论-反比例函数图象的坐标特征k=xy与比例系数k的面积几何性质
- 格式:pdf
- 大小:195.43 KB
- 文档页数:4
【本讲教育信息】一. 教学内容:1. 反比例函数的定义.2. 反比例函数的图象和性质.二. 知识要点: 1. 反比例函数(1)一般地,形如y =kx (k 为常数,k ≠0)的函数称为反比例函数,其中x 是自变量,y 是函数.其表达式也可以写成y =kx -1,有时利用变形式子xy =k .(2)确定解析式的方法仍是待定系数法,由于在反比例函数y =kx 中,只有一个待定系数,因此只需一对对应值或图象上一个点的坐标,即可求出k 的值,从而确定解析式. 2. “反比例关系”与“反比例函数”的异同 如果xy =k (k 是常数,k ≠0),那么x 与y 这两个量成反比例关系,这里x 、y 既可代表单独的一个字母,也可代表多项式或单项式,成反比例的关系式,不一定是反比例函数,如y -3=k z +2中,y -3与z +2成反比例,但y 与z 不是反比例函数;又如y =2x 2中,y 与x 2成反比例,但y ,x 不是反比例函数,但反比例函数y =kx (k ≠0)中的两个变量必成反比例关系.3. 反比例函数的性质和图象(1)反比例函数的图象的形状是双曲线,它不是连续的整体图形,而是断开的两个独立的分支,它无限接近两坐标轴但永远也不能到达坐标轴.(2)反比例函数的图象的位置与增减性,当k >0时,反比例函数的图象的两个分支位于一、三象限.在每个象限内y 随x 的增大而减小;当k <0时,反比例函数的两个分支分别位于第二、四象限,在每个象限内y 值随x 的增大而增大.(3 4. 反比例函数y =kx (k ≠0)中的比例系数k 的几何意义过双曲线y =kx上任一点P 作x 轴、y 轴的垂线PM 、PN ,所得的矩形PMON 的面积为S=PM ·PN =︱y ︱·︱x ︱=︱xy ︱,∵y =kx ,∴xy =k ,∴S =︱k ︱.即①过双曲线上任意一点作x 轴、y 轴的垂线,所得的矩形的面积为︱k ︱.②过双曲线上任意一点作x 轴(y 轴)的垂线,由该点、垂足和原点所构成的三角形的面积都是12︱k ︱.三. 重点难点:本节的重点是反比例函数的图象和性质,难点是在学习过程中要全面理解其性质及图象的特征,结合图象来理解,采用数形结合的思想方法.【典型例题】例1. 判断下列函数式,y 与x 是反比例函数关系的有哪些?①y =2x +1;②y =πx ;③y =a x ;④y =4x 2+x -x 2;⑤xy =3;⑥y =13x ;⑦x (y +1)=3;⑧2x ·3y =7.分析:按照反比例函数关系式的特征判断.①中,y 与x +1成反比例,不是y 与x 成反比例.③中没有说明a 的条件.⑦化简后为y =3x-1不符合反比例函数的形式,所以①③⑦不是反比例函数.对于②中,π为常数.④中化简得y =4x .⑤可变形为y =3x.⑥可变形为y =13x .⑧可变形为y =76x .都符合反比例函数的一般形式,所以②④⑤⑥⑧是反比例函数. 解:②④⑤⑥⑧是反比例函数. 评析:(1)判断两种量是否成反比例关系时,通常写出这两种量的关系式.然后化简,再对照反比例函数式的特征进行解答.(2)反比例函数式y =kx (k 为常数,k ≠0)还可以写成y =kx -1或xy =k (k 为常数,k ≠0).例2. 已知y 是x 的反比例函数,且当x =3时,y 的值是-5.(1)求y 与x 的关系式.(2)求当x =-5时,y 的值.分析:y 是x 的反比例函数,即x 与y 满足y =kx 这个关系式,且当x =3时,y 的值是-5,将这两个数值代入即可求出k 的值.解:(1)设y =k x (k ≠0),把x =3,y =-5代入得,-5=k3.解之得,k =-15,所以,解析式为y =-15x.(2)把x =-5代入,得y =-15-5=3.所以,当x =-5时,y 的值是3.评析:待定系数法求反比例函数解析式的步骤是:(1)设出函数解析式的一般形式为y =kx(k ≠0).(2)把对应的x 与y 的值代入,得到一个关于k 的方程.(3)解方程,求出待定系数k 的值.(4)代入解析式即可得到要求的解析式.例3. (1)已知反比例函数y =(a -2)52-a x ,当x >0时,y 随x 的增大而增大,则该函数关系式是__________.(2)已知反比例函数y =1-3mx 的图象上有两点A (x 1,y 1)、B (x 2,y 2),当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是__________.分析:(1)因为反比例函数y =(a -2)52-a x ,当x >0时,y 随x 的增大而增大,所以有⎩⎪⎨⎪⎧a -2<0a 2-5=-1 解得⎩⎪⎨⎪⎧a <2a 2=4 即⎩⎪⎨⎪⎧a <2a =±2 .所以a =-2,当a =-2时,函数关系式为y =-4x.(2)反比例函数的图象有两种情况:当1-3m >0时,如图(1)所示,此时y 1<y 2;当1-3m <0时,如图(2)所示,此时y 1>y 2;故可得1-3m >0,即m <13.(1)(2)解:(1)y =-4x (2)m <13评析:(1)对于y =kx (k 为常数,k ≠0)来说,当k >0时,反比例函数的图象的两个分支位于一、三象限.在每个象限内y 随x 的增大而减小;当k <0时,反比例函数的两个分支分别位于第二、四象限,在每个象限内y 值随x 的增大而增大.所以在此题中,应该有a -2<0.(2)反比例函数y =kx ,当k <0时,在每个象限内,y 随x 的增大而增大,但并不是说反比例函数的整个图象是从左往右上升的,因此一定注意,“在每个象限内”这个条件.例4. (1)(2008年上海)若反比例函数y =k x (k <0)的函数图像过点P (2,m )、Q (1,n ),则m 与n 的大小关系是:m __________n (选择填“>”、“=”、“<”).(2)函数y =-ax +a 与y =-ax(a ≠0)在同一坐标系中的图象可能是( )分析:(1)由k <0知函数图象在二、四象限,且y 随x 的增大而增大,又图象过点P (2,m )、Q (1,n ),2>1,则m >n .