反激式开关电源设计详解(上)
- 格式:ppt
- 大小:663.50 KB
- 文档页数:43
反激式开关电源(flyback)是一种常见的电源结构,广泛应用于电子设备中。
它具有结构简单、成本低廉、效率高等优点,在消费电子、工业控制和通信设备等领域被广泛应用。
本文旨在介绍反激式开关电源环路设计的基础知识,包括工作原理、设计步骤和注意事项。
一、反激式开关电源的工作原理1.1 反激式开关电源的基本结构反激式开关电源由输入滤波器、整流桥、高频变压器、功率开关器件、输出整流滤波器、控制电路等组成。
其中,高频变压器是反激式开关电源的关键部件,通过变压器实现输入电压的隔离和变换,功率开关器件则控制变压器的工作状态,实现电源的调节和稳定输出。
1.2 反激式开关电源的工作原理反激式开关电源通过功率开关器件周期性地将输入电压斩波,将输入电能存储在变压器的磁场中,然后再将其转换为输出电压。
在工作周期的后半段,存储的能量释放到输出负载上,从而实现对输出电压的调节。
通过控制功率开关器件的导通时间和断态时间,可以实现对输出电压的调节和稳定。
二、反激式开关电源环路设计的基础知识2.1 反激式开关电源的设计步骤(1)确定电源的输入输出参数:包括输入电压范围、输出电压、输出电流、负载调整范围等;(2)选择功率开关器件和高频变压器:根据电源的输入输出参数和工作频率选择合适的功率开关器件和高频变压器;(3)设计反激式开关电源的控制电路:根据所选的功率开关器件和高频变压器设计相应的控制电路,包括PWM控制电路、电源启动电路等;(4)设计输入输出滤波器和保护电路:设计输入输出滤波器,保证电源的输入输出稳定和干净,设计过压、过流、过温等保护电路,保证电源的安全稳定工作。
2.2 反激式开关电源环路设计的注意事项(1)磁性元件的设计:高频变压器和输出感应元件的设计是整个反激式开关电源设计的关键,应合理设计磁芯、线圈匝数等参数,保证磁性元件承载功率、效率和体积的平衡;(2)功率开关器件的选择和驱动:应选择合适的功率开关器件,并设计合理的驱动电路,保证功率开关器件的可靠工作和转换效率;(3)控制电路的设计:应根据功率开关器件的工作特性和工作频率设计合适的PWM控制电路和反馈控制电路,保证电源的稳定可调;(4)输入输出滤波器和保护电路的设计:应合理设计输入输出滤波器和保护电路,保证电源的输入输出稳定和安全可靠。
用SG6849设计反激式开关电源摘要:SG6849芯片是SG(System General)公司生产的开关电源专用集成电路,使用该芯片设计小功率开关电源,可大大减少外围电路,降低成本,电路可靠性高,且可以不带副边反馈。
详细介绍了SG6849芯片的工作原理,并基于此芯片设计了一个5.6W的单端反激式开关电源,给出了实验结果。
关键词:SG6849;反激;副边反馈O 引言开关电源因具有重量轻、体积小、效率高、稳压范围宽等优点,在电视、电声、计算机等许多电子设备中得到了广泛的应用。
为了进一步追求开关电源的小型化和低成本,人们不断研制成功一些新的开关电源集成电路芯片。
台湾SG System General)公司开发的SG6 849,集内部振荡器、比较器、反馈补偿电路于一体,只需较少的外围元器件,就可构成一个电路结构简洁、成本低、性能稳定、制作及调试方便的单端反激式开关电源。
在负载调整率要求不高的情况下,甚至可去掉副边反馈,进一步减少体积,节省成本。
1 SG6849芯片功能介绍1.1 内部结构及管脚功能SG6849芯片是台湾SG(System General)公司2004年底推出的SG684X系列PWM集成电路控制芯片。
该芯片具有如下特点:不带副边反馈的恒压和恒流控制;轻载时工作于省电模式;较低的启动电流和较低的工作电流;65kHz和100kHz的固定频率;较少的外围元件;输出过流保护、过温保护和短路保护。
该芯片采用S0T-26或DlP-8封装形式,内部结构如图1所示。
下面就以DIP-8封装为例,说明各管脚的功能。
脚l(GATE) 门极,用来驱动功率NOSFET。
