2012年中考数学专题练习十一 函数及其图象的综合应用
- 格式:doc
- 大小:199.00 KB
- 文档页数:4
2012年全国各地中考数学真题分类汇编第11章 函数与一次函数一、选择题1.(2012•益阳)在一个标准大气压下,能反映水在均匀加热过程中,水的温度(T )随加热时间(t )变化的函数图象大致是( )A .B .C .D .2.(2012成都)函数12y x =- 中,自变量x 的取值范围是( ) A .2x > B . 2x < C .2x ≠ D . 2x ≠-3.(2012聊城)函数y =中自变量x 的取值范围是( )A .x >2B .x <2C .x ≠2D .x ≥24. (2012安徽)如图,A 点在半径为2的⊙O 上,过线段OA 上的一点P 作直线 ,与⊙O 过A 点的切线交于点B ,且∠APB =60°,设OP =x ,则△PAB 的面积y 关于x 的函数图像大致是( )5.(2012乐山)若实数a 、b 、c 满足a +b +c =0,且a <b <c ,则函数y =ax +c 的图象可能是( )A .B .C .D .6. (2012南充)下列函数中是正比例函数的是 ( )( A )y =-8x (B )y =x8 ( C )y =5x 2+6 (D )y = -0.5x -1 7.(2012•梅州)在同一直角坐标系下,直线y =x +1与双曲线的交点的个数为( )A .0个B .1个C .2个D .不能确定8.(2012•资阳)如图所示的球形容器上连接着两根导管,容器中盛满了不溶于水的比空气重的某种气体,现在要用向容器中注水的方法来排净里面的气体.水从左导管匀速地注入,气体从右导管排出,那么,容器内剩余气体的体积与注水时间的函数关系的大致图象是( )A .B .C .D .9.(2012•济宁)周一的升旗仪式上,同学们看到匀速上升的旗子,能反应其高度与时间关系的图象大致是( )A .B .C .D .10.(2012娄底)对于一次函数y =﹣2x +4,下列结论错误的是( )A . 函数值随自变量的增大而减小B .函数的图象不经过第三象限C . 函数的图象向下平移4个单位长度得y=﹣2x 的图象D . 函数的图象与x 轴的交点坐标是(0,4)11.(2012长沙)小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s (m )关于时间t (min )的函数图象,那么符合小明行驶情况的大致图象是( )A .B .C .D .二、填空题 1.(2012•丽水)甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l 甲、l 乙分别表示甲、乙两人前往目的地所行驶的路程S (千米)随时间t (分)变化的函数图象,则每分钟乙比甲多行驶 千米.2.(2012上海)已知正比例函数y =kx (k≠0),点(2,﹣3)在函数上,则y 随x 的增大而 (增大或减小).3.(2012无锡)函数y =1+中自变量x 的取值范围是 x ≥2 .三.解答题1.(2012临沂)小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y (单位:千克)与上市时间x (单位:天)的函数关系如图1所示,樱桃价格z (单位:元/千克)与上市时间x (单位:天)的函数关系式如图2所示.(1)观察图象,直接写出日销售量的最大值;(2)求小明家樱桃的日销售量y 与上市时间x 的函数解析式;(3)试比较第10天与第12天的销售金额哪天多?2.(2012菏泽)(1)如图,一次函数2y=23x-+的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.求过B、C两点直线的解析式.3.(2012义乌市)周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.4.(2012•烟台)某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费.月用电量不超过200度时,按0.55元/度计费;月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费.设每户家庭月用电量为x度时,应交电费y元.(1)分别求出0≤x≤200和x>200时,y与x的函数表达式;(2)小明家5月份交纳电费117元,小明家这个月用电多少度?5.(2012•广州)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨1.9元收费.如果超过20吨,未超过的部分按每吨1.9元收费,超过的部分按每吨2.8元收费.设某户每月用水量为x吨,应收水费为y元.(1)分别写出每月用水量未超过20吨和超过20吨,y与x间的函数关系式.