(2)由函数图象判断-a 的正负,看是否一致,可以发现函数y =-ax +a 中,当x =1时,y =0,即直线过定点(1,0),所以可排除B 和D .在A 中,根据直线的图象可知-a <0,根据双曲线的图象可知-a <0,它们是一致的.在C中,根据直线的图象可知-a >0,根据双曲线的图象可知-a <0,它们是不一致的,应排除.解:(1)>(2)A例5. 点P 是x 轴正半轴上的一个动点,过点P 作x 轴的垂线PA 交双曲线y =1x 于点A ,连接OA .(1)如图(1)所示,当点P 在x 轴的正方向上运动时,R t △AOP 的面积大小是否变化?若不变,请求出R t △AOP 的面积;若改变,试说明理由.(2)如图(2)所示,在x 轴上的点P 的右侧有一点D ,过点D 作x 轴的垂线DB 交双曲线y =1x 于点B ,连接BO 交AP 于C ,设△AOP 的面积为S 1,梯形BCPD 的面积为S 2,则S 1与S 2的大小关系是S 1__________S 2.(选填“>”“<”或“=”)解:(1)设A 点坐标为(x ,y ),则x >0,y >0.S △AOP =12·OP ·AP =12·x ·y =12×1=12.所以当点P 在x 轴的正方向移动时,R t △AOP 的面积不发生变化.(2)由(1)的结果可知S △AOP =S △BOD ,而梯形BCPD 的面积小于S △BOD ,所以有S △AOP >S 梯形BCPD ,即S 1>S 2.评析:从双曲线y =kx (k ≠0)上任一点向x 轴作垂线.则该点垂足及坐标原点构成的三角形面积都相等,其值为12︱k ︱.【方法总结】1. 反比例函数的图象是双曲线,双曲线所在的象限由比例系数k 来决定,当k >0时,双曲线在第一、三象限;当k <0时,双曲线在第二、四象限.2. 若两个变量的积是一个不为零的常数,则这两个变量成反比例.3. 求函数关系式时,一般用待定系数法.4. 在记忆反比例函数图象的性质时,要与正比例函数的性质相对照,不要混淆.5. 在反比例函数y =kx(k ≠0)的图象上任取一点向x 轴作垂线,则由垂足、原点及该点构成的三角形的面积不变,其值为12︱k ︱.【模拟试题】(答题时间:45分钟)一. 选择题1. 下列函数表达式中,是反比例函数的是( )A .y =x -1B .y =1x -1C .y =x2D .xy =-22. 一个长方形的面积为10,则这个长方形的长与宽之间的函数关系是( )A .正比例函数关系B .反比例函数关系C .一次函数关系D .不能确定3. 下列函数中,图象经过点(1,-1)的反比例函数解析式是( )A .y =1xB .y =-1xC .y =2xD .y =-2x4. 已知(3,-1)是曲线y =kx(k ≠0)上一点,则下列各点中不在该图像上的点是( )A .(13,-9)B .(3,1)C .(-1,3)D .(6,-12)5. 如果两点P 1(1,y 1)和P 2(2,y 2)在反比例函数y =1x 的图象上,那么( )A .y 2<y 1<0B .y 1<y 2<0C .y 2>y 1>0D .y 1>y 2>0*6. 若r 为圆柱底面的半径,h 为圆柱的高.当圆柱的侧面积一定时,则h 与r 之间的函数关系的图象大致是( )BC D7. 已知反比例函数y =2x,下列结论中,不正确的是( )A. 图象必经过点(1,2)B. y 随x 的增大而减小C. 图象在第一、三象限内D. 若x >1,则y <28. 反比例函数y =kx (k >0)的部分图象如图所示,A 、B 是图象上两点,AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,若△AOC 的面积为S 1,△BOD 的面积为S 2,则S 1和S 2的大小关系为( )A. S 1>S 2B. S 1=S 2C. S 1<S 2D. 无法确定二. 填空题1. 反比例函数y =kx 的图像经过点(2,-1),则k 的值为__________.2. 反比例函数y =15x 中,k =__________.3. 如果y =1x2n -5是反比例函数,则n =__________.4. 反比例函数y =kx的图象经过点(2,3),则这个反比例函数的解析式为_______________.5. 已知反比例函数y =kx 的图象分布在第二、四象限,则一次函数y =kx +b 中,y 随x 的增大而________(填“增大”、“减小”、“不变”).*6. 如图,双曲线y =kx 与直线y =mx 相交于A 、B 两点,B 点坐标为(-2,-3),则A点坐标为__________.**7. 双曲线y =8x与直线y =2x 的交点坐标为__________.三. 解答题1. 指出下列式子哪些是反比例函数解析式?并指出x 的取值.(1)y =x 5 (2)y =-23x (3)y =13x 2 (4)y =3x2. 已知反比例函数y = kx 的图象与一次函数y =3x +m 的图象相交于点(1,5).求这两个函数的解析式;3.x 和y 的一些值:(1)写出y 与x 的函数关系式;(2)根据求出的函数关系式完成上表.*4. 已知点P (2,2)在反比例函数y =kx (k ≠0)的图象上,(1)当x =-3时,求y 的值;(2)当1<x <3时,求y 的取值范围.**5. 如图所示,R t △ABO 的顶点A 是双曲线y =kx与直线y =-x +(k +1)在第四象限的交点,AB ⊥x 轴于B ,且S △ABO =32.求这两个函数的表达式;【试题答案】一. 选择题1. D2. B3. B4. B5. D6. B7. B8. B二. 填空题1. -22. 153. 34. y =6x 5. 减小 6. (2,3) 7. (2,4)和(-2,-4)三. 解答题1. (2)和(4)是反比例函数,其取值范围都是x ≠0.2. y =5x,y =3x +23. (1)y =20x(2)如下表所示:4. (1)-43(2)43<y <45. y =-3x ,y =-x -2。
