焊接与焊接应力
- 格式:doc
- 大小:36.50 KB
- 文档页数:4
产生焊接裂纹焊接应力和变形的原因产生焊接裂纹的原因主要是焊接应力和变形。
在焊接过程中,由于热量的作用和材料的收缩,会产生应力和变形。
这些应力和变形如果超过了材料的承载能力,就会导致焊接裂纹的产生。
焊接应力是指在焊接过程中,由于热量的输入和材料的收缩,使得焊接接头产生的内部应力。
这些应力会导致接头周围的材料受到拉伸或压缩,当拉伸或压缩的应力超过材料的强度限制时,就会产生裂纹。
焊接应力的大小取决于焊接过程中的热量输入、材料的热膨胀系数、焊接接头的形状和尺寸等因素。
焊接变形是指在焊接过程中,由于热量的输入和材料的收缩,使得焊接接头产生的形状和尺寸的变化。
焊接变形通常包括收缩变形和热变形两种形式。
收缩变形是指焊接接头在冷却过程中由于材料的收缩而发生的变形,主要表现为接头的收缩和变形。
热变形是指焊接接头在焊接过程中由于热量的输入而发生的变形,主要表现为接头的膨胀和变形。
焊接变形会导致接头的形状和尺寸与设计要求不符,从而影响接头的性能和使用寿命。
焊接裂纹的产生与焊接应力和变形密切相关。
当焊接应力和变形超过材料的承载能力时,就会导致焊接接头产生裂纹。
焊接裂纹的形成通常有以下几个原因:1. 焊接过程中的热应力:焊接过程中,由于热量的输入和材料的收缩,会产生热应力。
热应力会使接头周围的材料受到拉伸或压缩,当拉伸或压缩的应力超过材料的强度限制时,就会产生裂纹。
2. 焊接材料的选择不当:焊接材料的选择不当也是导致焊接裂纹的一个重要原因。
如果选择的焊接材料与基材的热膨胀系数差异较大,就会在焊接过程中产生较大的应力和变形,从而导致裂纹的产生。
3. 焊接接头的设计不合理:焊接接头的设计不合理也会导致焊接裂纹的产生。
如果接头的形状和尺寸设计不当,就会在焊接过程中产生较大的应力和变形,从而导致裂纹的产生。
因此,在设计接头时应考虑到焊接应力和变形的影响,合理选择接头的形状和尺寸。
为了减少焊接裂纹的产生,可以采取以下措施:1. 控制焊接参数:合理控制焊接参数,如焊接电流、焊接速度、预热温度等,可以减少焊接过程中的热应力和变形,从而降低焊接裂纹的产生风险。
焊接应力是指在焊接过程中产生的应力。
焊接过程中,焊接材料受到加热和冷却的影响,发生热胀冷缩现象,从而引起焊接接头的变形和应力的产生。
这些应力可能会对焊接接头的性能和使用寿命产生负面影响。
焊接应力的产生主要有以下几个方面:
热应力:焊接过程中,焊接区域被加热使其膨胀,当冷却时又会收缩,导致焊接接头产生应力。
冷却应力:焊接过程中,焊接区域在冷却过程中不均匀收缩,导致焊接接头产生应力。
组织变化应力:焊接过程中,焊接区域的组织结构可能发生变化,如晶粒尺寸的改变、相变等,这些变化也会引起应力。
焊接应力可能导致以下问题:
变形:焊接接头受到应力影响,可能会发生变形,影响焊接件的几何形状和尺寸。
裂纹:焊接应力超过了材料的强度极限,可能导致焊接接头出现裂纹。
为了减轻焊接应力的影响,可以采取以下措施:
控制焊接工艺参数:合理选择焊接电流、电压、速度等参数,以减少焊接过程中的温度变化和热影响区域的大小。
采用预热和后热处理:预热可以使焊接区域温度均匀,减少冷却应力的产生;后热处理可以通过加热焊接接头,使其重新达到平衡状态,减轻应力。
使用补偿措施:如设置补偿焊缝、补偿件等,以减少焊接接头的变形和应力。
钢结构工程焊接应力与变形差生的危害及采取的措施随着“绿色建筑”理念的推广,以钢结构件为主体框架结构结合复合砌筑体结构已成为一种必然趋势,因为以钢结构为主的框架结构的回收利用性有效避免钢筋混凝土结构建筑垃圾的产生,具有可持续性。
由于钢结构工程的特有型,焊接作业时钢结构工程最重要的工序之一,而焊接应力及焊接变形产生是影响钢结构安全性及可靠性的重要因素。
本文着重对焊接应力及焊接变形的危害及所采取的对应措施进行分析。
一、焊接应力与变形产生机理焊接热输入引起材料不均匀局部加热,使焊缝区熔化,而熔池毗邻的高温区材料的热膨胀则受到周围材料的限制,产生不均匀的压缩塑性变形。
在冷却过程中,已发生压缩塑性变形的这部分材料又受到周围材料的制约,不能自由收缩,在不同程度上又被拉伸而卸载,与此同时,熔池凝固,金属冷却收缩也产生了相应的收缩拉应力和变形。
这种随焊接热过程而变化的内应力场和构件变形,称为瞬态应力与变形。
而焊后,在室温条件下,残留于构件中的内应力场和宏观变形称为焊接残余应力与焊接残余变形。