(2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨?6.(2012•聊城)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.7.(2012•衢州)在社会主义新农村建设中,衢州某乡镇决定对A、B两村之间的公路进行改造,并有甲工程队从A村向B村方向修筑,乙工程队从B村向A村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数图象,请根据图象所提供的信息解答下列问题:(1)乙工程队每天修公路多少米?(2)分别求甲、乙工程队修公路的长度y(米)与施工时间x(天)之间的函数关系式.(3)若该项工程由甲、乙两工程队一直合作施工,需几天完成?8.(2012•梅州)一辆警车在高速公路的A处加满油,以每小时60千米的速度匀速行驶.已知警车一次加满油后,油箱内的余油量y(升)与行驶时间x(小时)的函数关系的图象如图所示的直线l上的一部分.(1)求直线l的函数关系式;(2)如果警车要回到A处,且要求警车中的余油量不能少于10升,那么警车可以行驶到离A处的最远距离是多少?9.(2012•连云港)我市某医药公司要把药品运往外地,现有两种运输方式可供选择,方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元;方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每公里再加收2元,(1)请分别写出邮车、火车运输的总费用y1(元)、y2(元)与运输路程x(公里)之间的函数关系式;(2)你认为选用哪种运输方式较好,为什么?10.(2012上海)某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示.(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)11.(2012•资阳)已知:一次函数y=3x﹣2的图象与某反比例函数的图象的一个公共点的横坐标为1.(1)求该反比例函数的解析式;(2)将一次函数y=3x﹣2的图象向上平移4个单位,求平移后的图象与反比例函数图象的交点坐标;(3)请直接写出一个同时满足如下条件的函数解析式:①函数的图象能由一次函数y=3x﹣2的图象绕点(0,﹣2)旋转一定角度得到;②函数的图象与反比例函数的图象没有公共点.12.(2012•德州)现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨.(1)设A地到甲地运送蔬菜x吨,请完成下表:运往甲地(单位:吨)运往乙地(单位:吨)A x14﹣xB15﹣x x﹣1(3)怎样调运蔬菜才能使运费最少?13.(2012•湘潭)已知一次函数y=kx+b(k≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,求此一次函数的解析式.14.(2012•德阳)今年南方某地发生特大洪灾,政府为了尽快搭建板房安置灾民,给某厂下达了生产A种板材48000㎡和B种板材24000㎡的任务.(1)如果该厂安排210人生产这两种材,每人每天能生产A种板材60㎡或B种板材40㎡,请问:应分别安排多少人生产A种板材和B种板材,才能确保同时完成各自的生产任务?(2)某灾民安置点计划用该厂生产的两种板材搭建甲、乙两种规格的板房共400间,已知建设一间甲型板房和一间乙型板房所需板材及安置人数如下表所示:板房A种板材(m2)B种板材(m2)安置人数甲型108 61 12乙型156 51 10。
[好]2012年中考数学反比例函数的图象与性质和应用解析卷58页D2 / 1003 / 1004 / 1005 / 100求出结论.(2012湖南湘潭,16,3分)近视眼镜的度数y (度)与镜片焦距x (m )成反比例(即)0(≠=k x k y ),已知200度近视眼镜的镜片焦距为m 5.0,则y 与x 之间的函数关系式是 .【解析】将x =0.5,y =200代入)0(≠=k xky 得K=100,则y 与x 之间的函数关系式是x y 100=。
【答案】xy 100=。
【点评】此题考查函数关系式的求法。
将已知数代入反比例函数关系式(即)0(≠=k xk y )中,确定系数K 的值。
(2012江苏盐城,14,3分)若反比例函数的图像经过点P (-1,4),则它的函数关系是 . 【解析】本题考查了反比例函数的定义.掌握定义中K 的确定方法是关键.本题考查点在函数图像上与函数解析式的关系,常规方法是直接代入计算.【答案】将图象上的点坐标P(-1,4)代入反比例函数解析式y=kx 即可求出k=-4,所以y=-4x.【点评】此题是对反比例函数考查.已知函数图象上的点坐标,求函数解析式,往往是将坐标代入解析式,经过简单解方程(或方程组),这样求出待求系数.中考中,常以选择题、填空题、简答题方式出现.(2012连云港,13,3分)已知反比例函数y=2x的图像经过点A(m,1),则m的值为。