反比例函数知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、工作计划、活动方案、规章制度、演讲致辞、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, work plans, activity plans, rules and regulations, speeches, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!反比例函数知识点反比例函数知识点(梳理)同学们!反比例函数的一般式、图象与增减性、反比例函数上点的坐标特征、反比例函数中系数K的几何意义、反比例函数的对称性等。
一、选择题1.如图,反比例函数k y x=(0)k ≠图象经过A 点,AC x ⊥轴,CO BO =,若6ACB S =△,则k 的值为( )A .-6B .6C .3D .-3【答案】A【分析】 根据反比例函数k y x =(0)k ≠图象经过A 点,可设A 点的坐标是,k x x ⎛⎫ ⎪⎝⎭,可得k AC x =,CO BO x ==-,2CB x =-,再根据162ACB S AC CB ==△,化简求值即可. 【详解】解:∵反比例函数k y x=(0)k ≠图象经过A 点, ∴设A 点的坐标是:,k x x ⎛⎫ ⎪⎝⎭, ∵A 点在第二象限,则:k AC x=,CO BO x ==-, ∴2CB x =-, ∵162ACB S AC CB ==△, 即:()262k x x⨯-=⨯ ∴6k =-,故选:A .【点睛】本题主要考查了反比例函数与几何综合,熟悉相关性质是解题的关键.2.若反比例函数1y k x+=(k 是常数)的图象在第一、三象限,则k 的取值范围是( )A .0k <B .0k >C .1k <-D .1k >-【答案】D【分析】 先根据反比例函数的性质得出k+1>0,再解不等式即可得出结果.【详解】解:∵反比例函数1y k x+=(k 为常数)的图象在第一、三象限, ∴k+1>0,解得k>-1.故选:D .【点睛】本题考查了反比例函数的图象和性质:当k >0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限.3.已知反比例函数y =6x-,下列说法中正确的是( ) A .图象分布在第一、三象限 B .点(﹣4,﹣3)在函数图象上C .y 随x 的增大而增大D .图象关于原点对称 【答案】D【分析】根据反比例函数的解析式得出函数的图象在第二、四象限,函数的图象在每个象限内,y 随x 的增大而增大,再逐个判断即可.【详解】解:A .∵反比例函数y =6x-中﹣6<0, ∴该函数的图象在第二、四象限,故本选项不符合题意;B .把(﹣4,﹣3)代入y =6x -得:左边=﹣3,右边=32,左边≠右边, 所以点(﹣4,﹣3)不在该函数的图象上,故本选项不符合题意; C .∵反比例函数y =6x-中﹣6<0, ∴函数的图象在每个象限内,y 随x 的增大而增大,故本选项不符合题意;D .反比例函数y =6x -的图象在第二、四象限,并且图象关于原点成中心对称,故本选项符合题意;故选:D .【点睛】本题考查了反比例函数的图象和性质,能熟记反比例函数的性质是解此题的关键.4.若函数k y x =的图象经过点A (-1,2),则k 的值为( ) A .1B .-1C .2D .-2【答案】D【分析】 把已知点的坐标代入计算即可.【详解】∵函数k y x =的图象经过点A (-1,2), ∴21k =-, ∴k= -2;故选D .【点睛】本题考查了反比例函数与点的关系,根据图像过点,点的坐标满足函数的解析式求解是解题的关键.5.已知反比例函数5y x =-,下列结论不正确的是( ) A .其图象经过点(1,5)-B .其图象位于第二、第四象限C .当0x < 时,y 随x 的增大而增大D .当1x >- 时,5y >【答案】D【分析】根据反比例函数的性质,图像与点的关系,逐一判断即可.【详解】∵反比例函数5y x=-, ∴xy= -5,∵1×(-5)=-5;∴图象经过点(1,5)-,∴选项A 正确;∵k= -5<0,∴图象分布在二、四象限,∴选项B 正确;∵k= -5<0,∴图象分布在二、四象限,且在每个象限内,y 随x 的增大而增大,∵当0x < 时,图像分布在第二象限,∴选项C 正确;∵当0>1x >- 时,5y >;当0x > 时,y 5<0<,∴选项D 错误;故选D .【点睛】本题考查了反比例函数的图像分布,性质,熟记图像分布与性质是解题的关键.6.如图,点A 在反比例函数()0k y k x=≠的图象上,过点A 作AB x ⊥轴于点B ,若OAB ∆的面积为3,则k 的值为( )A .-6B . 6C .-3D .3 【答案】A【分析】 设出点A 的坐标,用坐标表示面积列方程即可.【详解】解:设A 点坐标为(a ,k a ),则AB=k a,OB=-a , 12OAB S AB OB ∆=⨯, 13()2k a a=⨯⨯-, 解得,k=-6,故选:A .【点睛】 本题考查了反比例函数比例系数k 的几何意义,解题关键是设反比例函数图象上点的坐标,用坐标表示面积.7.已知反比例函数8y x=-,下列结论中不正确的是( ) A .函数图象经过点()2,4-B .函数图象分别位于第二、四象限D .若4x <-,则02y <<【答案】C【分析】根据反比例函数的性质及图象上点的坐标特点对各选项进行逐一分析即可.【详解】解:A 、∵k=-2×4=-8,∴此函数图象过点(-2,4),故本选项不符合题意;B 、∵k=-8<0,∴此函数图象的两个分支位于第二、四象限,故本选项不符命题意;C 、∵k=-8<0,∴在每个象限内,y 随着x 的增大而增大,故本选项符合题意;D 、当4x <-,则02y <<,故本选项不符合题意;故选:C【点睛】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.8.