焊接残余应力和变形,严重影响焊接构件的承载力和构件的加工精度,应从设计、焊接工艺、焊接方法、装配工艺着手降低焊接残余应力和减小焊接残余变形。
二、焊接残余应力的危害及降低焊接应力的措施1.焊接残余应力的危害影响构件承受静载能力;影响结构脆性断裂;影响结构的疲劳强度;影响结构的刚度和稳定性;易产生应力腐蚀开裂;影响构件精度和尺寸的稳定性。
2.降低焊接应力的措施(1)设计措施尽量减少焊缝的数量和尺寸,在减小变形量的同时降低焊接应力;防止焊缝过于集中,从而避免焊接应力峰值叠加;要求较高的容器接管口,宜将插入式改为翻边式。
(2)工艺措施采用较小的焊接线能量,减小焊缝热塑变的范围,从而降低焊接应力;合理安排装配焊接顺序,使焊缝有自由收缩的余地,降低焊接中的残余应力;层间进行锤击,使焊缝得到延展,从而降低焊接应力;焊接高强钢时,选用塑性较好的焊条;预热拉伸补偿焊缝收缩(机械拉伸或加热拉伸);采用整体预热;降低焊缝中的含氢量及焊后进行消氢处理,减小氢致集中应力。
焊接应力产生的原因及处理方法焊接是一种常见的金属连接方法,常用于制造业和修复工程中。
然而,焊接过程中产生的焊接应力却是一个常见的问题,可能导致焊接结构的变形、开裂甚至破坏。
了解和处理焊接应力是非常重要的。
一、焊接应力的原因1. 温度梯度引起的收缩应力:焊接过程中,焊接区域会受到短时间内的高温冲击,而周围区域的金属温度则较低。
这样的温度梯度将导致焊接区域产生热收缩,而周围区域则保持相对稳定,从而引起焊接应力。
2. 相变引起的体积变化:在焊接过程中,金属的结构可能发生相变,如固态相变或晶体结构重排。
这些相变往往伴随着体积的变化,从而引起焊接区域的应力。
3. 材料匹配问题:如果焊接材料与基材存在差异,如化学成分、热膨胀系数等方面的不匹配,焊接过程中可能会引起应力。
4. 焊接变形的限制:焊接过程中,由于局部加热和相变的影响,金属可能发生形状变化。
而焊接变形的限制,如约束或夹具,会阻碍焊接结构的自由变形,从而产生应力。
5. 焊接过程参数的选择:焊接过程中的工艺参数选择不当,例如焊接速度、电弧电流或电压等方面的选择错误,可能导致焊接区域过热或冷却不充分,进而产生焊接应力。
二、焊接应力的处理方法1. 预热和后热处理:预热焊接材料可以减少焊接区域的温度梯度,从而降低焊接应力的产生。
后热处理可以通过对焊接结构进行加热和冷却的控制,缓解或消除焊接应力。
2. 选择合适的焊接材料:选择合适的焊接材料,包括焊丝、焊条和填充材料,可以减少焊接区域与基材之间的差异,从而降低焊接应力。
3. 使用轻量化结构设计:在焊接结构的设计过程中,考虑减少焊接材料的使用量,避免产生不必要的焊接应力。
4. 控制焊接过程参数:通过合理选择焊接速度、电流、电压等参数,控制焊接过程的热输入和冷却速度,从而降低焊接应力的产生。
5. 合理约束和夹具设计:在焊接过程中,合理约束和夹具的设计可以防止过大的焊接变形,减少焊接应力的产生。
三、对焊接应力的个人观点和理解焊接应力是焊接过程中的一个常见问题,对于确保焊接结构的长期稳定和性能的发挥至关重要。
焊接应力分析1、焊接应力概念及产生原因焊接应力,是焊接构件由于焊接而产生的应力。
焊接过程中焊件中产生的内应力和焊接热过程引起的焊件的形状和尺寸变化。
焊接过程的不均匀温度场以及由它引起的局部塑性变形和比容不同的组织是产生焊接应力和变形的根本原因。
当焊接引起的不均匀温度场尚未消失时,焊件中的这种应力和变形称为瞬态焊接应力和变形;焊接温度场消失后的应力和变形称为残余焊接应力和变形。
在没有外力作用的条件下,焊接应力在焊件内部是平衡的。
焊接应力和变形在一定条件下会影响焊件的功能和外观,因此是设计和制造中必须考虑的问题。
2、焊接应力对构件的影响2.1 对结构刚度的影响当外载产生的应力与结构中某区域的残余应力叠加之和达到屈服点时,这一区域的材料就会产生局部塑性变形,丧失了进一步承受外载的能力,造成结构的有效截面积减小,结构的刚度也随之降低。
2.2对受压杆件稳定性的影响当外载引起的压应力与残余应力中的压应力叠加之和达到屈服点口,这一部分截面就丧失进一步承受外载的能力。
这就削弱了构件的有效截面积,并改变了有效截面积的分布,降低了受压杆件的稳定性。
2.3对静载强度的影响没有严重应力集中的焊接结构,只要材料具有一定的塑性变形能力,残余应力不影响结构的静载强度。
反之,如材料处于脆性状态,则拉伸残余应力和外载应力叠加有可能使局部区域的应力首先达到断裂强度,导致结构早期破坏。
2.4对疲劳强度的影响残余应力的存在使变载荷的应力循环发生偏移。