【解析】把点A的坐标代入反比例函数解析式,得到关于m的方程即可求得m的值。
【答案】由题意得1=2m,得到m=2.【点评】图像经过点或点在图像上说明点的坐标适合函数解析式。
列出相应方程求未知字母的值。
(2012连云港,16,3分)如图,直线y=k1x+b与双曲线y=2kx交于A、B两点,其横坐标分别为1和5,则不等式k1x <2kx+b的解集是。
6 / 100【解析】不等式k1x <2kx+b,即为k1x -b<2kx。
2012中考数学试题及答案分类汇编:函数的图像与性质一、选择题1.(4分)抛物线y=x2﹣6x+5的顶点坐标为A、(3,﹣4)B、(3,4)C、(﹣3,﹣4)D、(﹣3,4)【答案】A。
【考点】二次函数的性质。
【分析】利用配方法把抛物线的一般式写成顶点式,求顶点坐标,或者用顶点坐标公式求解:∵y=x2﹣6x+5=x2﹣6x+9﹣9+5=(x﹣3)2﹣4,∴抛物线y=x2+6x+5的顶点坐标是(3,﹣4).故选A。
2.(某某3分)一家电信公司给顾客提供两种上网收费方式:方式A以每分0.1元的价格按上网所用时间计算;方式B除收月基费20元外.再以每分0.05元的价格按上网所用时间计费。
若上网所用时问为x分.计费为y元,如图.是在同一直角坐标系中.分别描述两种计费方式的函救的图象,有下列结论:① 图象甲描述的是方式A:② 图象乙描述的是方式B;③ 当上网所用时间为500分时,选择方式B省钱.其中,正确结论的个数是(A) 3 (B) 2 (C) 1 (D) 0【答案】A。
【考点】一次函数的图象和性质。
【分析】① 方式A以每分0.1元的价格按上网所用时间计算,函数关系式为y x,与图象甲描述的是方式相同,故结论正确;②方式B除收月基费20元外.再以每分0.05元的价格按上网所用时间计费,函数关系式为y x+20,与图象乙描述的是方式相同,故结论正确;③从图象观察可知,当x>400时,y乙<y甲,所以当上网所用时间为500分时,选择方式B省钱,故结论正确。
综上,选A。
3.(某某省2分)一次函数y=6x+1的图象不经过A、第一象限B、第二象限C、第三象限D、第四象限【答案】D。
【考点】一次函数的性质。
【分析】由一次函数y=6x+1中k的符号,根据一次函数的性质,得:∵一次函数y=6x+1中k=6>0,b=1>0,∴此函数经过一、二、三象限。
故选D。
4.(某某省3分)一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面函数关系式:h=﹣5(t﹣1)2+6,则小球距离地面的最大高度是A、1米B、5米C、6米D、7米【答案】C。
函数的图像与性质2012年贵州中考题(含答案)贵州各市2012年中考数学试题分类解析汇编专题6:函数的图像与性质一、选择题1. (2012贵州贵阳3分)如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组的解是【】A.B.C.D.【答案】A。
【考点】一次函数与二元一次方程(组)。
【分析】根据图象求出交点P的坐标,根据点P的坐标即可得出答案:∵由图象可知:一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(﹣2,3),∴方程组的解是。
故选A。
2. (2012贵州贵阳3分)已知二次函数y=ax2+bx+c(a <0)的图象如图所示,当﹣5≤x≤0时,下列说法正确的是【】A.有最小值﹣5、最大值0B.有最小值﹣3、最大值6C.有最小值0、最大值6D.有最小值2、最大值6【答案】B。
【考点】二次函数的图象和最值。
【分析】由二次函数的图象可知,∵﹣5≤x≤0,∴当x=﹣2时函数有最大值,y最大=6;当x=﹣5时函数值最小,y最小=﹣3。
故选B。
3. (2012贵州毕节3分)一次函数与反比例函数的图像在同一平面直角坐标系中是【】A.B.C.D.【答案】C。
【考点】一次函数和反比例函数的图象和性质。
【分析】根据一次函数的图象性质,由1>0,知y=x+m 的图象必过第一、三象限,可判断B、D错误。
若m<0 ,y=x+m的图象与y轴的交点在x轴下方,的图像在第二、四象限;m>0 ,y=x+m的图象与y轴的交点在x轴上方,的图像在第一、三象限。
从而可判断A错误,C正确。
故选C。
4. (2012贵州六盘水3分)如图为反比例函数在第一象限的图象,点A为此图象上的一动点,过点A分别作AB ⊥x轴和AC⊥y轴,垂足分别为B,C.则四边形OBAC周长的最小值为【】A.4B.3C.2D.1【答案】A。
【考点】反比例函数综合题,矩形的判定和性质,配方法的应用,函数的最值。