反比例函数1y x =-的图象上有两点()111,P x y ,()222,P x y ,若120x x <<,则下列结论正确的是( )A .110y y <<B .120y y <<C .120y y >>D .120y y >> 【答案】D【分析】由反比例函数的解析式可知xy=-1,故x 与y 异号,于是可判断出y 1、y 2的正负,从而得到问题的答案.【详解】解:∵1y x =-, ∴xy=-1.∴x 、y 异号.∵x 1<0<x 2,∴y 1>0>y 2.故选:D .【点睛】本题主要考查了反比例函数图象上点的坐标特点,确定出y 1、y 2的正负是解题的关键.9.对于反比例函数2y x=-,下列说法正确的是( ) A .图象经过点()2,1--B .已知点()12,P y -和点()26,Q y ,则12y y <C .其图象既是轴对称图形也是中心对称图形D .当0x >时,y 随x 的增大而减小【答案】C【分析】根据反比例函数的性质进行判断即可.【详解】解: A 、把点 ()2,1-- 代入反比例函数y=2x -,得-1≠2--2,故不正确; B 、把点 ()12,P y - 代入反比例函数y 1=221--=,把点 ()26,Q y 代入反比例函数y 2=2361-=-,12y y >,故不正确; C 、其图象既是轴对称图形也是中心对称图形,符合题意;D 、k=-2<0,∴在每一象限内y 随x 的增大而增大,故不正确;故选C .【点睛】 本题考查了反比例函数y= k x(k≠0)的性质: ①当k>0 时,图象分别位于第一、 三象限;当k<0时, 图象分别位于第二、 四象限;②当k>0时,在同一个象限内, y 随x 的增大而减小;当k<0时, 在同一个象限, y 随x 的增大而增大.10.如图,直线y kx b =+与双曲线21(0)m y x x+=>交于()11,A x y ,()()2212,B x y x x <,直线AB 交x 轴于()0,0C x ,下列命题:①1221x x y y =;②当12x x x <<时,21m kx b x++>;③若(,)M t s 为线段AB 的中点,则012t x =,其中正确的命题有( )A .①②B .②③C .①③D .①②③【答案】D【分析】根据反比例函数上的点横纵坐标之积相等,可得x 1y 1=x 2y 2,整理即可判断①; 结合函数图象一次函数在反比例函数上的的部分可对②进行判断; 根据线段的中点公式可得122x x t +=,联立反比例函数和一次函数整理后得一元二次方程2210kx bx m +--=,根据根与系数关系可得12b x x k +=-,由此可得2t kb =-,由一次函数与x 轴的交点可得0b x k=-,由此可判断③. 【详解】 解:∵点A (x 1,y 1),B (x 2,y 2)在双曲线21(0)m y x x+=>上, ∴x 1y 1=x 2y 2=m 2+1, ∴1221x x y y =,①正确; ∵当x 1<x <x 2时,直线y=kx+b 在双曲线21(0)m y x x+=>上方, ∴当12x x x <<时,21m kx b x++>,②正确; ∵M (t ,s )为线段AB 的中点, ∴122x x t +=, 当21m kx b x++=时, 即2210kx bx m +--=, 此时,12b x x k +=-, ∴2t kb =-, 把C (x 0,0)代入y=kx+b 得kx 0+b=0, 解得0b x k=-, ∴x 1+x 2=x 0, ∴012t x =,所以③正确. 故选:D .【点睛】 本题考查判断命题的真假,一次函数与反比例函数综合.理解函数上点的坐标特征,能借助这些特征表示点的坐标是解题关键.③中用到了两个函数交点坐标即联立它们所成方程组的解.11.对于反比例函数y=3x ,下列判断正确的是( ) A .图象经过点(-1,3)B .图象在第二、四象限C .不论x 为何值,y>0D .图象所在的第一象限内,y 随x 的增大而减小【答案】D【分析】根据反比例函数k y x=的性质:当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小,以及凡是反比例函数经过的点横纵坐标之积k =进行分析即可.【详解】A 、133k -⨯=-≠,该选项错误;B 、∵30k =>,∴图象在第一、三象限,该选项错误;C 、∵30k =>,∴当0x >时,0y >,该选项错误;D 、∵30k =>,∴图象所在的第一象限内,y 随x 的增大而减小,该选项正确; 故选:D .【点睛】本题主要考查了反比例函数的性质,关键是掌握反比例函数k y x=的性质:(1)反比例函数的图象是双曲线;(2)当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;(3)当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.注意:反比例函数的图象与坐标轴没有交点.12.如图,点A (m ,m +1)、B (m +3,m −1)是反比例函数(0)k y x x=>与直线AB 的交点,则直线AB 的函数解析式为( )A .142y x =-+B .263y x =-+C.162y x=-+D.243y x=-+【答案】B【分析】根据反比例函数的特点k=xy为定值,列出方程,求出m的值,便可求出一次函数的解析式;【详解】由题意可知,m(m+1)=(m+3)(m-1)解得m=3.∴A(3,4),B(6,2);设AB的解析式为y ax b=+∴3462a ba b+⎧⎨+⎩==解得236ab⎧=-⎪⎨⎪⎩=∴AB的解析式为263y x=-+故选B.【点睛】此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式,比较简单.二、填空题13.如图,点A在双曲线2(0)y xx=-<上,连接OA,作OB OA⊥,交双曲线(0)ky kx=>于点B,若2OB OA=,则k的值为_________.14.如图,点A在反比例函数kyx=(k≠0)的图象上,且点A是线段OB的中点,点D为x轴上一点,连接BD交反比例函数图象于点C,连接AC,若BC:CD=2:1,S△AD C=53.则k 的值为________.15.