脚2(VDD) 提供芯片的工作电压,当不带副边反馈时,靠VDD来提供反馈信息,调整输出电压。
脚3、5、6(NC) 悬空。
脚4(SENSE) 过流保护。
该引脚也可用于电流模式的PWM控制。
脚7(FB) 为PWM控制器的内部比较器提供反馈信息,控制占空比;当不带副边反馈的时候,该引脚开路。
反激式开关电源设计资料前言反激式开关电源的控制芯片种类非常丰富,芯片厂商都有自己的专用芯片,例如UC3842、UC3845、OB2262、OB2269、TOPSWITCH 等等。
虽然控制芯片略有不同,但是反激式开关电源的拓扑结构和电路原理基本上是一样的,本资料以UC3842为控制芯片设计了一款反激式开关电源。
单端反激式开关稳压电源的基本工作原理如下:D1ET ON T OFFL P L STI PQ1C O R L图1 反激式开关电源原理图当加到原边主功率开关管Q1的激励脉冲为高电平使Q1导通时,直流输入电压V IN加载原边绕组N P两端,此时因副边绕组相位是上负下正,使整流管D1反向偏置而截止;当驱动脉冲为低电平使Q1截止时,原边绕组N P两端电压极性反向,使副边绕组相位变为上正下负,则整流管被正向偏置而导通,此后存储在变压器中的磁能向负载传递释放。
因单端反激式电源只是在原边开关管到同期间存储能量,当它截止时才向负载释放能量,故高频变压器在开关工作过程中,既起变压隔离作用,又是电感储能元件。
因此又称单端反激式变换器是一种“电感储能式变换器”。
学习了反激式开关电源的工作原理之后,我们可以自行设计一款电源进行调试。
开关电源是一门实验科学,理论知识的学习是必不可少的,但是光掌握了理论知识是远远不够的,还要多做实验,测试不同环境不同参数下的电源工作情况,这样才能对电源有更深的认识。
除此之外,掌握大量的实验数据可以对以后设计电源和电源的优化提供很大帮助,可以更快速更合理的设计出一款新电源或者排除一些电源故障。
通过阅读下面的章节,可以使你对电源从原理理解到设计能力有一个快速的提升。
第一章电源参数的计算第一步,确定系统的参数。
我们设计一个电源首先要确定电源工作在一个什么样的环境,比如说输入电压的范围、频率、网侧电压是否纯净,接下来是电源的输出能力包括输出电压、电流和纹波大小等等。
先要确定这些相关因素,才能更好的设计出符合标准的电源。
1 设计步骤:1.1 产品规格书制作1.2 设计线路图、零件选用.1.3 PCB Layout.1.4 变压器、电感等计算.1.5 设计验证.2 设计流程介绍:2.1 产品规格书制作依据客户的要求,制作产品规格书。
做为设计开发、品质检验、生产测试等的依据。
2.2 设计线路图、零件选用。
2.3 PCB Layout.外形尺寸、接口定义,散热方式等。
2.4 变压器、电感等计算.变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,2.4.1 决定变压器的材质及尺寸:依据变压器计算公式Gauss x NpxAeLpxIp B 100(max ) ➢ B(max) = 铁心饱合的磁通密度(Gauss)➢ Lp = 一次侧电感值(uH)➢ Ip = 一次侧峰值电流(A)➢ Np = 一次侧(主线圈)圈数➢ Ae = 铁心截面积(cm 2)➢B(max) 依铁心的材质及本身的温度来决定,以TDK FerriteCore PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以做较大瓦数的Power 。
2.4.2 决定一次侧滤波电容:滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。
2.4.3 决定变压器线径及线数:变压器的选择实际中一般根据经验,依据电源的体积、工作频率,散热条件,工作环境温度等选择。
当变压器决定后,变压器的Bobbin 即可决定,依据Bobbin 的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm 2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。