第七节函数的综合应用【回顾与思考】函数应用1.:2.:3.:4.⎧⎪⎪⎨⎪⎪⎩一次函数图像及性质二次函数图像及性质反比例函数图像及性质综合应用【例题经典】一次函数与反比例函数的综合应用例1(2006年南充市)已知点A(0,-6),B(-3,0),C(m,2)三点在同一直线上,试求出图象经过其中一点的反比例函数的解析式并画出其图象.(要求标出必要的点,•可不写画法).【点评】本题是一道一次函数和反比例函数图象和性质的小综合题,题目设计新颖、巧妙、难度不大,但能很好地考查学生的基本功.一次函数与二次函数的综合应用例2(2005年海门市)某校八年级(1)班共有学生50人,据统计原来每人每年用于购买饮料的平均支出是a元.经测算和市场调查,•若该班学生集体改饮某品牌的桶装纯净水,则年总费用由两部分组成,一部分是购买纯净水的费用,另一部分是其他费用780元,其中,纯净水的销售价(元/桶)与年购买总量y(桶)之间满足如图所示关系.(1)求y与x的函数关系式;(2)若该班每年需要纯净水380桶,且a为120时,请你根据提供的信息分析一下:•该班学生集体改饮桶装纯净水与个人买材料,哪一种花钱更少?(3)当a至少为多少时,该班学生集体改饮桶装纯净水一定合算?从计算结果看,•你有何感想(不超过30字)?【点评】这是一道与学生生活实际紧密联系的试题,由图象可知,一次函数图象经过点(4,400)、(5,320)可确定y与x关系式,同时这也是一道确定最优方案题,可利用函数知识分别比较学生个人购买饮料与改饮桶装纯净水的费用,分析优劣.二次函数与图象信息类有关的实际应用问题例3一蔬菜基地种植的某种绿色蔬菜,根据今年的市场行情,预计从5月1•日起的50天内,它的市场售价y1与上市时间x的关系可用图(a)的一条线段表示;•它的种植成本y2与上市时间x的关系可用图(b)中的抛物线的一部分来表示.(1)求出图(a)中表示的市场售价y1与上市时间x的函数关系式.(2)求出图(b)中表示的种植成本y2与上市时间x的函数关系式.(3)假定市场售价减去种植成本为纯利润,问哪天上市的这种绿色蔬菜既不赔本也不赚钱?(市场售价和种植成本的单位:元/千克,时间单位:天)【点评】本题是一道函数与图象信息有关的综合题.学生通过读题、读图.从题目已知和图象中获取有价值的信息,是问题求解的关键.【考点精练】基础训练1.在函数y=2x,y=x+5,y=x2的图象中是中心对称图形,且对称中心是原点的有()A.0个 B.1个 C.2个 D.3个2.下列四个函数中,y随x的增大而减少的是()A.y=2x B.y=-2x+5 C.y=-3xD.y=-x2-2x-13.函数y=ax2-a与y=ax(a≠0)在同一直角坐标系中的图象可能是()4.函数y=kx-2与y=kx(k≠0)在同一坐标系内的图象可能是()5.如图是二次函数y1=ax2+bx+c和一次函数y2=mx+n的图象,观察图象写出y2≥y1时,x 的取值范围__________.(第5题) (第6题)6.(2006年旅顺口)如图是一次函数y1=kx+b和反比例函数y2=mx的图象,•观察图象写出y1>y2时,x的取值范围是_________.7.(2005年十堰市)在同一平面直角坐标系中,函数y=kx+k,y=kx(k>0)•的图像大致是()8.(2005年太原市)在反比例函数y=kx中,当x>0时,y随x的增大而增大,则二次函数y=kx2+2kx的图像大致是()能力提升9.如图,已知反比例函数y1=mx(m≠0)的图象经过点A(-2,1),一次函数y2=kx+b(k≠0)的图象经过点C(0,3)与点A,且与反比例函数的图象相交于另一点B.(1)分别求出反比例函数与一次函数的解析式;(2)求点B的坐标.10.如图,一次函数y=ax+b的图象与反比例函数y=mx的图象交于A、B两点,与x轴交于点C,与y轴交于点D.已知OA=5,tan∠AOC=12,点B的坐标为(12,-4).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.11.(2005年扬州市)近几年,扬州市先后获得“中国优秀旅游城市”和“全国生态建设示范城市”等十多个殊荣.到扬州观光旅游的客人越来越多,某景点每天都吸引大量游客前来观光.事实表明,如果游客过多,不利于保护珍贵文物,为了实施可持续发展,兼顾社会效益和经济效益,该景点拟采用浮动门票价格的方法来控制游览人数.已知每张门票原价40元,现设浮动票价为x元,且40≤x≤70,经市场调研发现一天游览人数y与票价x之间存在着如图所示的一次函数关系.(1)根据图象,求y与x之间的函数关系式;(2)设该景点一天的门票收入为w元①试用x的代数式表示w;②试问:当票价定为多少时,该景点一天的门票收入最高?最高门票收入是多少?12.(2006年荆门市)某环保器材公司销售一种市场需求较大的新型产品.已知每件产品的进价为40元.经销过程中测出销售量y(万件)与销售单价x(元)•存在如图所示的一次函数关系.每年销售该种产品的总开支z(万元)(不含进价)与年销售量y(万件)存在函数关系z=10y+42.5.(1)求y关于x的函数关系.