某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压()P kpa 是气球体积V 的反比例函数,其图象如图所示,当气球内的气压大于160kpa 时,气球将爆炸,为了安全,气球的体积V 的范围是__________.16.若点(4,3)A ,(2,)B m 在同一个反比例函数的图象上,则m 的值为_______. 17.如图,反比例函数(0)k y k x=≠的图象经过等边ABC 的顶点A ,B ,且原点O 刚好在线段AB 上,已知点C 的坐标是()3,3-,则k 的值为________.18.如图,直角坐标系中,A 是反比例函数12(0)y x x=>图象上一点, B 是y 轴正半轴上一点,以OA ,AB 为邻边作ABCO 若点C 及BC 中点D 都在反比例函数 k y x =(0k <,0x <)图象上,则k 的值为 ________ .19.双曲线2y x=-经过点A(-1,1y ),B(2,2y ),则1y ________2y (填“>”,“<”或“=”). 20.已知反比例函数6y x=,在其位于第三像限内的图像上有一点M ,从M 点向y 轴引垂线与y 轴交于点N ,连接M 与坐标原点O ,则ΔMNO 面积是_____.三、解答题21.在平面直角坐标系平面中,直线12y x =经过点(),2A m ,反比例函数()0ky k x =≠的图像经过点A 和点()8,B n . (1)求反比例函数的解析式;(2)在x 轴上找一点C ,当AC BC =时,求点C 的坐标; (3)在(2)的条件下,求ACB ∆的面积.22.在平面直角坐标系内,点O 为坐标原点,一次函数y kx b =+的图象与反比例函数my x=的图象交于A ,B 两点,若()4,1A ,点B 的横坐标为2-,求反比例函数及一次函数的解析式. 23.如图,一次函数y x b =+的图象与y 轴正半轴交于点C ,与反比例函数ky x=的图象交于A ,B 两点,若2OC =,点B 的纵坐标为3.(1)求反比例函数的解析式;(2)求AOB的面积.24.受新冠肺炎疫情的影响,运城市某化工厂从2020年1月开始产量下降.借此机会,为了贯彻“发展循环经济,提高工厂效益”的绿色发展理念;管理人员对生产线进行为期5个月的升级改造,改造期间的月利润与时间成反比例函数;到5月底开始恢复全面生产后,工厂每月的利润都比前一个月增加10万元.设2020年1月为第1个月,第x个月的利润为y万元,其图象如图所示,试解决下列问题:(1)分别写出该化工厂对生产线进行升级改造前后,y与x的函数表达式.(2)到第几个月时,该化工厂月利润才能再次达到100万元?(3)当月利润少于50万元时,为该化工厂的资金紧张期,问该化工厂资金紧张期共有几个月?25.如图,反比例函数myx=与一次函数y kx b=+的图象交于A(1,3)和B(-3,n)两点.(1)求m、n的值;(2)当x取什么值时,一次函数的值大于反比例函数的值.(3)求出△OAB 的面积.26.九年级某数学兴趣小组在学习了反比例函数的图象与性质后,进一步研究了函数2||y x =的图象与性质,其探究过程如下:(1)绘制函数图象,如图1. 列表:下表是x 与y 的几组对应值; x…-3-2-112- 121 2 3 …y …231 2 442 123…描点:根据表中各组对应值,在平面直角坐标系中描出了各点;连线:用平滑的曲线顺次连接各点,画出了部分图象.请你把图象补充完整; (2)通过观察下图,写出该函数的两条性质; ①_________________________________________; ②_________________________________________; (3)①观察发现:如图,若直线2y =交函数2||y x =的图象于A ,B 两点,连接OA ,过点B 作//BC OA 交x 轴于C .则OABC S =四边形______;②探究思考:将①中“直线2y =”改为“直线(0)y a a =>”,其他条件不变,则OABC S =四边形______;③类比猜想:若直线(0)y a a =>交函数(0)||ky k x =>的图象于A ,B 两点,连接OA ,过点B 作//BC OA 交x 轴于C ,则OABC S =四边形______.【参考答案】***试卷处理标记,请不要删除一、选择题 1.无 2.无 3.无 4.无 5.无 6.无 7.无 8.无 9.无 10.无 11.无 12.无二、填空题13.8【分析】过点A 作轴过点B 作轴利用相似三角形的性质求解即可;【详解】过点A 作轴过点B 作轴∵∴∴∵∴∴∵A 在上设∴∵∴∴∴B 的坐标为将点B 的坐标代入则;故答案是8【点睛】本题主要考查了反比例函数的应用 解析:8 【分析】过点A 作AE x ⊥轴,过点B 作BF x ⊥轴,利用相似三角形的性质求解即可; 【详解】过点A 作AE x ⊥轴,过点B 作BF x ⊥轴,∵OB OA ⊥, ∴90AOB ∠=︒, ∴2390∠+∠=︒, ∵1290∠+∠=︒, ∴13∠=∠,∴AEOOFB , ∵A 在2(0)y x x=-<上,设()1112,<0A x x x ⎛⎫-⎪⎝⎭, ∴1OE x =,12AE x -=,∵2OB OA =, ∴12EO AE AO FB OF OB ===, ∴11222FB EO x x ===-,112422OF AE x x -===-,∴B 的坐标为114,2x x ⎛⎫-- ⎪⎝⎭, 将点B 的坐标代入(0)ky k x=>, 则()11428k x x =-⨯-=;故答案是8. 【点睛】本题主要考查了反比例函数的应用,准确计算是解题的关键.14.8【分析】作AE ⊥OD 于ECF ⊥OD 于F 由BC :CD=2:1S △ADC=可求S△ACB=由OA=OBS△AOC=S△ACB=设B(2m2n)可得A(mn)由AC在y=上BC=2CD可求k=mnC(m解析:8【分析】作AE⊥OD于E,CF⊥OD于F.由BC:CD=2:1,S△ADC=53,可求S△ACB=103,由OA=OB,S△AOC=S△ACB=103,设B(2m,2n),可得A(m,n),由A、C在y=kx上,BC=2CD,可求k=mn,C(32m,23n),可推得S△AOC= S梯形AEFC即可解决问题.