第五章材料的强化理论
- 格式:ppt
- 大小:10.46 MB
- 文档页数:70
从图在该段中的变线段(T即为非粮馆举性段, 压液线可看出即整个拉伸过程可分为以下四个阶段。
* /)称线弹性段,其斜率即为弹性模量E,对应的最高应力值 虎克定律(r=Ec 成立。
而ab 段, 在该段内所产生的应变仍是弹性的, 但它与应力已不成正比。
b点相对立白 勺应力第五早材料力学 主讲:钱民刚 第一节 概论材料力学是研究各种类型构件(主要是杆)的强度、刚度和稳定性的学科,它提供 了有关的基本理论、计算方法和试验技术,使我们能合理地确定构件的材料、尺寸 和形状,以达到安全与经济的设计要求。
♦一、材料力学的基本思路 (一)理论公式的建立 理论公式的建立思路如下:(一)低碳钢材料拉伸和压缩时的力学性质低碳钢(通常将含碳量在0.3%以下 的钢称为低碳钢,也叫软钢)材料拉伸和压缩时的 (7- e 曲线如图5-1所示。
陶度箓n------- 搬面设计为确保构件不致因强度/、丸而破坏, 应使其最——该啊瓯丽于材料的极限应力0- u,物出射和 (力与姻(美系)* 变形外力 T ]表小,即临界前载应力力布1£配IX没有屈服阶段,也酸 _ 曲线的一条割线的斜率,作为其弹性模量。
它 1故衡量铸铁拉伸强度的唯一指标就是它被拉断时/,在较小的拉应力作用下即被拉断,且其延伸率很小,故铸铁TE与拉伸相比,可看出这类材料的抗压能力要比抗拉 事蝌性变形也较为蛾显。
破坏断口为斜断面,这表明试件是因m max对于塑性材料制成的杆,通常取屈服极限①良或名义屈服极限(T该段内应力基本上不变,但应变却在迅速增长,而且在该段内所产生的应变 成分,除弹性应变外,还包含了明显的塑性变形,该段的应力最低点 (7S 称为屈服 极限。
这时,试件上原光滑表面将会出现与轴线大致成 45。
的滑移线,这是由于试 件材料在45。
的斜截面上存在着最大剪应力而引起的。
对于塑性材料来说,由于屈 服时所产生的显著的塑性变形将会严重地影响其正常工作,故(7S 是衡量塑性材料强度的一个重要指标。
《材料科学基础》总结及重点第一章 材料的结构与键合1、金属键、离子键、共价键、分子键(范德华力)、氢键的特点,并解释材料的一些性能特点。
2、原子间的结合键对材料性能的影响。
用金属键的特征解释金属材料的性能—①良好的延展性;②良好的导电、导热性;③具有金属光泽。
3、比较金属材料、陶瓷材料、高分子材料、复合材料在结合键上的差别。
本章重要知识点: 1. 金属键、离子键、共价键、分子键、氢键的特点。
第二章 固体结构1、晶体与非晶体(在原子排列上的区别)2、空间点阵、晶格、晶胞及选取晶胞的的原则、七大晶系及各自的特点,布拉菲点阵(14种) 、晶格常数、晶胞原子数。
3、晶面指数、晶面族、晶向指数、晶向族、晶带和晶带定理、晶面间距、配位数、致密度、八面体间隙、四面体间隙。
各向同性与各向异性、实际晶体的伪各向异性、同素异构转变(重结晶、多晶型性转变) 。
(1)指数相同的晶向.和晶面必然垂直。
如[111]⊥(111)(2)当一晶向[uvw]位于或平行某一晶面(hkl )时,则必然满足晶带定理:h ·w+k ·v+l ·w =04、能绘出三维的体心、面心立方和密排六方晶胞,根据原子半径计算出金属的体心和面心立方晶胞的晶胞常数。
三种典型晶体结构的特征(包括:晶胞形状、晶格常数、晶胞原子数、原子半径、配位数、致密度、各类间隙尺寸与个数,最密排面(滑移面)和最密排方向的指数与个数,滑移系数目等);即:bcc 、fcc 、hcp 的晶格特征及变形能力(结合塑性变形一章的内容你必须知道常用金属材料的滑移面与滑移系的指数)。