(2)试写出该公司销售该种产品年获利w(万元)关于销售单价z(元)•的函数关系式(年获利=年销售总金额-年销售产品的总进价-年总开支金额)当销售单价为x为何值,年获利最大?最大值是多少?(3)若公司希望该种产品一年的销售获利不低于57.5万元,请你利用(2)•小题中的函数图象帮助该公司确定这种产品的销售单价的范围.•在此条件下使产品的销售量最大,你认为销售单价应为多少元?应用与探究13.(2006年潍坊市)为保证交通完全,汽车驾驶员必须知道汽车刹车后的停止距离(开始刹车到车辆停止车辆行驶的距离)与汽车行驶速度(开始刹车时的速度)的关系,以便及时刹车.下表是某款车在平坦道路上路况良好刹车后的停止距离与汽车行驶速度的对应值表:行驶速度(千米/时)40 60 80 …停止距离(米)16 30 48 …(1/时)的函数.•给出以下三个函数①y=ax+b;②y=kx(k≠0);③y=ax2+bx,请选择恰当的函数来描述停止距离y(米)与汽车行驶速度x(千米/时)的关系,说明选择理由,并求出符合要求的函数的解析式;(2)根据你所选择的函数解析式,若汽车刹车后的停止距离为70米,求汽车行驶速度.答案:例题经典例1:解:设直线AB 的解析式为y=k 1x+b ,则130,6,k b b -+=⎧⎨=-⎩ 解得k 1=-2,b=-6.•所以直线AB 的解析式为y=-2x-6.∵点C (m ,2)在直线y=-2x-6上,∴-2m-6=2, ∴m=-4,即点C 的坐标为C (-4,2), 由于A (0,6),B (-3,0)都在坐标轴上,反比例函数的图象只能经过点C (-4,2),设经过点C 的反比例函数的解析式为y=2k x .则2=24k-, ∴k 2=-8.即经过点C•的反比例函数的解析式为y=-8x.例2:(1)设y=kx+b ,∵x=4时,y=400;x=5时,y=320,∴400480,:3205720k b k k b b =+=-⎧⎧⎨⎨=+=⎩⎩解之得 ∴y 与x 的函数关系式为y=-80x+720.(2)该班学生买饮料每年总费用为50×120=6000(元),当y=380时,380=-80x+720,得x=4.25.该班学生集体饮用桶装纯净水的每年总费用为380×4.25+780=2395(元), 显然,从经济上看饮用桶装纯净水花钱少. (3)设该班每年购买纯净水的费用为W 元,则W=xy=x (-80x+720)=-80(x-92)2+•1620. ∴当x=92时,W 最大值=1620.要使饮用桶装纯净水对学生一定合算, 则50a ≥W 最大值+780,•即50a•≥1620+780.解之得,a ≥48. 所以a 至少为48元时班级饮用桶装纯净水对学生一定合算,由此看出,饮用桶装纯净水不仅能省钱,而且能养成勤俭节约的好习惯.例3:(1)设y 1=mx+n ,因为函数图象过点(0,5.1),(50,2.1),∴0 5.150 2.1n m n +=⎧⎨+=⎩解得:m=-350,n=5.1,∴y 1=-350x+5.1(0≤x ≤50). (2)又由题目已知条件可设y 2=a (x-25)2+2.因其图象过点(15,3),∴3=a(15-25)2+2,∴a=1 100,∴y2=1100x2-12x+334(或y=1100(x-25)2+2)(0≤x≤50)(3)第x天上市的这种绿色蔬菜的纯利润为:y1-y2=1100(x2-44x+315(0≤x≤55).依题意:y1-y2=0,即x2-44x+315=0,∴(x-9)(x-35)=0,解得:x1=9,x2=25.所以从5月1日起的第9天或第35天出售的这种绿色蔬菜,既不赔本也不赚钱.考点精练1.B 2.B 3.A 4.B 5.-2≤x≤1 6.x>3或-2<x<0 7.D 8.D9.(1)反比例函数解析式为y=2x,一次函数的解析式为y=x+3.(2)点B的坐标为B(-1,2)10.(1)反比例函数解析式为y=-2x,一次函数为y=-2x-3.(2)S△AOB=154个平方单位.11.(1)设函数解析式为y=kx+b,由图象知:直线经过(50,3500),(60,3000)两点.则50350050,6030006000k b kk b b+==-⎧⎧⎨⎨+==⎩⎩解得,∴函数解析式为y=6000-50x.(2)①w=xy=x(6000-50x),即w=-50x2+6000x.•②w=-50x2+6000x=-50(x2-120x)=-50(x-60)2+180000,∴当票价定为60元时,•该景点门票收入最高,此时门票收入为180000元.12.(1)由题意,设y=kx+b,图象过点(70,5),(90,3),∴1570,1039012k b kk bb⎧=+=-⎧⎪⎨⎨=+⎩⎪=⎩解得∴y=-110x+12.(2)由题意,得w=y(x-40)-z=y(x-40)-(10y+42.5)=(-110+12)(x-40)-10×(-110x+12)-42.5=-0.1x2+17x-642.5=-110(x-85)2+80.当x=85时,年获利的最大值为80万元.(3)令w=57.5,得-0.1x2+17x-642.5=57.5,。