【详解】解:作AE⊥OD于E,CF⊥OD于F.∵BC:CD=2:1,S△ADC=53,∴S△ACB=103,∵OA=OB,∴B(2m,2n),S△AOC=S△ACB=103,A(m,n),∵A、C在y=kx上,BC=2CD,∴k=mn,∴C(32m,23n),∵S△AOC=S△AOE+S梯形AEFC﹣S△OCF=S梯形AEFC,∴12•(n+23n)×12m=103,∴mn=8,∴k=8.故答案为:8.【点睛】过反比例函数y=kx(k ≠0),图像上一点P (x,y ),作两坐标轴的垂线,两垂足、原点、P 点组成一个矩形,矩形的面积S=x y k =.过反比例函数过一点,作垂线,三角形的面积为12k .所以,对双曲线上任意一点作x 轴、y 轴的垂线,它们与x 轴、y 轴所围成的矩形面积为常数从而有k 的绝对值.在解有关反比例函数的问题时,若能灵活运用反比例函数中k 的几何意义,会给解题带来很多方便.15.【分析】利用待定系数法结合反比例函数图象上的点(1564)可求得反比例函数的解析式再根据题意即可求出当时V 的范围【详解】解:设球内气体的气压P (kPa )和气体体积V (m3)的关系式为∵图象过点(15 解析:0.6V ≥【分析】利用待定系数法结合反比例函数图象上的点(1.5,64)可求得反比例函数的解析式,再根据题意即可求出当160P ≤时V 的范围. 【详解】解:设球内气体的气压P (kPa )和气体体积V (m 3)的关系式为k P V=, ∵图象过点(1.5,64), ∴ 1.56496k =⨯=, ∴96P V=. ∵在第一象限内,P 随V 的增大而减小, ∴当160P ≤时,96160V≤, ∴0.6V ≥. 故答案为:0.6V ≥. 【点睛】本题考查了反比例函数的应用,根据图象上的已知点的坐标求出函数解析式是解题关键.16.;【分析】设反比例函数解析式为y=根据反比例函数图象上点的坐标特征得到k=4×3=2m 然后解关于m 的方程即可【详解】解:设反比例函数解析式为y=根据题意得k=4×3=2m 解得m=6故答案为6【点睛】解析:6; 【分析】设反比例函数解析式为y=kx,根据反比例函数图象上点的坐标特征得到k=4×3=2m ,然后解关于m 的方程即可. 【详解】解:设反比例函数解析式为y=kx,根据题意得k=4×3=2m,解得m=6.故答案为6.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.17.3【分析】连结OC过C作CD⊥x轴于DBE⊥x轴于E由对称性可知:OA=OB由△ABC是等边三角形得三线合一知OC⊥AB再根据C点坐标求出OCOB的长利用直角三角形OCD求出∠DOC=45º∠EOB解析:3【分析】连结OC,过C作CD⊥x轴于D,BE⊥x轴于E,由对称性可知:OA=OB,由△ABC是等边三角形得三线合一知,OC⊥AB,再根据C点坐标,求出OC,OB的长,利用直角三角形OCD,求出∠DOC=45º,∠EOB=45º,得到OE=BE在Rt△BEO中OE2+BE2=OB2=6求出,根据点B所在象限求出B点坐标,再代入即可求出k值.【详解】解:连结OC,过C作CD⊥x轴于D,BE⊥x轴于E,由对称性可知:OA=OB,∵△ABC是等边三角形,∴OC⊥AB,∵C(-3,3),∴OC=∴OB,∵OD=CD=3,∴∠DOC=∠DCO=45º,∴∠EOB=90º-∠DOC=90º-45º=45º,∴OE=BE,在Rt△BEO中OE2+BE2=OB2=6,∴∵点B在第三象限,∴B(把B点坐标代入y=kx,得到k=3,故答案为:3.【点睛】此题主要考查反比例函数的图像和性质,等腰直角三角的性质,勾股定理,解题的关键是利用反比例函数的对称性与等边三角形的三线合一.18.-6【分析】设根据平行四边形的性质可得出CD 的坐标将其带入反比例函数解析式求解即可【详解】设根据平行四边形对角线互相平分可得OB 的中点即为AC 的中点而OB 的中点为由此可得:∵D 为BC 的中点∴∵CD 均解析:-6 【分析】 设()120A a,,B ,m a ⎛⎫⎪⎝⎭,根据平行四边形的性质可得出C 、D 的坐标,将其带入反比例函数解析式求解即可. 【详解】 设()120A a,,B ,m a ⎛⎫⎪⎝⎭, 根据平行四边形对角线互相平分,可得OB 的中点即为AC 的中点, 而OB 的中点为0,2m ⎛⎫ ⎪⎝⎭,由此可得:12C a,m a ⎛⎫-- ⎪⎝⎭, ∵D 为BC 的中点, ∴62aD ,m a ⎛⎫-- ⎪⎝⎭,∵C 、D 均在反比例函数图象上, ∴1262a k a m m a a ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭, 解得:18am =,6k =-,故答案为:-6. 【点睛】本题考查反比例函数图象上点的坐标特征,以及平行四边形的性质,熟练结合平行四边形的性质设出各点的坐标是解题关键.19.【分析】把点AB 的坐标代入函数解析式求出比较大小即可【详解】解:把点AB 的坐标代入函数解析式得∴>故答案为:>【点睛】本题考查了根据函数解析式比较函数值的大小本题也可以画出函数图象描点借助图象比较函 解析:>【分析】把点A 、B 的坐标代入函数解析式求出1y ,2y ,比较大小即可. 【详解】解:把点A 、B 的坐标代入函数解析式2y x=-得 122y =x 1=2=---,222y ==1x 1=---,∴1y >2y . 故答案为:> 【点睛】本题考查了根据函数解析式比较函数值的大小,本题也可以画出函数图象,描点,借助图象比较函数值的大小.20.3【分析】根据反比例函数系数k 的几何意义得到:△MNO 的面积为|k|即可得出答案【详解】∵反比例函数的解析式为∴k=6∵点M 在反比例函数图象上MN ⊥y 轴于N ∴S △MNO=|k|=3故答案为:3【点睛解析:3 【分析】根据反比例函数系数k 的几何意义得到:△MNO 的面积为12|k|,即可得出答案. 