给画出晶胞指出滑移面和滑移方向。
能标注和会求上述三种晶胞的晶向和晶面指数。
晶向和晶面指数的一些规律。
求晶面间距d (hkl )、晶面夹角。
5、晶面间距:d (hkl ) 的求法:(1)立方晶系:222)(l k h ad hkl ++= (2)正交晶系:222)(1⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=c l b k a h d hkl (3)六方晶系:2222)()(341⎪⎭⎫ ⎝⎛+++=c l a k hk h d hkl (4)四方晶系:2222)()/(/)(1c l a k h d hkl ++=以上公式仅适用于简单晶胞,复杂晶胞要考虑其晶面层数的增加。
材料强化的主要方法材料强化是指通过改变材料的内部结构和外部形态,使其具有更好的性能和更广泛的应用范围的一种方法。
在材料科学领域,材料强化是一个非常重要的研究方向,通过不同的方法可以实现对材料性能的提升。
本文将介绍材料强化的主要方法,包括金属材料、陶瓷材料和高分子材料等方面。
首先,金属材料的强化方法主要包括固溶强化、析出强化和变形强化。
固溶强化是通过溶质原子溶解在基体中,形成固溶体,使晶格变得更加坚固,从而提高材料的强度和硬度。
析出强化是在固溶体中加入合金元素,通过固溶体中的析出相来增强材料的性能。
而变形强化则是通过冷加工、热加工等方式,使材料的晶粒细化,从而提高材料的强度和塑性。
其次,陶瓷材料的强化方法主要包括晶界强化、相界强化和颗粒强化。
晶界强化是通过控制晶界的结构和能量,来提高材料的韧性和强度。
相界强化是在陶瓷材料中加入第二相,通过第二相与基体之间的界面作用来增强材料的性能。
颗粒强化则是通过在陶瓷材料中加入颗粒,来阻碍裂纹扩展,提高材料的韧性和抗磨损性能。
最后,高分子材料的强化方法主要包括共混强化、填料强化和取向强化。
共混强化是将两种或多种高分子材料混合在一起,通过相互作用来提高材料的性能。
填料强化是在高分子材料中加入填料,如碳纤维、玻璃纤维等,来提高材料的强度和刚性。
取向强化则是通过拉伸、挤压等方式,使高分子链取向排列,从而提高材料的强度和韧性。
综上所述,材料强化的方法多种多样,不同的材料可以采用不同的强化方式来实现性能的提升。
在实际应用中,需要根据材料的特性和使用要求,选择合适的强化方法,从而使材料具有更好的性能和更广泛的应用前景。
希望本文所介绍的材料强化方法能对相关领域的研究和应用提供一定的参考和帮助。
材料力学第一章拉压一、构件设计应满足的要求:1、足够的强度:即抵抗破坏的能力;2、足够的刚度:即抵抗变形的能力;3、足够的稳定性:即保持平衡的能力;二、失稳:构件在一定外力的作用下,不能保持原有的平衡形式,称为失稳;细长杆件在压缩中容易产生失稳现象。
三、材料力学的基本假设:1、连续性假设:构件的整个体积内毫无空隙的充满了物质;2、均匀性假设:认为材料是均匀的,其力学性能与构件中的位置无关;(材料在外力作用下表现出来的性能,称为力学性能或机械性能)3、各项同性假设:沿各个方向均具有相同的力学性能;(相反,存在各向异性材料,常见的有碳纤维、玻璃纤维、环氧树脂、陶瓷等四、杆件变形的基本形式:拉伸或压缩、弯曲和扭转。
五、内力:外力作用下,构件内部相连两部分之间的相互作用力。
六、同一杆件在受力方式变化的情况下,即使只受轴向力作用,不同部分的轴向力大小也可能不同,如在杆端和杆中点均受力,切合力为0的情况。
