-t ;s-t -s-1 0 t+1 ; 1-s s+t -t-1 0];J = [xi xjxmxp]*Jfirst*[yi ;yj ; ym ; yp]/8;B = Bfirst/J;if ID == 1D = (E/(1-NU*NU))*[1 NU 0 ; NU 1 0 ; 0 0 (1-NU)/2];elseif ID == 2D = (E/(1+NU)/(1-2*NU))*[1-NU NU 0 ; NU 1-NU 0 ; 0 0 (1-2*NU)/2]; endBD = J*transpose(B)*D*B;r = int(int(BD, t, -1, 1), s, -1, 1);z = h*r;k = double(z);endfunction z = Quad2D4Node_Assembly(KK,k,i,j,m,p)DOF(1)=2*i-1;DOF(2)=2*i;DOF(3)=2*j-1;DOF(4)=2*j;DOF(5)=2*m-1;DOF(6)=2*m;DOF(7)=2*p-1;DOF(8)=2*p;for n1=1:8for n2=1:8KK(DOF(n1),DOF(n2))= KK(DOF(n1),DOF(n2))+k(n1,n2); endendz=KK;endfunction stress= Quad2D4Node_Stress(E,NU,xi,yi,xj,yj,xm,ym,xp,yp,u,ID) syms s t;a = (yi*(s-1)+yj*(-1-s)+ym*(1+s)+yp*(1-s))/4;b = (yi*(t-1)+yj*(1-t)+ym*(1+t)+yp*(-1-t))/4;c = (xi*(t-1)+xj*(1-t)+xm*(1+t)+xp*(-1-t))/4;d = (xi*(s-1)+xj*(-1-s)+xm*(1+s)+xp*(1-s))/4;B1 = [a*(t-1)/4-b*(s-1)/4 0 ; 0 c*(s-1)/4-d*(t-1)/4 ;c*(s-1)/4-d*(t-1)/4 a*(t-1)/4-b*(s-1)/4];B2 = [a*(1-t)/4-b*(-1-s)/4 0 ; 0 c*(-1-s)/4-d*(1-t)/4 ;c*(-1-s)/4-d*(1-t)/4 a*(1-t)/4-b*(-1-s)/4];B3 = [a*(t+1)/4-b*(s+1)/4 0 ; 0 c*(s+1)/4-d*(t+1)/4 ;c*(s+1)/4-d*(t+1)/4 a*(t+1)/4-b*(s+1)/4];B4 = [a*(-1-t)/4-b*(1-s)/4 0 ; 0 c*(1-s)/4-d*(-1-t)/4 ;c*(1-s)/4-d*(-1-t)/4 a*(-1-t)/4-b*(1-s)/4];Bfirst = [B1 B2 B3 B4];Jfirst = [0 1-t t-s s-1 ; t-1 0 s+1 -s-t ;s-t -s-1 0 t+1 ; 1-s s+t -t-1 0];J = [xi xjxmxp]*Jfirst*[yi ;yj ; ym ; yp]/8;B = Bfirst/J;if ID == 1D = (E/(1-NU*NU))*[1 NU 0 ; NU 1 0 ; 0 0 (1-NU)/2];elseif ID == 2D = (E/(1+NU)/(1-2*NU))*[1-NU NU 0 ; NU 1-NU 0 ; 0 0 (1-2*NU)/2]; endstr1 = D*B*u;str2 = subs(str1, {s,t}, {0,0});stress = double(str2);end(2). 计算部分E=1;NU=0.25;h=1;ID=1;k1= Quad2D4Node_Stiffness(E,NU,h,1,1,0.5,1,0.5,0.5,1,0.5,ID);k2= Quad2D4Node_Stiffness(E,NU,h,1,0.5,0.5,0.5,0.5,0,1,0,ID); k3= Quad2D4Node_Stiffness(E,NU,h,0.5,1,0,1,0,0.5,0.5,0.5,ID); k4= Quad2D4Node_Stiffness(E,NU,h,0.5,0.5,0,0.5,0,0,0.5,0,ID); KK=zeros(18,18);KK= Quad2D4Node_Assembly(KK,k1,1,6,5,2);KK= Quad2D4Node_Assembly(KK,k2,2,5,4,3);KK= Quad2D4Node_Assembly(KK,k3,6,7,8,5);KK= Quad2D4Node_Assembly(KK,k4,5,8,9,4)k=KK([1:12,14:16],[1:12,14:16]);p=[0;-0.25;0;0;0;0;0;0;0;0;0;-0.5;-0.25;0;0];u=k\pU=[u(1:12);0;u(13:15);0;0];u1=[U(1);U(2);U(11);U(12);U(9);U(10);U(3);U(4)];stress1=Quad2D4Node_Stress(E,NU, 