反激式开关电源电路设计首先,反激式开关电源的基本原理是利用开关管来开闭电源电流,从而实现电流的快速切换。
这样可以有效地提高电源的转换效率。
设计反激式开关电源的步骤如下:1.确定输出电压和电流要求:首先需要确定电源的输出电压和电流要求,这对于选取合适的电源电路和元器件非常重要。
2.确定输入电压范围:根据使用环境和应用需求,确定电源的输入电压范围。
通常情况下,反激式开关电源的输入电压范围为100V至240V。
3.选择开关管和变压器:选择合适的开关管和变压器是设计过程中的关键步骤。
开关管需要具有高效率和可靠性,变压器需要满足电源的输入输出要求。
4.设计开关电路:设计开关电路是反激式开关电源设计的核心部分。
开关电路的设计需要根据输入输出电压和电流的要求,选择合适的电感和电容元件,以及适当的反馈电路。
5.设计保护电路:设计反激式开关电源的过程中,需要考虑各种保护电路,以确保电源的安全和稳定性。
常见的保护电路包括过温保护、过压保护、过流保护等。
6.PCB布局和元件选型:进行PCB布局和元件选型是设计的最后一步。
在PCB布局中,需要考虑电源电路的稳定性和EMC(电磁兼容)的问题。
在元件选型过程中,需要考虑电压和电流的要求,以及元件的可靠性和成本。
设计完成后,需要对反激式开关电源进行测试和验证。
测试过程可以包括输入输出电压波形、效率和稳定性等方面的测试。
总之,反激式开关电源的设计需要考虑多个因素,包括输出电压和电流要求、输入电压范围、开关管和变压器的选择、开关电路和保护电路的设计、PCB布局和元件选型等。
只有综合考虑这些因素,并进行有效的测试和验证,才能设计出稳定、高效的反激式开关电源。
(上)彭磊•10W以内常用RCC(自激振荡)拓扑方式•10W-100W以内常用反激式拓扑(75W以上电源有PF值要求)•100W-300W 正激、双管反激、准谐振•300W-500W 准谐振、双管正激、半桥等•500W-2000W 双管正激、半桥、全桥•2000W以上全桥•在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。
优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出.缺点:输出纹波比较大。
(输出加低内阻滤波电容或加LC噪声滤波器可以改善)•今天以自行车充电器为例,详细讲解反激开关电源的设计流程及元器件的选择方法。
EMI整流滤波变压器次级整流滤波开关器件PWM 控制IC隔离器件采样反馈输出高压区域低压区域—保险管•作用:安全防护。
在电源出现异常时,为了保护核心器件不受到损坏。
•技术参数:额定电压V、额定电流I、熔断时间I^2RT。
•分类:快断、慢断、常规•0.6为不带功率因数校正的功率因数估值•Po输出功率•η 效率(设计的评估值)•Vinmin 最小的输入电压•2为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。
•0.98 PF值相关知识•大部分用电设备中,其工作电压直接取自交流电网。
所以电网中会有许多家用电器、工业电子设备等等非线性负载,这些用电器在使用过程中会使电网产生谐波电压和电流。
没有采取功率因数校正技术的AC-DC整流电路,输入电流波形呈尖脉冲状。
交流网侧功率因数只有0.5~0.7,电流的总谐波畸变(THD)很大,可超过100%。
采用功率因数校正技术,功率因数值为0.999时,THD约为3%。
为了防止电网的谐波污染,或限制电子设备向电网发射谐波电流,国际上已经制定了许多电磁兼容标准,有IEEE519、IEC1000-3-2等。
•功率因数的校正(PFC)主要有两种方法:无源功率因数校正和有源功率因数校正。
反激式开关电源的设计计算
一、反激式开关电源的基本原理
反激式开关电源是一种把直流输入电源转换为稳定的交流输出电压的