七、设杆件的横截面积为A,轴力为N,且为均匀性材料,则横截面上各点处的正应力均为:Pa、Mpa、Gpa)。
八、圣维南原理:力作用于杆端的方式不同,只会使于杆端距离不大于杆横向尺寸的范围受其影响。
九、拉压杆上的最大剪应力发生在于杆轴成45°的斜截面上,其值为横截面正应力的一半。
十、单位长度的变形,称为正应变。
十一、材料的应力——应变曲线:工程中常用的材料的应力应变曲线分成以下几个阶段:1、线性阶段:在拉伸的初始阶段,应力——应变为一直线;此阶段的应力最高点,为材料的比例极限;2、屈服阶段:超过比例极限之后,应力和应变之间不再保持正比例关系。
此阶段内,应力几乎不变,但变形却极具增长,材料失去抵抗继续变形的能力,此种现象称为屈服。
相应的应力称为材料的屈服应力或屈服极限。
3、强化阶段:经过屈服阶段之后,材料又增强了抵抗变形的能力,此种现象称为强化。
强化节点最高点对应的应力称为材料的强度极限。
如果材料表面光滑,当材料屈服时,试样表面将出现于轴线成45°的线纹,作用有最大剪应力。
第五章行为学习理论一、巴甫洛夫的经典性条件作用理论Ivan Pavlov (1870—1932) 俄国生理学家、心理学家、高级神经活动学说的创始人。
1904年因消化腺生理学研究的卓越贡献而获诺贝尔奖金。
他一生最突出的贡献是关于高级神经活动的研究。
(一)狗的条件反射作用实验实验结果(1)条件作用之前:给出铃声(条件刺激)并无唾液分泌给出肉(无条件刺激)产生唾液分泌(2)条件作用期间:铃声+肉(条件刺激+无条件刺激),产生唾液分泌(3)条件作用之后:给出铃声(条件刺激),产生唾液分泌(二)经典性条件作用的基本内容一个原是中性的刺激与一个原来就能引起某种反应的刺激相结合,而使动物学会对那个中性刺激做出反应。
●条件反射的四个基本事项:①无条件刺激(UCS):指本来就能引起的某种固定反应的刺激。
②无条件反应(UCR) :指由无条件刺激原本就可以引起的固定反应。
③条件刺激(CS) :原来的中性刺激。
④条件反应(CR) :条件反射形成后由条件刺激引起的反应。
(三)学习规律1. 消退◆条件作用建立之后,如果多次只给条件刺激而不用无条件刺激加以强化,结果是条件作用的反应强度逐渐减弱,最后将完全不出现。
●巴甫洛夫认为,消退并不是条件刺激和相应的反应之间的暂时联系已经消失或中断,而是暂时联系受到抑制。
●条件作用愈巩固,消退速度就愈慢;条件作用愈不巩固,就愈容易消退。
2. 泛化:在条件作用开始建立时,除条件刺激本身外,那些与该刺激相似的刺激也或多或少具有条件刺激的效应。
这种现象称为条件作用的泛化。
3. 分化:只对经常受到强化的刺激产生条件作用,而对其他近似刺激则产生抑制效应。
这种现象称为条件作用的分化。
4.高级条件作用:中性刺激一旦成为条件刺激,可以作为无条件刺激。
另一个中性刺激与其反复结合,可形成新的条件作用,这一过程被称为高级条件作用。
测验失败(中性刺激)批评(条件刺激)——焦虑测验失败——焦虑巴甫洛夫的信号系统理论●巴甫洛夫认为,条件反射是一种信号活动,引起条件反射的刺激是信号刺激。