这种偏移,只改变其平均值,不改变其幅值。
结构的疲劳强度与应力循环的特征有关,当应力循环的平均值增加时,其极限幅值就降低,反之则提高。
因此,如应力集中处存在着拉伸残余应力,疲劳强度将降低。
2.5对焊件加工精度和尺寸稳定性的影响机械加工把一部分材料从焊件上切除时,此处的残余应力也被释放。
残余应力原来的平衡状态被破坏,焊件发生变形,加工精度受影响。
2.6对应力腐蚀开裂的影响应力腐蚀开裂是拉伸残余应力和化学腐蚀共同作用下产生裂纹的现象,在一定材料和介质的组合下发生。
焊接应力焊接应力是指在焊接过程中产生的应力。
焊接是将两个或多个金属部件通过加热并加压使其连接在一起的过程,焊接过程中会产生热量,导致材料发生热膨胀和收缩。
这种热膨胀和收缩会导致焊接部件产生应力,即焊接应力。
焊接应力可以分为几种类型,包括热应力、冷却应力和残余应力。
热应力是在焊接过程中由于热膨胀和收缩引起的应力。
焊接时加热的金属会膨胀,连同周围金属一起膨胀,形成热应力。
冷却应力是指在焊接后金属迅速冷却时产生的应力。
当焊接部件开始冷却时,热膨胀引起的应力会逐渐减小,但冷却速度过快可能导致金属产生冷却应力。
残余应力是指在焊接结束后金属部件内部保留的应力。
这种应力会导致焊接部件的形状和尺寸发生变化。
焊接应力的存在会对焊接部件产生一些不良影响。
首先,焊接应力可能导致焊缝区域产生裂纹。
焊接时产生的热应力、冷却应力和残余应力会增加焊缝附近的应力集中,当应力超过材料的强度限制时,就会引起焊缝裂纹的产生。
其次,焊接应力还可能导致焊接部件的变形。
焊接产生的应力会改变材料的形状和尺寸,导致焊接部件变形或变形不均匀,影响焊接件的质量和尺寸精度。
最后,焊接应力还可能导致焊接部件的材料性能发生变化。
焊接部件的材料可能发生软化、硬化或脆化等变化,影响其力学性能。
为了减少焊接应力的产生和影响,可以采取一些措施。
首先,选择合适的焊接方法和工艺参数。
不同的焊接方法和工艺参数会产生不同的焊接应力,要选择最佳的焊接方法和工艺参数,以减少应力的产生。
其次,加强焊接前的预处理工作。
预处理包括对焊接材料的清洁、除油、去氧化处理等,以减少焊接区域的污染和杂质,减少焊接应力的产生。
再次,采用适当的焊接顺序。
焊接时,可以从中心向两侧逐渐焊接,以减少应力的集中和累积。
此外,可以采用预热和后热处理来控制焊接过程中的温度和冷却速度,减少焊接应力的产生。
在焊接过程中,焊接应力是一个需要重视的问题。
焊接应力的存在可能导致焊接部件的破坏、变形和性能变化。
为了减少焊接应力的产生和影响,需要选择合适的焊接方法、加强预处理工作、采用适当的焊接顺序,并进行预热和后热处理。
浅析焊接应力与焊接变形产生的原因及控制措施摘要:随着社会不断地进步,对于高新科技的精密性要求越来越严格,焊接也慢慢被逐步要求现代化、大型化等多种趋势发展,而传统意义的焊接中会产生多种很难规避的质量问题,如何发展采取措施减小金属在焊接过程中不产生焊接应力和焊接变形,在现实中具有非常重要的意义。
关键词:焊接应力;变形:原因;控制中图分类号:tg404 文献标识码:a1焊接应力与焊接变形产生的原因1.1焊接应力产生的原因焊接应力产生的主要原因是因为在焊接过程中局部会产生高温引起形状或尺寸的变化,焊缝的内应力和母材压应力数值平衡,焊接口也冷却到原始温度后,这时候应力状态就叫做焊接应力。
1.2焊接的不均匀受热焊接过程中是向母材焊口之间加热,目的是为了让焊材局部产生高温使得母材部分融化粘合在一起,从而完成焊接的过程。
所以让焊材局部产生高温,使得其不均匀受热是焊接的第一步。
对母材进行不均匀加热,在其持续加热的过程中,只要达到母材的熔点温度,就会构件就会产生可塑性变形,一般情况下,粘合冷却后就会产生一定的焊接残余应力。
而在其中个别过程中,由于不均匀受热,焊件的变形方向和焊后的变形方向是相反的,在其中焊件的应力一般分布是不均匀的,一旦完成整个焊接后,焊口附近的残余应力一般是属于拉应力。
1.3焊接变形产生的原因在焊接过程中是把母材的焊口局部加热到高温状态,导致焊材材质上温度不均匀,并且焊接热循环的过程中会使得组织内部发生转变,体积变化的过程中会受到体积并未发生变化时的阻碍,这样焊接口就会产生变形,这就是焊接变形产生的主要原因。
1.4金属组织的变化一般焊接过程中持续把母材局部温度加热,金属内部的体积组织状态也就会发生变化,金属为固体状态时成键作用是金属阳离子与其他自由电子之间会有相互作用,并无分子间的作用力,所以其物理属性和化学属性均取决于金属键,在焊接过程中局部持续加热,焊口部分金属熔化,金属键产生断裂。