稳压电源线路,反激式开关电源由输入滤波电路、控制系统、开关管、反
激线圈、输出滤波电路组成。
输入滤波电路,用于消除外界输入电压中的
突变波动和高频噪声,并将有效载荷限制在安全可靠的范围内;控制系统,主要由开关泵、反激管、安全保护等组成,用于检测负载变化、控制输出
电压的稳定;开关管,用于将输入电压转换为脉动电压;反激线圈,用在
调节脉动电压,使其变为稳定的交流电压;输出滤波线路对反激线圈的输
出电压进行抑制并将输出电压有效稳定。
(1)计算输入电压和负载电流
(2)计算反激线圈的属性。
反激式开关电源原理与工程设计讲解反激式开关电源原理与工程设计一.反激式开关电源的原理分析二.反激式开关电源实际电路的主要部件及其作用三.反激式开关电源电路各主要器件的参数选择四.反激式开关电源pcb排板原则五.变压器的设计六.反激式开关电源的稳定性问题反激式开关电源原理与工程设计一.反激式开关电源的原理分析1.反激式开关电源电路拓扑2.为什么是反激式a.变压器的同名端相反b.利用了二极管的单向导电特性3.电感电流的变化为何不是突变电压加在有电感的闭合回路上,流过电感上电流不是突变的,而是线性增加。
愣次定律:a.当电感线圈流过变化的电流时会产生感生电动势,其大小于与线圈中电流的变化率成正比;b.感生电动势总是阻碍原电流的变化4.变压器的主要作用与能量的传递理想变压器与反激式变压器的区别反激式变压器的作用a.电感(储能)作用遵守的是安匝比守恒(而不是电压比守恒)储存的能量为1/2×L×Ip2b.限流的作用c.变压作用初次级虽然不是同时导通,它们之间也存在电压转换关系,也是初级按匝比变换到次级,次级按变比折射回初级。
d.变压器的气隙作用扩展磁滞回线,能使变压器更不易饱和磁饱和的原理图电感值跟导磁率成正比,导磁率=B/HB是磁通密度H是磁场强度简单一点,H跟外加电流成正比就是了,增加电流,磁流密度会跟着增加, 当加电流至某一程度时,我们会发现,磁通密度会增加得很慢, 而且会趋近一渐近线.当趋近这一渐近线时,这时的磁通密度,我们就称為饱和磁通密度,电感值跟导磁率成正比,导磁率=B/HB是磁通密度,H是磁场强度(电流增加,H会增加.) H会增加,但B不会增加, 导磁率变化量会趋近零啦!电感值跟导磁率变化量成正比, 导磁率变化量趋近零,那电感值会是多少? 零5.开关管漏极电压的组成a. 高压为基础部分b. 折射回来的电压部分c. 漏感产生的尖峰部分波形6.反激式拓扑开关电源有两种工作模式:(1) 完全能量转换,也叫做非连续导通模式。
反激式(RCD)开关电源原理及设计[导读]反激拓扑的前身是Buck-Boost变换器,只不过就是在Buck-Boost变换器的开关管和续流二极管之间放入一个变压器,从而实现输入与输出电气隔离的一种方式,因此,反激变换器也就是带隔离的Buck-Boost变换器。
关键词:反激式开关电源因该电源是公司产品的一个配套使用,且各项指标都不是要求太高,故选用最常用的反激拓扑,这样既可以减小体积(给的体积不算大),还能降低成本,一举双的!反激拓扑的前身是Buck-Boost变换器,只不过就是在Buck-Boost变换器的开关管和续流二极管之间放入一个变压器,从而实现输入与输出电气隔离的一种方式,因此,反激变换器也就是带隔离的Buck-Boost变换器。
先学习下Buck-Boost变换器工作原理简单介绍下1.在管子打开的时候,二极管D1反向偏置关断,电流Is流过电感L,电感电流IL线性上升,储存能量!2.当管子关断时,电感电流不能突变,电感两端电压反向为上负下正,二极管D1正向偏置开通!给电容C充电及负载提供能量!3.接着开始下个周期!从上面工作可以看出,Buck-Boost变换器是先储能再释放能量,VS不直接向输出提供能量,而是管子打开时,把能量储存在电感,管子关断时,电感向输出提供能量!根据电流的流向,可以看出上边输出电压为负输出!根据伏秒法则Vin*Ton=Vout*ToffTon=T*DToff=T*(1-D)代入上式得Vin*D=Vout*(1-D)得到输出电压和占空比的关系Vout=Vin*D/(1-D)看下主要工作波形从波形图上可以看出,晶体管和二极管D1承受的电压应力都为Vs+Vo(也就是Vin+Vout);再看最后一个图,电感电流始终没有降到0,所以这种工作模式为电流连续模式(Ccm模式)。