北京科技大学材料科学与工程专业814 材料科学基础主讲人:薛春阳第五章材料的形变和再结晶本章主要内容1.弹性和黏弹性2.晶体的塑性变形3.回复和再结晶4.热变形和动态回复、动态再结晶5.陶瓷形变的特点本章要求1.了解弹性和黏弹性的基本概念2.熟悉单晶体的塑性变形过程3.熟悉多晶体的塑性变形过程4.掌握塑性变形对材料组织和性能的影响5.掌握回复和再结晶的概念和过程6.熟悉动态回复和动态再结晶的概念和过程7.了解陶瓷变形的特点和一些基本概念应变应力b σsσe σbk s e ob εk ε变形的五个阶段:1.弹性变形2.不均匀的屈服变形3.均匀的塑性变形4.不均匀的塑性变形5.断裂阶段抗拉强度屈服强度弹性极限知识点1 弹性的不完整性定义:我们在考虑弹性变形的时候,通常只是考虑应力和应变的关系,而没有考虑时间的影响,即把物体看作是理想弹性体来处理。
但是,多数工程上应用的材料为多晶体甚至为非晶体,或者是两者皆有的物质,其内部存在着各种类型的缺陷,在弹性变形是,可能出现加载线与卸载线不重合、应变跟不上应力的变化等有别于理想弹性变形的特点的现象,我们称之为弹性的不完整性。
弹性不完整的现象主要包括包申格效应、弹性后效、弹性滞后、循环韧性等1.包申格效应材料预先加载才生少量的塑性变形(4%),而后同向加载则 升高,反向加载则 下降。
此现象称之为包申格效应。
它是多晶体金属材料的普遍现象。
2.弹性后效一些实际晶体中,在加载后者卸载时,应变不是瞬时达到其平衡值,而是通过一种弛豫过程来完成其变化的。
这种在弹性极限 范围内,应变滞后于外加应力,并和时间有关的现象,称之为弹性后效或者滞弹性。
3.弹性滞后由于应变落后与应力,在应力应变曲线上,使加载与卸载线不重合而是形成一段闭合回路,我们称之为弹性滞后。
弹性滞后表明,加载时消耗于材料的变形功大于卸载时材料恢复所释放的变形功,多余的部分被材料内部所消耗,称之为内耗,其大小用弹性滞后环的面积度量。
金属材料的四种强化方式-回复金属材料的四种强化方式是:固溶强化、细晶强化、位错强化和相变强化。
这些强化方式可以通过改变金属晶体结构、控制晶粒大小、引入位错和控制相变来提高金属材料的强度和硬度。
固溶强化是指通过固溶体中添加溶质元素来改善金属材料的性能。
溶质元素可以在金属基体中占据空位或替代原子的位置,通过与基体原子发生相互作用来影响金属的晶体结构和力学性能。
溶质元素的添加可以形成固溶体溶解度限度以及形成沉淀相,从而有效地改善金属材料的强度和塑性。
细晶强化是指通过控制金属材料的晶粒尺寸来提高材料的强度和硬度。
晶粒边界是材料中晶粒之间的界面,晶粒越细小,晶界面越多,阻碍位错移动的机会就越多,从而提高材料的强度。
细晶强化可以通过控制冷变形过程中的变形温度、变形速率和变形温度等参数来实现。
位错强化是指通过加入位错(晶体结构缺陷)来提高金属材料的强度。
位错是晶体中的一种阻碍原子位置正常排列的缺陷,位错强化的基本原理是位错产生了一系列应变场,阻碍了位错周围的其他位错的运动,从而提高了材料的强度。
位错强化可以通过冷变形和热处理等工艺实现。
相变强化是指通过金属材料的相变来提高材料的强度和硬度。
相变是指材料从一种晶体结构转变为另一种晶体结构的过程。
相变强化的基本原理是相变过程中晶粒的生长和变化,使得晶体结构得以改善,从而提高材料的性能。
相变强化通常通过热处理来实现,如淬火、时效等。
金属材料的四种强化方式相互作用,可以通过不同的方式和工艺进行组合来实现对材料性能的综合强化。
例如,可以通过固溶强化控制溶质元素的含量和溶解度来改善材料的强度和塑性;通过细晶强化来控制材料的晶粒尺寸,提高材料的强度和硬度;通过位错强化控制位错密度和位错类型来改善材料的强度和耐腐蚀性能;通过相变强化来控制材料的相变过程,调节材料的晶体结构和硬度等。
综合应用这些强化方式,可以实现对金属材料性能的全面改善,满足不同工程应用的要求。