当焊缝金属重新冷却后,由于它与母材金属之间是紧密联系的,而焊缝金属并不能自由重新收缩成熔化前的形状,由此也会产生焊接应力和变形。
焊接变形和焊接应力焊接变形和焊接应力焊接是一种局部加热的加工方法,热源集中在焊缝处加热,因而造成焊件上温分布不均匀,最终导致在焊接结构内部产生了焊接变形与焊接应力。
一、焊接变形1. 焊接变形的概念由焊接而引起的焊件尺寸和形状的改变称为焊接变形。
焊接过程结束后,残国在焊接结构中的变形,称为焊接残余变形。
本书中提到的焊接变形指的是焊接残余变形。
2. 焊接变形的类型及产生原因焊接变形可分为收缩变形、角变形、弯曲变形、波浪变形、扭曲变形等几种形式焊件局部(焊缝和焊缝附近的金属)不均匀加热和冷却是产生焊接变形的根本用因。
焊接时,加热是通过移动的高温电弧热源进行的,焊缝和焊缝附近的金属温度很高,受热金属要膨胀,其余大部分金属不受热,受热金属的膨胀受到阻碍和抑制,生了压缩塑性变形。
焊完冷却后,焊缝和附近的金属因收缩而变短,却又受到周围受热金属的限制,就使焊件产生了内应力,以致产生变形。
各类焊接变形的具体原因各不相同,与焊缝在焊件中的位置、加热方法、焊接序等因素密切相关。
焊接变形的类型及产生原因见表2-3-7。
3. 预防和矫正焊接变形的方法及措施(1)预防焊接变形的方法及措施预防焊接变形可以从焊接结构设计和焊接工艺两方面进行。
在焊接结构设计时要在保证结构有足够强度的前提下,尽量减小焊缝的数量和尺寸;对称布置焊缝;必要时预先留出收缩余量;采用冲压结构代替焊接结构;将焊缝布置在最大工作应力之外等。
预防焊接残余变形的工艺措施主要有∶1)选择合理的装配焊接顺序。
装配焊接顺序对焊接结构变形的影响很大。
对称焊接、不对称焊缝先焊焊缝少的一侧和减少长道直焊缝等都可以很大程度上减少焊接变形量。
如图2-3-13所示的工字梁,当采用1、2、3、4的焊接顺序时,虽然结构的焊缝对称,焊后仍将产生较大的上拱弯曲变形,但如果改为将工字梁1、2焊缝的长度分成若干段,采取分段、跳焊的对称焊接,先焊完总长度的60%~70%,然后将工字果翻转180°焊接3、4焊缝,也采取分段、跳焊的对称焊将3、4焊缝全部焊完。
焊接应力产生的原因焊接应力的产生原因主要有以下几点:1.热应力:焊接过程中,焊接接头会受到高温的加热,当焊接材料加热膨胀,冷却时又收缩,从而产生热应力。
这种热应力主要由于焊接过程中温度的变化引起的。
2.冷却应力:焊接接头在冷却时,由于内部材料的温度变化不一致,导致冷却速度也不一致,从而引起材料的不均匀收缩,产生冷却应力。
这种应力主要由于冷却速度的不同引起的。
3.结构应力:焊接接头在加工、装配、使用等过程中,由于材料的切割、弯曲、装配等工艺造成的变形,会导致接头的结构应力。
这种应力主要由于结构的变形引起的。
4.材料性能不匹配引起的应力:焊接时使用的不同材料在热膨胀系数、线膨胀系数、强度等方面的性能差异,可能导致焊缝周围产生应力。
这种应力主要由于材料性能的差异引起的。
5.强度应力:焊接过程中,可能会引入焊接接头周围的不均匀应力,例如焊接接头处存在凹陷、裂缝等缺陷,会导致接头产生应力。
焊接应力的产生不仅会造成焊件变形和损伤,还会对焊接接头的性能和使用寿命造成一定的影响。
因此,在进行焊接工艺设计和焊接操作时,应考虑减小焊接应力的产生。
可以采取以下几种措施:1.优化工艺参数:合理选择焊接材料、焊接电流、焊接速度等参数,尽量减小焊接接头的温度梯度,减小热应力的产生。
2.控制焊接过程温度:采取预热和后热处理等措施,控制焊接接头的温度分布,减小热应力的产生。
3.采用适当的结构设计:设计合理的焊接接头形状和尺寸,尽量减小结构应力的产生。
4.选择合适的焊接材料:焊接材料的选择应尽量匹配焊件的基材,减小材料性能差异引起的应力。
5.控制焊接接头的质量:在焊接过程中,要控制好焊接接头的质量,避免引入不必要的应力。
综上所述,焊接应力的产生是由多种因素综合作用的结果,通过合理控制焊接工艺和操作,可以减小焊接应力的产生,提高焊接接头的性能和使用寿命。
焊接应力与焊接变形焊接应力与焊接变形一、焊接应力与焊接变形的基本知识二、焊接残余应力与分布三、减少与消除残余应力和措施一、焊接应力与焊接变形的基本知识我们已经知道,焊缝由于有内部结构上的缺陷和内部应力的释放、焊件将产生焊缝裂缝。
同时,在焊接过程中,焊件受到不均匀的电弧加热,受热区域的金属膨胀程度也就不同,此时产生的内应力和变形是暂时的,但当焊接完毕待焊件完全冷却后,剩余的内应力和变形称为残余内应力和变形。