【详解】∵反比例函数的解析式为6y x=, ∴k=6,∵点M 在反比例函数6y x=图象上,MN ⊥y 轴于N , ∴S △MNO =12|k|=3, 故答案为:3 【点睛】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.三、解答题21.(1)8y x =;(2)C (458,0);(3)5116【分析】(1)先把(),2A m 代入12y x =求出m ,再把(),2A m 代入k y x=求出k 即可; (2)先求出点B 的坐标,设C (x ,0),根据两点间的距离公式求出x 即可; (3)连接AC ,BC ,作AE ⊥x 轴于E ,作BF ⊥x 轴于F ,根据S △ABC =S 梯形ABFE -S △ACE -S △BCF 求解即可;【详解】解:(1)把(),2A m 代入12y x =,得 122m =, ∴m =4, 把()4,2A 代入k y x=,得 24k =, ∴k =8, ∴8y x=; (2)把()8,B n 代入8y x=,得 818n ==, ∴()8,1B ,设C (x ,0),∵AC BC =,∴=∴458x =, 经检验45x 8=是原方程的根, ∴C (458,0); (3)连接AC ,BC ,作AE ⊥x 轴于E ,作BF ⊥x 轴于F , ∵()4,2A ,()8,1B ,C (458,0), ∴AE =2,BF =1,EF =8-4=4,CE =458-4=138,CF =8-458=198,∴S △ABC =S 梯形ABFE -S △ACE -S △BCF =()11131191242122828⨯+⨯-⨯⨯-⨯⨯ =5116.【点睛】本题考查了待定系数法求反比例函数解析式,反比例函数图像上点的坐标特征,坐标与图形的性质,两点间的距离公式,以及割补法求图形的面积等知识,求出反比例函数解析式是解答本题的关键.22.反比例函数的解析式为:4y x =;一次函数的解析式的解析式为112y x =- 【分析】把点A 的坐标代入反比例函数的解析式,确定其解析式,利用解析式确定点B 的坐标,从而利用A ,B 两点的坐标确定直线的解析式即可.【详解】 解:点()4,1A 在反比例函数m y x=的图象上, 14m ∴=, 解得:4m =,∴反比例函数的解析式为:4y x=点B 的横坐标为2-, 422y ∴==--, ∴点()2,2B --,将点A 与B 代入一次函数解析式得4122k b k b +=⎧⎨-+=-⎩解得121 kb⎧=⎪⎨⎪=-⎩∴一次函数的解析式的解析式为:112y x=-.【点睛】本题考查了反比例函数的解析式,一次函数的解析式,交点坐标的意义,熟练掌握待定系数法,灵活运用解析式与点的坐标的关系是解题的关键.23.(1)3yx=;(2)4【分析】(1)先求出b=2,得一次函数关系式,代入3y=得x值,从而可得点B坐标,把点B坐标代入反比例函数关系式可得解;(2)分别求出A,B,D的坐标,根据AOB AOD BODS S S=+求解即可.【详解】解:(1)点C在y轴正半轴,2OC=,2b∴=,∴一次函数解析式为2y x=+.将3y=代入2y x=+,得1x=,(1,3)B∴.将点()1,3B代入kyx=,得31=k,3k∴=,∴反比例函数的解析式为3yx=.(2)将0y=代入2y x=+,得2x=-,∴点D的坐标是(0,2)-,2OD∴=.如图,将2y x =+代入3y x =,得32x x+=, 解得11x =,23x =-.当3x =-时,321y ,∴点A 的坐标是(3,1)--,∴点A 到x 轴的距离是1.点B 的纵坐标为3,∴点B 到x 轴的距离是3,112123422AOB AOD BOD S S S ∴=+=⨯⨯+⨯⨯=△△△. 【点睛】 本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式以及三角形的面积公式,根据点的坐标利用待定系数法求出函数解析式是关键.24.(1)100y x=(05x <<,且x 为整数),1030y x =-(5x >且x 为整数);(2)第13个月;(3)5个月.【分析】(1)结合图像利用待定系数法求函数解析式;(2)把y=100代入y=10x-30即可得到结论; (3)对于100y x=,y=50时,得到x=2,得到x <2时,y <50,对于y=10x-30,当y=50时,得到x=8,于是得到结论.【详解】 解:(1)由题意得,设前5个月中y=k x , 把x=1,y=100代入得,k=100,∴y 与x 之间的函数关系式为y=100x(05x <<,且x 为整数), 把x=5代入,得y=20,由题意设5月份以后y 与x 的函数关系式为y=10x+b ,把x=5,y=20代入得,20=10×5+b ,解得:b=-30,∴y 与x 之间的函数关系式为y=10x-30(5x >且x 为整数);(2)在函数1030y x =-中,令100y =,得1030100x -=解得:13x =答:到第13个月时,该化工厂月利润再次达到100万元. (3)在函数100y x=中,当50y =时,2x =, ∵1000>,y 随x 的增大而减小,∴当50y <时,2x >在函数1030y x =-中,当50y <时,得103050x -<解得:8x <∴28x <<且x 为整数;∴x 可取3,4,5,6,7;共5个月.答:该化工厂资金紧张期共有5个月.【点睛】本题考查了反比例函数的应用,一次函数的应用,正确的理解题意是解题的关键. 25.(1)m=3,n=-1;(2)x>1或-3<x<0;(3)4【分析】(1)把A ,B 的坐标代入反比例函数的解析式,即可求解;(2)观察函数图象即可求解;(3)由△AOB 的面积S =S △AOC +S △BOC ,即可求解.【详解】解:(1)由题意,得m 31m n 3⎧=⎪⎪⎨⎪=⎪-⎩,解得:3m =,1n =- (2)由(1)可求得反比例函数解析式为:3y x=,一次函数解析式为:2y x =+, 观察函数图象知,当1x >或30x -<<时,一次函数的值大于反比例函数的值.(3)设直线AB 交y 轴于C ,把0x =代入2y x =+,得:2y =,∴OC=2,∴△OAB 的面积AOC BOC 11S S 2132422∆∆=+=⨯⨯+⨯⨯=. 