如果再此状态下把电感的电感量减小,减到一定条件下,会出现这个波形!从上图可以看出,电感电流始终降到0后再到最大,所以这种模式叫不连续模式(DCM模式)。
1 设计步骤:1.1 产品规格书制作1.2 设计线路图、零件选用.1.3 PCB Layout.1.4 变压器、电感等计算.1.5 设计验证.2 设计流程介绍:2.1 产品规格书制作依据客户的要求,制作产品规格书。
做为设计开发、品质检验、生产测试等的依据。
2.2 设计线路图、零件选用。
2.3 PCB Layout.外形尺寸、接口定义,散热方式等。
2.4 变压器、电感等计算.变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,2.4.1 决定变压器的材质及尺寸:依据变压器计算公式Gauss x NpxAeLpxIp B 100(max ) ➢ B(max) = 铁心饱合的磁通密度(Gauss)➢ Lp = 一次侧电感值(uH)➢ Ip = 一次侧峰值电流(A)➢ Np = 一次侧(主线圈)圈数➢ Ae = 铁心截面积(cm 2)➢B(max) 依铁心的材质及本身的温度来决定,以TDK FerriteCore PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以做较大瓦数的Power 。
2.4.2 决定一次侧滤波电容:滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。
2.4.3 决定变压器线径及线数:变压器的选择实际中一般根据经验,依据电源的体积、工作频率,散热条件,工作环境温度等选择。
当变压器决定后,变压器的Bobbin 即可决定,依据Bobbin 的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm 2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。
1 设计步骤:1.1 产品规格书制作1.2 设计线路图、零件选用.1.3 PCB Layout.1.4 变压器、电感等计算.1.5 设计验证.2 设计流程介绍:2.1 产品规格书制作依据客户的要求,制作产品规格书。
做为设计开发、品质检验、生产测试等的依据。
2.2 设计线路图、零件选用。
2.3 PCB Layout.外形尺寸、接口定义,散热方式等。
2.4 变压器、电感等计算.变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,2.4.1 决定变压器的材质及尺寸:依据变压器计算公式Gauss x NpxAeLpxIp B 100(max ) ➢ B(max) = 铁心饱合的磁通密度(Gauss)➢ Lp = 一次侧电感值(uH)➢ Ip = 一次侧峰值电流(A)➢ Np = 一次侧(主线圈)圈数➢ Ae = 铁心截面积(cm 2)➢B(max) 依铁心的材质及本身的温度来决定,以TDK FerriteCore PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以做较大瓦数的Power 。
2.4.2 决定一次侧滤波电容:滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。
2.4.3 决定变压器线径及线数:变压器的选择实际中一般根据经验,依据电源的体积、工作频率,散热条件,工作环境温度等选择。
当变压器决定后,变压器的Bobbin 即可决定,依据Bobbin 的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm 2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。