焊接内应力的种类焊接后产生的内应力简称焊接应力,根据其空间位置和相互关系可分以下几种:单向应力焊接薄板的对接焊缝以及在焊件表面上堆焊时,焊件存在的应力是单方向的。
双向应力在焊接较厚板的对接焊缝时,焊件存在的应力虽不同向,但均在一个平面内,即应力是双向的。
三向应力当焊接厚大焊件的对接焊缝时,焊件存在的应力是沿空间三个方向作用的。
当结构焊件三个方向焊缝的交叉处亦有三向应力存在。
根据焊接应力相对于焊缝的方向不同,可分为平行于焊缝的纵向应力和垂直于焊缝的横向应力。
单向应力对焊件的强度影响不大,有时不必采取特殊的方法消除它们。
但当焊缝中存在双向应力和三向应力时,焊缝金属的强度和冲击值都要显著下降,容易产生裂缝。
因此,在焊接厚件≥25mm时,焊后一般应对焊件进行热处理,以消除三向应力。
三个方向焊缝的,焊缝不应焊到交角的顶点,以避免三向应力的产生。
焊接应力按其产生的原因,也可以分为焊接热应力和组织应力。
在船体焊接时,一般只考虑焊接热应力。
焊接变形的种类焊接变形的种类,按其对结构影响的大小可分为下面两种:整体变形整体变形是指整个结构的形状或尺寸发生变化。
整体变形是由于焊缝在各个方向收缩所引起的。
它包括直线变形、弯曲变形、扭曲变形等。
如图所示。
直线变形是指结构的长、宽、高尺寸的改变,按其方向又可分为纵向变形和横向变形。
纵向变形是指平行于焊缝方向的变形。
横向变形是指垂直于焊缝方向的变形。
局部变形局部变形是指结构的某种部分发生变形。
简述焊接变形和焊接应力摘要:在国民经济发展的过程中,制造行业获得了飞速的发展与进步。
自动焊接工艺改进对于制造业的影响十分突出。
焊接工艺、焊接性能决定着可靠性与安全性。
所以必须重视对焊接工艺的研究,其对制造行业的发展有着现实性意义。
鉴于此,本文对焊接变形和焊接应力进行分析,以供参考。
关键词:焊接变形;焊接应力;简述引言自动焊能够让生产过程变得合理化,对制造生产来说,焊接的意义十分突出。
低成本焊接需要重视焊接质量的控制,改善工人施工环境,这些是今后焊接工艺必须要重视的问题。
1自动焊接焊接工艺有着非常多的种类,根据过程特征可以将焊接工艺分为纤焊、手工电弧焊、压力焊、气保焊。
纤焊指的是将纤料与焊件加热至熔点,此时其温度会低于母材温度。
随后用液态纤料湿润母材,填充接头间隙和母材相互扩散完成焊件连接。
手工电弧焊指的是以手工方式焊接焊条,即常见的电焊。
压力焊种类很多,常见的包括超声波焊、旋转电弧焊、扩散焊、摩擦焊、电阻焊,电阻焊是其中最常用的方法。
气体保护焊有时候也被称为气保焊,其利用喷嘴喷出气体隔绝周围空气,能够很好的完成焊接区域与电弧的保护,其所用气体包括清漆、氮气以及混合气体。
2焊接方法的分类金属在焊接环节状态不一,可分为熔焊、钎焊、压焊。
制造自动化焊接采用的就是熔焊中的氩弧焊技术。
这是一种以氩气作为保护的弧焊技术。
自动焊接车主要是埋弧自动焊。
这个过程的特点是:生产效率高;焊缝的质量好;生产成本低;作业劳动条件好;适应变量性差;焊接整体设备复杂,需要采用辅助装置;焊前准备工作严格;不便于焊接过程的观察,所以要有焊缝自动跟踪装置;产品对装配精密度质量要求严格;完成每层焊道焊接工序后必须清理焊渣3新工艺研究3.1方便性在钢结构焊接中焊接变形是非常常见的情况,难以避免。
焊接变形包括波浪变形、角变形、弯曲变形、横向收缩变形、纵向收缩变形等类型。
焊接变形可用反变形技术加以控制和矫正。
这里所提出的角变形控制方式为用弹性反向变形技术提前处理变形情况。
焊接应力与焊接变形焊接变形:钢结构构件或节点在焊接过程中,局部区域受到很强的高温作用,在此不均匀的加热和冷却过程中产生的变形称为焊接变形。
焊接应力:焊接后冷却时,焊缝与焊缝附近的钢材不能自由收缩,由此约束而产生的应力称为焊接应力。
∙焊接应力的形成和对钢结构的影响∙ 1. 焊接应力的形成和对钢结构的影响∙(1)形成∙两块钢板上施焊时,产生不均匀的温度场,焊缝附近温度高达1600︒C,其邻近区域温度较低,且冷却很快。
冷却时钢材收缩,冷却慢的区域收缩受到限制,从而产生拉应力,冷却快的区域受到压应力。
∙(2)焊接应力的分类∙✍纵向应力:沿着焊缝长度方向的应力∙✍横向应力:垂直于焊缝长度方向且平行于构件表面的应力∙✍厚度方向应力:垂直于焊缝长度方向且垂直于构件表面的应力。
∙(3)焊接应力的影响∙✍对常温下承受静力荷载结构的强度没有影响,但刚度降低;∙✍由于焊接应力使焊缝处于三向应力状态,阻碍了塑性变形,裂纹易发生和发展;∙✍降低疲劳强度;∙✍降低压杆的稳定性;∙✍使构件提前进入弹塑性工作阶段。