专题十一 函数及其图象的综合应用(时间:90分钟 满分:100分)一、选择题(每小题3分,共18分)1.(2011年凉山州)二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y =a x与正比例函数y =bx 在同一坐标系内的大致图象是 ( )2.(2011年杭州)如图,函数y 1=x -1和函数y 2=2x的图象相交于点M(2,m),N(-1,n).若y 1>y 2,则x 的取值范围是 ( )A .x <-1或0<x <2B .x <-1或x >2C .-1<x <0或0<x <2D .-1<x <0或x >23.(2011年宜昌)如图,直线y =x +2与双曲线y =3m x在第二象限有两个交点,那么m 的取值范围在数轴上表示为 ( )4.(2011年枣庄)如图,函数y 1=x 和y 2=13x +43的图象相交于(-1,1),(2,2)两点.当y 1>y 2时,x 的取值范围是 ( )A .x <-1B .-1<x <2C .x >2D .x <-1或x >25.(2011年台州)如图,反比例函数y =m x的图象与一次函数y =k x +b 的图象交于点M 、N ,已知点M 的坐标为(1,3),点N 的纵坐标为-1,根据图象信息可得关于x 的方程m x=k x +b 的解为 ( ) A .-3,1 B .-3,3 C .-1,1 D .3,-16.(2011年潍坊)已知一元二次方程ax 2+bx +c =0(a >0)的两个实数根x 1、x 2满足x 1+x 2=4和x 1·x 2=3,那么二次函数y =ax 2+bx +c(a >0)的图象有可能是 ( )二、填空题(每小题3分,共9分)7.(2011年舟山)如图,已知二次函数y =x 2+bx +c 的图象经过点(-1,0),(1,-2),当y 随x 的增大而增大时,x 的取值范围是______.8.(2011年江西省)将完全相同的平行四边形和完全相同的菱形镶嵌成如图所示的图案.设菱形中较小角为x 度,平行四边形中较大角为y 度,则y 与x 的关系式是_______.9.(2011年义乌)如图,一次函数y =-2x 的图象与二次函数y =-x 2+3x 图象的对称轴交于点B .(1)写出点B 的坐标_______;(2)已知点P 是二次函数y =-x 2+3x 图象在y 轴右侧部分上的一个动点,将直线y =-2x 沿y 轴向上平移,分别交x 轴、y 轴于C 、D 两点,若以CD 为直角边的△PCD 与△OCD 相似,则点P 的坐标为______.三、解答题(73分)10.(8分)(2011年呼和浩特)在同一直角坐标系中反比例函数y =m x的图象与一次函数y =k x +b 的图象相交,且其中一个交点A 的坐标为(-2,3).若一次函数的图象又与x 轴相交于点B ,且△AOB 的面积为6(点O 为坐标原点).求一次函数与反比例函数的解析式.11.(11分)(2011年成都)如图,已知反比例函数y =k x (k ≠0)的图象经过点(12,8),直线y =-x +b 经过该反比例函数图象上的点Q(4,m).(1)求上述反比例函数和直线的函数表达式;(2)设该直线与x 轴、y 轴分别相交于A 、B 两点,与反比例函数图象的另—个交点为P ,连接OP 、CQ ,求△OPQ 的面积.12. (13分)(2011年潍坊)2010年上半年,某种农产品受不良炒作的影响,价格一路上场.8月初国家实施调控措施后,该农产品的价格开始回落.其中,1月份至7月份,该农产品的月平均价格y元/千克与月份x呈一次函数关系;7月份至12月份,月平均价格y元/千克与月份x呈二次函数关系.已知1月、7月、9月和12月这四个月的月平均价格分别为8元/千克、26元/千克、14元/千克、11元/千克.(1)分别求出当1≤x≤7和7≤x≤12时,y关于x的函数关系式;(2)2010年的12个月中,这种农产品的月平均价格哪个月最低?最低为多少?(3)若以12个月份的月平均价格的平均数为年平均价格,月平均价格高于年平均价格的月份有哪些?13.(14分)(2011年桂林)已知二次函数y=-14x2+32x的图象如图.(1)求它的对称轴与x轴交点D的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴、y轴的交点分别为A、B、C三点.若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.14.(13分)(2011年成都)某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD.已知木栏总长为120米,设AB边的长为x米,长方形ABCD的面积为S平方米.