1,1,0.5,1,0.5,0.5,1,0.5,u1,ID) u2=[U(3);U(4);U(9);U(10);U(7);U(8);U(5);U(6)];stress2=Quad2D4Node_Stress(E,NU, 1,0.5,0.5,0.5,0.5,0,1,0,u2,ID) u3=[U(11);U(12);U(13);U(14);U(15);U(16);U(9);U(10)];stress3=Quad2D4Node_Stress(E,NU, 0.5,1,0,1,0,0.5,0.5,0.5,u3,ID) u4=[U(9);U(10);U(15);U(16);U(17);U(18);U(7);U(8)];stress4=Quad2D4Node_Stress(E,NU, 0.5,0.5,0,0.5,0,0,0.5,0,u4,ID)总体刚度矩阵:各节点位移:各单元应力:三.结果各个节点位移:u1=1.5749,v1=-4.5116,u2=0.5858,v2=-4.2489,u3=-0.4401,v3=-4.1495,u4=1.1458,v4=-3.3911,u5=0.7035,v5=-2.9251,u6=-0.4105,v6=-3.0964,u7=0,v7= -3.0486,u8=0.6532,v8=-1.9914,u9=0,v9=0。
有限元课程设计一、教学目标本节课的教学目标是使学生掌握有限元分析的基本概念、原理和方法,能够运用有限元软件进行简单的结构分析和优化设计。
具体目标如下:1.知识目标:(1)了解有限元分析的基本原理和方法;(2)掌握有限元软件的操作和应用;(3)了解有限元分析在工程领域的应用。
2.技能目标:(1)能够运用有限元软件进行简单的结构分析;(2)能够根据分析结果进行优化设计。
3.情感态度价值观目标:(1)培养学生对工程技术的兴趣和热情;(2)培养学生团队合作意识和解决问题的能力。
二、教学内容本节课的教学内容主要包括有限元分析的基本概念、原理和方法,以及有限元软件的操作和应用。
具体内容包括:1.有限元分析的基本概念:介绍有限元分析的定义、发展历程和应用领域。
2.有限元分析的原理:讲解有限元分析的基本原理,包括离散化方法、刚度矩阵和质量矩阵的建立等。
3.有限元分析的方法:介绍有限元分析的主要方法,包括静态分析、动态分析和优化设计等。
4.有限元软件的操作和应用:讲解有限元软件的基本操作,如几何建模、网格划分、材料属性设置等,并通过实例演示有限元分析的过程。
三、教学方法本节课采用多种教学方法相结合的方式,以激发学生的学习兴趣和主动性。
主要教学方法包括:1.讲授法:讲解有限元分析的基本概念、原理和方法。
2.案例分析法:通过分析实际工程案例,使学生更好地理解有限元分析的应用。
3.实验法:让学生动手操作有限元软件,进行简单的结构分析和优化设计。
4.讨论法:鼓励学生积极参与课堂讨论,培养团队合作意识和解决问题的能力。
四、教学资源本节课的教学资源包括教材、有限元软件、多媒体资料和实验设备。
具体如下:1.教材:选用国内权威出版的有限元教材,为学生提供系统的理论知识。
2.有限元软件:为学生提供有限元软件的学习版本,方便学生进行实践操作。
3.多媒体资料:制作课件和教学视频,以图文并茂的形式展示有限元分析的过程和应用。
4.实验设备:准备计算机实验室,确保每个学生都能顺利地进行软件操作和实验。
工程中的有限元分析方法教学设计简介有限元分析是一种工程设计计算方法,常用于结构力学、流体力学、热传导等领域的分析。
本文将介绍如何设计一门有限元分析方法的教学课程,涵盖教学目标的制定、教学内容安排、教学方法选择等方面。
教学目标1.理解有限元法的基本原理和应用范围;2.了解有限元方法在不同工程领域中的应用;3.能够应用有限元方法进行简单的结构分析和形状优化;4.能够使用有限元分析软件进行建模、网格划分和分析;5.能够进行分析结果的后处理和解释。
教学内容和安排第一周:有限元基础知识1.有限元法的发展历史和基本概念;2.有限元法的优缺点和适用条件;3.有限元法的基本步骤和常用术语;4.有限元网格生成与修补;5.基于有限元法的工程分析案例分析。
第二周:结构力学分析1.弹性力学方程和偏微分方程;2.有限元法在结构力学中的应用;3.常见的结构力学问题和解法;4.结构力学有限元分析软件的应用。
第三周:流体力学分析1.流体力学的基本方程和数值解法;2.有限元法在流体力学中的应用;3.常见的流体力学问题分析;4.流体力学有限元分析软件的应用。
第四周:热传导分析1.热传导基本方程和数值解法;2.有限元法在热传导中的应用;3.常见的热传导问题分析;4.热传导有限元分析软件的应用。
第五周:形状优化问题与有限元分析1.演化算法与形状优化;2.有限元法在形状优化中的应用;3.形状优化有限元分析软件的应用;4.应用案例分析和讨论。
第六周:有限元方法实践和课程总结1.有限元分析工具的使用;2.有限元方法实践操作和案例分析;3.课程总结和教学反馈。
教学方法1.理论讲授:教师讲述理论知识,同时鼓励学生积极参与;2.认知学习:采用短片、案例等方式,帮助学生了解和认知;3.实践学习:课程设计中设置一定的实践操作环节,鼓励学生积极体验和探究;4.互动交流:加强师生间、学生间的交流和互动,呈现更好的教学效果。
总结有限元分析方法在工程设计领域扮演着重要的角色,因此掌握有限元分析方法的理论和实践技能对于工程专业学生来说尤为重要。