∙焊接变形的产生和防止∙ 2. 焊接变形的产生和防止∙焊接变形是由于焊接过程中焊区的收缩变形引起的,表现在构件局部的鼓起、歪曲、弯曲或扭曲等。
∙表现主要有:纵向收缩、横向收缩、弯曲变形、角变形、波浪变形、扭曲变形等。
如图∙∙减少焊接应力和焊接变形的方法∙ 3. 减少焊接应力和焊接变形的方法:∙(1)采用适当的焊接程序,如分段焊、分层焊;∙(2)尽可能采用对称焊缝,使其变形相反而抵消;∙(3)施焊前使结构有一个和焊接变形相反的预变形;∙(4)对于小构件焊前预热、焊后回火,然后慢慢冷却,以消除焊接应力。
∙合理的焊缝设计∙ 4. 合理的焊缝设计:∙(1)避免焊缝集中、三向交叉焊缝;∙(2)焊缝尺寸不宜太大;∙(3)焊缝尽可能对称布置,连接过渡平滑,避免应力集中现象;∙(4)避免仰焊。
对焊接应力的认识一、引言焊接是一种常见的金属连接方法,通过加热金属材料使其熔化,并在冷却后形成连接。
然而,焊接过程中会产生应力,这些应力可能对焊接件的性能和可靠性产生重要影响。
因此,对焊接应力的认识和控制是焊接工艺中非常重要的一部分。
二、焊接应力的产生原因焊接过程中产生应力的主要原因有以下几点:1. 热应力:在焊接过程中,焊接接头周围的金属会因为加热而膨胀,而冷却后又会收缩。
由于不同部位的温度变化不一致,会导致金属产生热应力。
2. 冷却收缩应力:焊接后的金属在冷却过程中会收缩,如果焊接接头与周围材料的固定不当,就会产生冷却收缩应力。
3. 相变应力:某些金属在焊接过程中会发生相变,如奥氏体不锈钢在焊接后会发生铁素体相变,这种相变会导致应力产生。
三、焊接应力的影响焊接应力的存在会对焊接件的性能和可靠性产生重要影响,主要表现在以下几个方面:1. 变形和裂纹:焊接应力会导致焊接件发生变形,如果应力超过材料的承载能力,就会产生裂纹。
2. 强度和韧性:焊接应力会影响焊接接头的强度和韧性,使其与基材之间的连接变弱,从而降低了焊接件的整体性能。
3. 疲劳寿命:焊接应力会降低焊接件的疲劳寿命,使其更容易发生疲劳破坏。
4. 腐蚀性能:焊接应力会导致焊接接头周围的应力集中,从而降低了焊接件的耐腐蚀性能。
四、焊接应力的控制方法为了减小焊接应力对焊接件的影响,可以采取以下控制方法:1. 优化焊接工艺:通过调整焊接参数,控制焊接过程中的温度和冷却速度,减小焊接应力的产生。
2. 采用预热和后热处理:通过在焊接前进行预热,或者在焊接后进行后热处理,可以改善焊接接头的组织结构,减小焊接应力的产生。
3. 选择合适的焊接材料:选择具有良好焊接性能的材料,可以减小焊接应力的产生。
五、焊接应力的检测方法为了了解焊接接头中的应力分布情况,可以采用以下检测方法:1. X射线法:通过对焊接接头进行X射线照射和分析,可以得到应力分布的信息。
2. 应变测量法:利用应变计等测量设备,对焊接接头进行应变测量,从而得到应力分布的信息。
焊接与焊接应力在建筑钢结构发展如火如荼的今天,形式各异的焊接机械、焊接方法日新月异,焊接技术成了一个关键的课题。
但在施工过程中,由于焊接产生的焊接残余应力和残余变形,严重影响着工程的质量、安装进度和结构承载力(即使用功能),因而,急需采用合理的方法予以控制。
钢结构的焊接过程实际上是在焊件局部区域加热后又冷却凝固的热过程,但由于不均匀温度场,导致焊件不均匀的膨胀和收缩,从而使焊件内部产生焊接应力而引起焊接变形。
常见的焊接应力有:1)纵向应力;2)横向应力;3)厚度方向应力。
常见的焊接变形有:1)纵向收缩变形;2)横向收缩变形;3)角变形;4)弯曲变形;5)扭曲变形;6)波浪变形。
针对这些不同种类的焊接变形和应力分布,追溯根源,具体进行研究控制。
1焊接变形的控制措施全面分析各因素对焊接变形的影响,掌握其影响规律,即可采取合理的控制措施。
1.1焊缝截面积的影响焊缝截面积是指熔合线范围内的金属面积。
焊缝面积越大,冷却时收缩引起的塑性变形量越大,焊缝面积对纵向、横向及角变形的影响趋势是一致的,而且是起主要的影响,因此,在板厚相同时,坡口尺寸越大,收缩变形越大。
1.2焊接热输入的影响一般情况下,热输入大时,加热的高温区范围大,冷却速度慢,使接头塑性变形区增大。
1.3焊接方法的影响多种焊接方法的热输入差别较大,在建筑钢结构焊接常用的几种焊接方法中,除电渣以外,埋弧焊热输入最大,在其他条件如焊缝断面积等相同情况下,收缩变形最大,手工电弧焊居中,CO2气体保护焊最小。