【点睛】本题考查了用待定系数法求一次函数和反比例函数的解析式,三角形的面积,一次函数与反比例函数的交点问题,关键是掌握数形结合思想.26.(1)补全图象见解析;(2)①函数的图象关于y 轴对称;②当0x <时,y 随x 的增大而增大,当0x >时,y 随x 的增大而减小;(3)①4;②4;③2k .【分析】(1)根据表格中的数据的变化规律得出当x <0时,xy =−2,而当x >0时,xy =2,求出m 的值;补全图象;(2)根据(1)中的图象,从函数的对称性,增减性方面得出函数图象的两条性质即可; (3)由图象的对称性,和四边形的面积与k 的关系,得出答案.【详解】解:(1)补全图象如图所示:(2)由函数图象的对称性可知,函数的图象关于y 轴对称,从函数的增减性可知,在y 轴的左侧(x <0),y 随x 的增大而增大;在y 轴的右侧(x >0),y 随x 的增大而减小;故答案为:①函数的图象关于y 轴对称,②当x <0时,y 随x 的增大而增大,当x >0时,y 随x 的增大而减小;(3)如图,①由A ,B 两点关于y 轴对称,由题意可得四边形OABC 是平行四边形,且OABC S 四边形=4OAM S =4×12|k|=2|k|=4, ②同①可知:OABC S 四边形=2|k|=4,③OABC S 四边形=2|k|=2k ,故答案为:4,4,2k .【点睛】本题考查反比例的图象和性质,列表、描点、连线是作函数图象的基本方法,利用图象得出性质和结论是解决问题的根本目的.。
人教版九年级数学下册知识点总结第二十六章、反比例函数知识点一:反比例函数的概念及其图象、性质1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下2种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE>S△BOD知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.。
反比例函数知识点反比例函数的定义定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。
反比例函数的性质函数y=k/x 称为反比例函数,其中k≠0,其中X是自变量,1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。
2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
3.x的取值范围是:x≠0;y的取值范围是:y≠0。
4..因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。
但随着x无限增大或是无限减少,函数值无限趋近于0,故图像无限接近于x轴5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。
反比例函数的一般形式(k为常数,k≠0)的形式,那么称y是x的反比例函数。
其中,x是自变量,y是函数。
由于x在分母上,故取x≠0的一切实数,看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。
补充说明:1.反比例函数的解析式又可以写成: (k是常数,k≠0).2.要求出反比例函数的解析式,利用待定系数法求出k即可.反比例函数解析式的特征⑴等号左边是函数,等号右边是一个分式。
分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1。
⑵比例系数⑶自变量的取值为一切非零实数。
⑷函数的取值是一切非零实数。
反比例函数高一数学知识点形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:反比例函数的图像为双曲线。
课程名称:反比例函数定义,图像,性质教学内容和地位:反比例函数是初中阶段三大函数中的第二部分,区别于一次函数,但又高于并且建立在一次函数之上,是中考的必考内容,经常以选择或填空题形式出现,内容比较简单;解答题形式出现时,难度中等,经常与一次函数结合,分值8分左右,通过实际问题考察反比例函数解析式的确定。
知识衔接点:利用平面直角坐标系来研究一次函数与反比例函数。
教材分析重点:(1)掌握反比例函数的概念及性质,确定反比例函数的解析式。
⑵理解函数图像的含义,培养由图像获取信息,解决问题的能力。
难点:掌握反比例函数图像的几何意义,渗透数形结合的数学思想。
课时规划3课时教学目标分析1.理解反比例函数定义和性质,会用待定系数法求反比例函数的解析式。
2.树立数形结合的数学思想,能完成解析式和图像位置、性质之间的转化。
3.综合运用多种数学思想,逐步形成数学应用和建模的意识。
教学思路1、复习、检查上次课重点知识2、梳理本节课重要知识3、例题精讲4、重点、常见题型(图形变换)5、易错点,常用解题方法和技巧6、课堂总结,课下安排教学过程必讲知识点一、复习上次课重要内容二、梳理本节课重要知识1.知识结构:2. 定义:形如y=xk(k为常数,k≠0)的函数称为反比例函数。
其中x是自变量,y是函数,自变量x的取值是不等于0的一切实数。
1)y的取值范围是一切非零的实数。
2)反比例函数解析式的三种表示方法:xy=k ;1-=kxy;xky1=(k为常数,k≠0)3. 用待定系数法求反比例函数的解析式由于反比例函数y=xk只有一个待定系数,因此只需要知道一组对应值,就可以求出k的值,从而确定其解析式。
4. 反比例函数的画法:1)列表;2)描点;3)连线5. 图像:反比例函数的图像属于双曲线。
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x和y= -x;对称中心是:原点。
6. 反比例函数图像与性质::反比例函数y=xk(k为常数,k≠0)k的取值k<0 k>0图像性质x的取值范围是x≠0;y的取值范围是y≠0;函数的图像两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。