(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围).当x为何值时,S取得最值(请指出是最大值还是最小值)?并求出这个最值;(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(1)中S取得最值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由.15.(14分)(2011年重庆)某企业为重庆计算机产业基地提供电脑配件,受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式;根据如图所示的变化趋势,直接写出y 2与x 之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其他成本30元,该配件在1至9月的销售量p 1(万件)与月份x 满足函数关系式p 1=0.1x +1.1(1≤x ≤9,且x 取整数),10至12月的销售量p 2(万件)与月份x 满足函数关系式p 2=-0. 1x +2.9(10≤x ≤12,且x 取整数).去年哪个月销售该配件的利润最大?并求出这个最大利润;(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其他成本没有变化,该企业将每件配件的售价在去年的基础上提高a %,与此同时每月销售量均在去年12月的基础上减少0.1a %.这样,在保证每月上万件配件销量的前提下,完成了1至5月的总利润1700万元的任务,请你参考以下数据,估算出a 的整数值.(参考数据:992=9801,982=9604,972=9409,962=9216,952=9025)参考答案1.B2.D3.B4.D5.A6.C7.x >12 8.2y -x =180(或y =12x +90) 9.(1)(3,32-) (2)(2,2)、(12,54)、(114,1116)、(135,2625) 10.362y x =+ 11.(1)y =-x +5 (2)15212.(1)y =3x +5 y =x 2-22x +131 (2)1月 8元/千克 (3) 4,5,6,7,8这五个月的月平均价格高于年平均价格.13.(1)(3,0) (2)213442y x x =-++ (3)相切 14.(1)S =x (120-2x ) 当x =30(米)时,S 最大值=1800(平方米) (2)这个设计不可行15.(1) (1)y 1 =540+20x (1≤x ≤9,且x 取整数);y 2= 630+10x (10≤x ≤12,且x 取整数).(2) 去年4月销售该配件的利润最大,最大利润为450万元.(3)a 的整数值为10.。
专题十一 函数及其图象的综合应用
(时间:90分钟 满分:100分)
一、选择题(每小题3分,共18分)
1.(2011年凉山州)二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y =
a x
与正比例函数y =bx 在同一坐标系内的大致图象是 ( )
2.(2011年杭州)如图,函数y 1=x -1和函数y 2=2x
的图象相交于点M(2,m),N(-1,n).若y 1>y 2,则x 的取值范围是 ( )
A .x <-1或0<x <2
B .x <-1或x >2
C .-1<x <0或0<x <2
D .-1<x <0或x >2
3.(2011年宜昌)如图,直线y =x +2与双曲线y =
3m x
在第二象限有两个交点,那么m 的取值范围在数轴上表示为 ( )
4.(2011年枣庄)如图,函数y 1=x 和y 2=1
3x +43
的图象相交于(-1,1),(2,2)两点.当y 1>y 2时,x 的取值范围是 ( )
A .x <-1
B .-1<x <2
C .x >2
D .x <-1或x >2
5.(2011年台州)如图,反比例函数y =m x
的图象与一次函数y =k x +b 的图象交于点M 、N ,已知点M 的坐标为(1,3),点N 的纵坐标为-1,根据图象信息可得关于x 的方程m x
=k x +b 的解为 ( ) A .-3,1 B .-3,3 C .-1,1 D .3,-1
6.(2011年潍坊)已知一元二次方程ax 2+bx +c =0(a >0)的两个实数根x 1、x 2满足x 1+x 2=4和x 1·x 2=3,那么二次函数y =ax 2+bx +c(a >0)的图象有可能是 ( )
二、填空题(每小题3分,共9分)
7.(2011年舟山)如图,已知二次函数y =x 2+bx +c 的图象经过点(-1,0),(1,-2),当y 随x 的增大而增大时,x 的取值范围是______.
8.(2011年江西省)将完全相同的平行四边形和完全相同的菱形镶嵌成如图所示的图案.设菱形中较小角为x 度,平行四边形中较大角为y 度,则y 与x 的关系式是_______.