1.4接头形式的影响在焊接热输入、焊缝截面积、焊接方面等因素条件相同时,不同的接头形式对纵向、横向、角变形量有不同的影响。
常用的焊缝形式有堆焊、角焊、对接焊。
1)表面堆焊时,焊缝金属的横向变形不但受到纵横向母材的约束,而且加热只限于工件表面一定深度而使焊缝的收缩同时受到板厚、深度、母材方面的约束,因此,变形相对较小。
2)T形角接接头和搭接接头时,其焊缝横向收缩情况与堆焊相似,其横向收缩值与角焊缝面积成正比,与板厚成反比。
3)对接接头在单道(层)焊的情况下,其焊缝横向收缩比堆焊和角焊大,在单面焊时坡口角度大,板厚上、下收缩量差别大,因而角变形较大。
双面焊时情况有所不同,随着坡口角度和间隙的减小,横向收缩减小,同时角变形也减小。
1.5焊接层数的影响1)横向收缩:在对接接头多层焊接时,第一层焊缝的横向收缩符合对接焊的一般条件和变形规律,第一层以后相当于无间隙对接焊,接近于盖面焊道时与堆焊的条件和变形规律相似,因此,收缩变形相对较小。
2)纵向收缩:多层焊接时,每层焊缝的热输入比一次完成的单层焊时的热输入小得多,加热范围窄,冷却快,产生的收缩变形小得多,而且前层焊缝焊成后都对下层焊缝形成约束,因此,多层焊时的纵向收缩变形比单层焊时小得多,而且焊的层数越多,纵向变形越小。
在工程焊接实践中,由于各种条件因素的综合作用,焊接残余变形的规律比较复杂,了解各因素单独作用的影响便于对工程具体情况做具体的综合分析。
所以,了解焊接变形产生的原因和影响因素,则可以采取以下控制变形的措施:1)减小焊缝截面积,在得到完整、无超标缺陷焊缝的前提下,尽可能采用较小的坡口尺寸(角度和间隙)。
2)对屈服强度345MPA以下,淬硬性不强的钢材采用较小的热输入,尽可能不预热或适当降低预热、层间温度;优先采用热输入较小的焊接方法,如CO2气体保护焊。
3)厚板焊接尽可能采用多层焊代替单层焊。
4)在满足设计要求情况下,纵向加强肋和横向加强肋的焊接可采用间断焊接法。
5)双面均可焊接操作时,要采用双面对称坡口,并在多层焊时采用与构件中和轴对称的焊接顺序。
6)T形接头板厚较大时采用开坡口角对接焊缝。
7)采用焊前反变形方法控制焊后的角变形。
8)采用刚性夹具固定法控制焊后变形。
9)采用构件预留长度法补偿焊缝纵向收缩变形,如H形纵向焊缝每米长可预留0.5mm~0.7mm。
10)对于长构件的扭曲,主要靠提高板材平整度和构件组装精度,使坡口角度和间隙准确,电弧的指向或对中准确,以使焊缝角度变形和翼板及腹板纵向变形值与构件长度方向一致。
11)在焊缝众多的构件组焊时或结构安装时,要采取合理的焊接顺序。
12)设计上要尽量减少焊缝的数量和尺寸,合理布置焊缝,除了要避免焊缝密集以外,还应使焊缝位置尽可能靠近构件的中和轴,并使焊缝的布置与构件中和轴相对称。
2焊接应力的控制措施构件焊接时产生瞬时内应力,焊接后产生残余应力,并同时产生残余变形,这是不可避免的现象。
焊接变形的矫正费时费工,构件制造和安装企业首先考虑的是控制变形,往往对控制残余应力较为忽视,常用一些卡具、支撑以增加刚性来控制变形,与此同时实际上增大了焊后的残余应力。
对于一些本身刚性较大的构件,如板厚较大,截面本身的惯性矩较大时,虽然变形会较小,但却同时产生较大的内应力,甚至产生裂纹。
因此,对于一些构件截面厚大,焊接节点复杂,拘束度大,钢材强度级别高,使用条件恶劣的重要结构要注意焊接应力的控制。
控制应力的目标是降低其峰值使其均匀分布,其控制措施有以下几种:1)减小焊缝尺寸:焊接内应力由局部加热循环而引起,为此,在满足设计要求的条件下,不应加大焊缝尺寸和层高,要转变焊缝越大越安全的观念。
2)减小焊接拘束度:拘束度越大,焊接应力越大,首先应尽量使焊缝在较小拘束度下焊接,尽可能不用刚性固定的方法控制变形,以免增大焊接拘束度。
3)采取合理的焊接顺序:在焊缝较多的组装条件下,应根据构件形状和焊缝的布置,采取先焊收缩量较大的焊缝,后焊收缩量较小的焊缝;先焊拘束度较大而不能自由收缩的焊缝,后焊拘束度较小而能自由收缩的焊缝的原则。
4)降低焊件刚度,创造自由收缩的条件。
5)锤击法减小焊接残余应力:在每层焊道焊完后立即用圆头敲渣小锤或电动锤击工具均匀敲击焊缝金属,使其产生塑性延伸变形,并抵消焊缝冷却后承受的局部拉应力。
但根部焊道、坡口内及盖面层与母材坡口面相邻的两侧焊道不宜锤击,以免出现熔合线和近缝区的硬化或裂纹。
高强度低合金钢,如屈服强度级别大于345MPa时,也不宜用锤击法消除焊接残余应力。
6)采用抛丸机除锈:通过钢丸均匀敲打来抵消构件的焊接应力。