反激式开关电源设计方法1.输入变压器设计:反激式开关电源的输入变压器主要用于实现能量的储存和传递。
其设计方法一般包括确定变压器的变比、计算绕线参数和计算磁芯截面积。
变比的选择要根据输入和输出电压的关系来确定,一般采用副边大于主边的变比。
绕线参数的计算要根据输入电压、输出功率和开关频率来确定。
磁芯截面积的计算要根据输入电压、输出功率和变频器频率来确定。
2.控制电路设计:反激式开关电源的控制电路主要用于实现开关管的开关和关断控制。
其设计方法一般包括选择适合的开关管和控制芯片、设计反馈电路和设计保护电路。
选择合适的开关管和控制芯片要考虑输入和输出电压、输出功率和开关频率等因素。
设计反馈电路主要是为了实现恒定的输出电压,一般采用反馈误差放大器和锁相环等。
设计保护电路主要是为了提高电源的可靠性和稳定性,一般包括过流保护、过压保护和过温保护等。
3.输出滤波电路设计:反激式开关电源的输出滤波电路主要用于滤除开关管开关过程中产生的高频脉冲噪声,保证输出电压的稳定性和纹波度。
其设计方法一般采用LC滤波器或电容滤波器。
LC滤波器具有较好的滤波效果,但体积较大,适用于功率较大的电源。
电容滤波器体积小,但滤波效果相对较差,适用于功率较小的电源。
4.保护电路设计:反激式开关电源的保护电路主要用于保护电源,防止出现过流、过压、过温等故障。
其设计方法一般包括选择合适的保护元件和设计合理的保护电路。
选择合适的保护元件要考虑其额定参数和动态特性,以满足电源的保护要求。
设计合理的保护电路要考虑多种故障情况,实现对电源的全方位保护。
以上是反激式开关电源设计的基本方法和步骤,设计师在实际设计过程中还需考虑电源的稳定性、可靠性、效率等因素,并根据具体的应用需求进行优化设计。
同时,还要注意电源设计中的安全性和可调度性,确保电源工作的稳定性和可靠性。
反激式开关电源设计(徐辉)概述:在反激拓扑中,开关导同时,变压器储存能量,负载电流由输出滤波电容提供;开关关断时,变压器存储的能量传送到负载和输出滤波电容,以补偿电容单独提供负载电流时消耗的能量。
应用范围:这种拓扑在输出功率为5~150W电源中应用非常广泛。
它最大的特点是不在次级接储能电感(但需加较小的滤波电感),使成本降低,体积较小。
电源电路原理图:一、输入部分电路设计:电路原理图如下:◆输入部分主要由下列几部分组成:保险丝F1(3A/250V)、热敏电阻N1(5D-9)、压敏电阻ZN1(7D471K)、共模电感L1(22mH/2A)、整流二极管BD1~BD4(1N5399)和C6(47U/400V)组成。
◆输入整流器:在选择整流器是应注意下面一些重要参数:1)最大正向整流电流:它主要由输出功率决定,所以整流二极管的稳态电流容量至少应是计算值的2倍。
2)峰值反向截止电压:由于整流器处在高电压的环境中,它必须有较高的反向截止电压,一般应为600V以上。
3)能承受较高的浪涌电流能力:浪涌电流是由开关管导通时的峰值电流所产生的。
◆滤波电容的计算:1)正确的选择电容很重要,它影响输出端的低频纹波和输出电压保持时间这两个参数。
计算滤波电容的公式如下:C=I×t /ΔV (C:电容值(F);I:负载电流(A);t:电容提供电流的时间(s);ΔV:允许的纹波电压(V)。
)备注:一般根据输出功率算:1W用1uF的电容2)电容的纹波电流对电源的寿命有很大影响,流经直流输入回路的平均电流Idc由下公式决定:Idc=Ids×Dmax;这里的,Ids:输入Np(MOS管)电流;Dmax:最大占空比。
3)这里也给出与上面公式不一样求C值的公式:按经验值:C=(400~600)×Idc(单位:uF)4)流经C的纹波电压Vcr:Vcr=(Idc×t)/C (t:为整流器的非导通时间,由二极管资料得到;)◆流经开关元件的有效电流值:Irms=Ids×√(Ton/T)(Ton为开关导通时间,T为整个周期。