9.(2011年义乌)如图,一次函数y =-2x 的图象与二次函数y =-x 2+3x 图象的对称轴交于点B .
(1)写出点B 的坐标_______;
(2)已知点P 是二次函数y =-x 2+3x 图象在y 轴右侧部分上的一个动点,将直线y =-2x 沿y 轴向上平移,分别交x 轴、y 轴于C 、D 两点,若以CD 为直角边的△PCD 与△OCD 相似,则点P 的坐标为______.
三、解答题(73分)
10.(8分)(2011年呼和浩特)在同一直角坐标系中反比例函数y =m x
的图象与一次函数y =k x +b 的图象相交,且其中一个交点A 的坐标为(-2,3).若一次函数的图象又与x 轴相交于点B ,且△AOB 的面积为6(点O 为坐标原点).求一次函数与反比例函数的解析式.
11.(11分)(2011年成都)如图,已知反比例函数y =k x (k ≠0)的图象经过点(12
,8),直线y =-x +b 经过该反比例函数图象上的点Q(4,m).
(1)求上述反比例函数和直线的函数表达式;
(2)设该直线与x 轴、y 轴分别相交于A 、B 两点,与反比例函数图象的另—个交点为P ,连接OP 、
CQ ,求△OPQ 的面积.
12. (13分)(2011年潍坊)2010年上半年,某种农产品受不良炒作的影响,价格一路上场.8月初国家
实施调控措施后,该农产品的价格开始回落.其中,1月份至7月份,该农产品的月平均价格y 元/千克与月份x 呈一次函数关系;7月份至12月份,月平均价格y 元/千克与月份x 呈二次函数关系.已
知1月、7月、9月和12月这四个月的月平均价格分别为8元/千克、26元/千克、14元/千克、11元/千克.
(1)分别求出当1≤x≤7和7≤x≤12时,y关于x的函数关系式;
(2)2010年的12个月中,这种农产品的月平均价格哪个月最低?最低为多少?
(3)若以12个月份的月平均价格的平均数为年平均价格,月平均价格高于年平均价格的月份有哪些?
13.(14分)(2011年桂林)已知二次函数y=-1
4
x2+
3
2
x的图象如图.
(1)求它的对称轴与x轴交点D的坐标;
(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴、y轴的交点分别为A、B、C三点.若
∠ACB=90°,求此时抛物线的解析式;
(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位
置关系,并说明理由.
14.(13分)(2011年成都)某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD.已知木栏总长为120米,设AB边的长为x米,长方形ABCD的面积为S平方米.
(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围).当x为何值时,S取得最值(请
指出是最大值还是最小值)?并求出这个最值;
(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为O1和O2,且
O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(1)中S取得最值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由.
15.(14分)(2011年重庆)某企业为重庆计算机产业基地提供电脑配件,受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x
之间的函数关系式;根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其他成本30元,该配件
在1至9月的销售量p1(万件)与月份x满足函数关系式p1=0.1x+1.1(1≤x≤9,且x取整数),
10至12月的销售量p 2
(万件)与月份x 满足函数关系式p 2=-0. 1x +2.9(10≤x ≤12,且x 取整数).去年哪个月销售该配件的利润最大?并求出这个最大利润;
(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其他成本没有变化,该企业将每件配件的售价在去年的基础上提高a %,与此同时每月销售量均在去年12月的基础上减少0.1a %.这样,在保证每月上万件配件销量的前提下,完成了1至5月的总利润1700万元的任务,请你参考以下数据,估算出a 的整数值.
(参考数据:992=9801,982=9604,972=9409,962=9216,952=9025)
参考答案
1.B
2.D
3.B
4.D
5.A
6.C
7.x >
12 8.2y -x =180(或y =12
x +90) 9.(1)(3,32-) (2)(2,2)、(12,54)、(114,1116)、(135,2625
) 10.362y x =+ 11.(1)y =-x +5 (2)152 12.(1)y =3x +5 y =x 2-22x +131 (2)1月 8元/千克 (3) 4,5,6,7,8这五个月的月平均价格高于年平均价格.
13.(1)(3,0) (2)21
3442
y x x =-++ (3)相切 14.(1)S =x (120-2x ) 当x =30(米)时,S 最大值=1800(平方米) (2)这个设计不可行
15.(1) (1)y 1 =540+20x (1≤x ≤9,且x 取整数);y 2= 630+10x (10≤x ≤12,且x 取整数).
(2) 去年4月销售该配件的利润最大,最大利润为450万元.
(3)a 的整数值为10.。