综上所述,在施工过程中,一定要了解焊接工艺,采用合理的焊接方法和控制措施,以便减少和消除焊后残余应力和残余变形。
在实践中不断总结、积累焊接经验,综合分析考虑的各种因素,可以保证工程中的焊接质量。
【MechNet】在建筑钢结构发展如火如荼的今天,形式各异的焊接机械、焊接方法日新月异,焊接技术成了一个关键的课题。
但在施工过程中,由于焊接产生的焊接残余应力和残余变形,严重影响着工程的质量、安装进度和结构承载力(即使用功能),因而,急需采用合理的方法予以控制。
钢结构的焊接过程实际上是在焊件局部区域加热后又冷却凝固的热过程,但由于不均匀温度场,导致焊件不均匀的膨胀和收缩,从而使焊件内部产生焊接应力而引起焊接变形。
常见的焊接应力有:1)纵向应力;2)横向应力;3)厚度方向应力。
常见的焊接变形有:1)纵向收缩变形;2)横向收缩变形;3)角变形;4)弯曲变形;5)扭曲变形;6)波浪变形。
针对这些不同种类的焊接变形和应力分布,追溯根源,具体进行研究控制。
1焊接变形的控制措施全面分析各因素对焊接变形的影响,掌握其影响规律,即可采取合理的控制措施。
1.1焊缝截面积的影响焊缝截面积是指熔合线范围内的金属面积。
焊缝面积越大,冷却时收缩引起的塑性变形量越大,焊缝面积对纵向、横向及角变形的影响趋势是一致的,而且是起主要的影响,因此,在板厚相同时,坡口尺寸越大,收缩变形越大。
1.2焊接热输入的影响一般情况下,热输入大时,加热的高温区范围大,冷却速度慢,使接头塑性变形区增大。
1.3焊接方法的影响多种焊接方法的热输入差别较大,在建筑钢结构焊接常用的几种焊接方法中,除电渣以外,埋弧焊热输入最大,在其他条件如焊缝断面积等相同情况下,收缩变形最大,手工电弧焊居中,CO2气体保护焊最小。
1.4接头形式的影响在焊接热输入、焊缝截面积、焊接方面等因素条件相同时,不同的接头形式对纵向、横向、角变形量有不同的影响。
常用的焊缝形式有堆焊、角焊、对接焊。
1)表面堆焊时,焊缝金属的横向变形不但受到纵横向母材的约束,而且加热只限于工件表面一定深度而使焊缝的收缩同时受到板厚、深度、母材方面的约束,因此,变形相对较小。
2)T形角接接头和搭接接头时,其焊缝横向收缩情况与堆焊相似,其横向收缩值与角焊缝面积成正比,与板厚成反比。
3)对接接头在单道(层)焊的情况下,其焊缝横向收缩比堆焊和角焊大,在单面焊时坡口角度大,板厚上、下收缩量差别大,因而角变形较大。
双面焊时情况有所不同,随着坡口角度和间隙的减小,横向收缩减小,同时角变形也减小。
1.5焊接层数的影响1)横向收缩:在对接接头多层焊接时,第一层焊缝的横向收缩符合对接焊的一般条件和变形规律,第一层以后相当于无间隙对接焊,接近于盖面焊道时与堆焊的条件和变形规律相似,因此,收缩变形相对较小。
2)纵向收缩:多层焊接时,每层焊缝的热输入比一次完成的单层焊时的热输入小得多,加热范围窄,冷却快,产生的收缩变形小得多,而且前层焊缝焊成后都对下层焊缝形成约束,因此,多层焊时的纵向收缩变形比单层焊时小得多,而且焊的层数越多,纵向变形越小。
在工程焊接实践中,由于各种条件因素的综合作用,焊接残余变形的规律比较复杂,了解各因素单独作用的影响便于对工程具体情况做具体的综合分析。
所以,了解焊接变形产生的原因和影响因素,则可以采取以下控制变形的措施:1)减小焊缝截面积,在得到完整、无超标缺陷焊缝的前提下,尽可能采用较小的坡口尺寸(角度和间隙)。
2)对屈服强度345MPA以下,淬硬性不强的钢材采用较小的热输入,尽可能不预热或适当降低预热、层间温度;优先采用热输入较小的焊接方法,如CO2气体保护焊。
3)厚板焊接尽可能采用多层焊代替单层焊。
4)在满足设计要求情况下,纵向加强肋和横向加强肋的焊接可采用间断焊接法。
5)双面均可焊接操作时,要采用双面对称坡口,并在多层焊时采用与构件中和轴对称的焊接顺序。
6)T形接头板厚较大时采用开坡口角对接焊缝。
7)采用焊前反变形方法控制焊后的角变形。
8)采用刚性夹具固定法控制焊后变形。
9)采用构件预留长度法补偿焊缝纵向收缩变形,如H形纵向焊缝每米长可预留0.5mm~0.7mm。
10)对于长构件的扭曲,主要靠提高板材平整度和构件组装精度,使坡口角度和间隙准确,电弧的指向或对中准确,以使焊缝角度变形和翼板及腹板纵向变形值与构件长度方向一致。
11)在焊缝众多的构件组焊时或结构安装时,要采取合理的焊接顺序。
12)设计上要尽量减少焊缝的数量和尺寸,合理布置焊缝,除了要避免焊缝密集以外,还应使焊缝位置尽可能靠近构件的中和轴,并使焊缝的布置与构件中和轴相对称。